1. NOTATIONS

$f_c: z \mapsto z^2 + c, z \in \mathbb{C}.$

$f^n = f$ iterated n times.

$K_c = \{ z | f^n_c(z) \neq \infty \}$ the filled-in Julia set.

$J_c = \partial K_c$ the Julia set

f_c has two fixed points $\alpha(c)$ and $\beta(c)$.

Convention: $\beta(c)$ is the most repulsive (the one on the right).

$M = \{ c | K_c \text{ is connected} \} = \{ c | 0 \in K_c \}$.

$\mathcal{V}_0 = \{ c | 0 \text{ is periodic for } f_c \}$ (centers of hyperbolic components).

$\mathcal{V}_2 = \{ c | 0 \text{ is strictly preperiodic} \}$ (Misiurewicz points).

$\mathcal{V}_1 = \{ c | f_c \text{ has a rational neutral cycle} \}$ (roots of hyperbolic components).
2. POTENTIAL AND EXTERNAL ARGUMENTS

The potential G_c created by K_c is given by

$$G_c(z) = \lim_{n \to \infty} \frac{1}{2^n} \log^+ |f_c^n(z)| = \begin{cases} 0 & \text{if } z \in K_c \\ \log |z| + \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} \log \left| 1 + \frac{c}{f_c^n(z)^2} \right| & \text{else} \end{cases}$$

The map $z \mapsto \phi_c(z) = \lim(f_c^n(z))^{1/2^n}$ is well defined for all $z \in \mathbb{C} - K_c$ if K_c is connected, only for $G_c(z) > G_c(0)$ if K_c is a Cantor set. The external argument with respect to K_c is $\arg_c(z) = \arg(\phi_c(z))$. (The unit for arguments is the whole turn, not the radian.) For $z \in J_c = \partial K_c$, one can define one value of $\arg_c(z)$ for each way of access to z in $\mathbb{C} - K_c$.

The external ray $R(c,\theta) = \{z|\arg_c(z) = \theta\}$ is orthogonal to the equipotential lines.

The potential created by M is $G_M(c) = G_c(c)$. The conformal mapping $\phi_M: \mathbb{C} - M \to \mathbb{C} - \overline{B}$ is given by

$$\phi_M(c) = \phi_c(c)$$

This is the magic formula which allows one to get information in the parameter plane. This gives

$$\arg_M(c) = \arg_c(c) \quad \text{for } c \notin M.$$

The formula extends to the Misiurewicz points. For $c \in \mathcal{D}_0$, the situation is more subtle.

3. HOW TO COMPUTE $\arg_c(z)$ FOR $c \in \mathcal{D}_0 \cup \mathcal{D}_2$, z PREPERIODIC

Set $x_0 = 0$, $x_i = f_c^i(0)$, $z_1 = z$, $z_j = f_c^{j-1}(z)$, $\beta = \beta(c)$, $\beta' = -\beta(c)$. Join β, β', the points x_i and the points z_j by arcs which remain in K_c. If such an arc has to cross a
component of U of K_c, let it go straight to the center and then to the exit (the center of U is the point of U which is in the inverse orbit of 0, "straight" is relative to the Poincaré metric of U). You obtain a finite tree. Drawing this tree requires some understanding of the set K_c and its dynamics, but then it is enough to compute the required angle. Choose an access ζ to z, and let ζ^j be the corresponding access to z_j. The spine of K_c is the arc from β to β'. Mark 0 each time C is above the spine and 1 each time it is below. You obtain the expansion in base 2 of the external argument θ of z by ζ. This simply comes from the two following facts:

a) $0 < \theta < 1/2$ if ζ is above the spine, $1/2 < \theta < 1$ if it is below;

b) f_c doubles the external arguments with respect to K_c, as well as the potential, since ϕ_c conjugates f_c to $z \mapsto z^2$.

Note that if c and z are real, the tree reduces to the segment $[\beta', \beta]$ of the real line, and the sequence of 0 and 1 obtained is just the kneading sequence studied by Milnor and Thurston (except for convention: they use 1 and -1). This sequence appears now as the binary expansion of a number which has a geometrical interpretation.

4. EXTERNAL ARGUMENTS IN M

If $c \in \mathcal{D}_2$, then the external arguments of c in M are the external arguments of c in K_c. Their number is finite, and they are rationals with even denominators.

A point $c_0 \in \mathcal{D}_0$ is in the interior of M, thus has no external arguments. But the corresponding point $c_1 \in \mathcal{D}_1$ (the root of the hyperbolic component whose center is c_0) has
2 arguments θ_+ and θ_-, which are rational with odd denominators. They can be obtained as follows: Let U_0 be the component of the interior of K_{c_0} containing 0 and $U_1 = f^1_c(U_0)$, so that U_1 contains c_0. On the boundary of U_0, there is a periodic point a_0 whose period divides $k = \text{period of } 0$. Then θ_+ and θ_- are the external arguments of $a_1 = f_{c_0}(a_0)$ corresponding to accesses adjacent to U_1.

5. USE OF EXTERNAL ARGUMENTS

We write $\theta \sim_c \theta'$ if the external rays $R(c, \theta)$ and $R(c, \theta')$ land in the same point of K_c, i.e., if θ and θ' are two external arguments of one point in J_c. For $c \in D_0 \cup D_2$, the classes having 3 elements or more is made of rational points, each class with 2 elements is limit of classes made of rational points. Knowing this equivalence relation, one can describe K_c as follows: start from a closed disc, and pinch it so as to identify the points of argument θ and θ' each time you have $\theta \sim_c \theta'$. You end up with a space homeomorphic to K_c. A similar description can be given for M. It will be valid if we know that M is locally connected (a fact which is highly suggested by the many pictures of details of M that we have).
6. INTERNAL AND EXTERNAL ARGUMENTS IN $3\mathbb{W}_0$

\mathbb{W}_0 denotes the main component of \mathbb{M} (the big cardioid). Internal arguments in \mathbb{W}_0 are defined using a conformal representation of \mathbb{W}_0 onto the unit disc D. The internal argument $\text{Arg}_{\mathbb{W}_0}(c)$ is just the argument of $f'(a,c)$ (in fact the argument of $\alpha(c)$). If a point $c \in 3\mathbb{W}_0$ has a rational internal argument $t = p_0/q_0$ (irreducible form), a compliment \mathbb{W}_t of period q_0 is attached at \mathbb{W}_0 at the point c. Thus c has 2 external arguments: $\theta_- = a_-/2^{q_0} - 1$ and $\theta_+ = a_+/2^{q_0} - 1$.

Theorem 1.

$$\theta_+(t) = \sum_{s<t} \frac{1}{2^{q(s)}} - 1 = \sum_{0<p/q<t} \frac{1}{2^{q(s)}}.$$

$\theta_+(t)$ = same with $\leq t$ instead of $< t$. (Here $p(s)/q(s)$ is the irreducible representation of the rational number s. In the second sum, all representations are allowed.)

Proof. Clearly $\theta_+(t) - \theta_-(t) \geq 1/2^{q(t)} - 1$

$$\theta_-(t) \geq \sum_{s<t} \frac{1}{2^{q(s)}} - 1.$$

$$1 - \theta_+(t) \geq \sum_{t<s<1} \frac{1}{2^{q(s)}} - 1.$$

Lemma. $\sum_{s \in (0,1) \cap \mathbb{Q}} \frac{1}{2^{q(s)}} - 1 = 1$.

Therefore the inequalities above are equalities, which proves the theorem.

Proof of Lemma. Consider the integer points (q,p) with $0 < p < q$, and provide each (q,p) with the weight $1/2^p$. Summing on horizontal lines gives total weight = 1. Summing on
rational lines through 0 gives total weight $= \sum_{t} 1/2^{q(t)} - 1$.

Corollary. The set of values of θ such that $R(M,\theta)$ lands on ∂W_0 has measure 0.

7. TUNING

Let W be a hyperbolic component of M, of period k, and c_0 the center of W. There is a copy M_W of W, sitting in M, and in which W corresponds to the main cardioid W_N. This is particularly striking for a primitive component, and was observed by Mandelbrot in 1980. More precisely, there is a continuous injection $\psi_W : M \to M$ such that $\psi_W(0) = c_0$, $\psi_W(W) = W$, $\psi_W(M) = M_W$, $\partial M_W \subset \partial M$. For $x \in M$, the point $\psi_W(x)$ will be called "c_0 tuned by x" and denoted $c_0 \perp x$ or $W \perp x$. The filled-in Julia set $K_{c_0 \perp x}$ can be obtained in taking K_{c_0} and replacing, for component U of K_{c_0}, the part \overline{U} (which is homeomorphic to the closed disc D) by a copy of K_x.

Theorem 2. Let θ_- and θ_+ be the two external arguments in M of the root c_1 of W, and let t be an external argument of x in M. Then to t there corresponds an external argument t' of $c_0 \perp x$ in M, which can be obtained by the following algorithm:

Expand θ_-, θ_+ and t in base 2:

- $\theta_- = \underbrace{u_0 u_0 \ldots u_0}_{k} = u_1 u_2 \ldots u_k u_1 \ldots$
- $\theta_+ = \underbrace{u_1 u_1 \ldots u_1}_{k}$
- $t = \underbrace{s_1 s_2 \ldots s_n}_{\ldots}$

Then
We denote this algorithm by \(t' = (\theta_-, \theta_+) \cdot t \). According to the principle: "You plough in the \(z \)-plane and harvest in the parameter plane," this theorem relies on Proposition 1 below.

Let \(U_1 \) be the component of \(\hat{K}_{c_0} \) which contains \(x_1 = x_0 \), and \(\alpha_1 \) the root of \(U_1 \) (the point on \(\beta U_1 \) which is repulsive periodic of period dividing \(k \)). Recall that \(\theta_+ \) and \(\theta_- \) are the external arguments of \(\alpha_1 \) in \(K_{c_0} \) corresponding to the accesses adjacent to \(U_1 \).

Proposition 1. Let \(z \) be a point in \(\beta U_1 \) with internal argument \(t \). Then \(z \) has an external argument \(t' \) in \(M \) given by

\[
 t' = u_1^{s_1} u_2^{s_2} u_3^{s_3} \ldots
\]

Sketch of Proof of Proposition 1. Let \(a_1' \) be the point in \(U_1 \) opposite to \(\alpha_1 \) (point of internal argument \(1/2 \)) and call the geodesic \([a_1', a_1] \) the spine of \(U_1 \). Let \(U_i \) be the connected component in \(\hat{K}_{c_0} \) containing \(x_i = f_{c_0}^i(0) \), so that \(U_i = f_{c_0}^{i-1}(U_1) \), and define the spine of \(U_i \) as the image of the spine of \(U_1 \). Recall that the spine of \(K_{c_0} \) is the arc \([\beta, \beta'] \) in \(K_{c_0} \).

Lemma. For each \(i \), either \(U_i \) is off the spine of \(K_{c_0} \), either the spine of \(U_i \) is the trace in \(U_i \) of the spine of \(K_{c_0} \).

We don't prove this lemma here. Now, if the first digit \(s_1 \) of \(t \) is 0, \(z \) is on the same side of the spine of \(U_1 \) as the ray \(R(\theta_-) \). Then \(z_i = f_{c_0}^{i-1}(z) \) will be on the same side of the spine of \(U_i \) as \(R(z_1^{-1} \theta_-) \) (thus also on the same side of the spine of \(K_{c_0} \)) for \(i = 1, \ldots, k \). Therefore the \(i \)-th digit \(s_i' \) of \(t' \) is \(u_1^{s_1} \). If \(s_1 = 1 \), then \(z \) follows \(\theta_+ \), and \(s_i' = u_i^{1} \) for
i = 1, ..., k. At time k+1, \(z_{k+1}\) is back in \(U_1\), but with internal argument 2t, so that \(s_1\) is replaced by \(s_2\) (the internal argument is preserved in the map from \(U_i\) to \(U_{i+1}\) for \(i = 1, ..., k-1\), and doubled from \(U_k = U_0\) to \(U_1\)). And we start for a second run, and so on...

Now let us come to the situation of Theorem 2. There is a homeomorphism \(\psi\) of \(K_x\) onto the part of \(K_{c_0 \perp x}\) which corresponds to \(U_1\) in \(K_{c_0}\). This homeomorphism conjugates \(f_x\) to \(f_{c_0 \perp x}^k\).

Lemma 2. If \(y \in J_x = \partial K_x\) has external argument \(t\), then the external arguments of \(\psi(y)\) in \(K_{c_0 \perp x}\) are the same as the external arguments in \(K_{c_0}\) of the point \(y' \in \partial U_1\) whose internal argument is \(t\).

We don't prove this lemma here, but if you think of it, it is very natural. Theorem 2 now follows from results discussed in Section 4, applied to \(y = x\) or to \(y = \) the root of the component \(V_1\) of \(K_x\) containing \(x\).

Remark. The copy \(M_w\) of \(M\) sits in \(M\), but in some places, where \(M_w\) ends \(M\) goes on. Then there are points \(x\) in \(M\) with 1 external argument such that \(c_0 \perp x\) has several external arguments. How is this compatible with the algorithm described in Theorem 2? Well, this algorithm is not univalent: It starts by expanding \(t\) in base 2, and numbers of the form \(p/2^k\) have two expansions. Actually \(c_0 \perp x\) may have more than 2 external arguments; the algorithm will give the two which correspond to accesses adjacent to \(M_w\).
Example

\[1/2^n = .00...01 \]

An elephant in \(M \).

Its copy in \(W \) has two smokes coming out of its trunk if \(W \) is the rabbit component.

8. FEIGENBAUM POINT AND MORSE NUMBER

Let \(W_n \) be the \(n \)-th component of \(\hat{M} \) in the Myrberg-Feigenbaum cascade: \(W_1 \) is the disc \(D(-1, 1/4) \) and we have \(W_n = W_1 \perp W_1 \perp \ldots \perp W_1 \). Denote \(c_0(n) \) and \(c_1(n) \) the center and the root of \(W_n \). According to Feigenbaum theory, \(c_0(n) \) converges to \(c_\infty = -1.401\ldots \) exponentially with ratio \(1/4.66\ldots \). The external arguments \(\theta_-(n) \) and \(\theta_+(n) \) of \(c_1(n) \) are obtained by Theorem 2, starting from

\[\theta_- (1) = 1/3 = .01 \quad \text{and} \]

\[\theta_+ (1) = 2/3 = .10 . \]
One gets:
\[\theta_-(2) = .\overline{0110} \]
\[\theta_+(2) = .\overline{1001} \]
\[\theta_-(3) = .\overline{01101001} \]
\[\theta_+(3) = .\overline{10010110} \]
\[\theta_-(4) = .\overline{0110100110010110} \]

... The numbers \(\theta_-(n) \) converge to a number \(\theta_-(\infty) \) known as the Morse number. (It has been proved to be transcendental by Van der Poorten, an Australian number theorist in Bordeaux.

The idea is that a sequence of digits which represents an element in \(\mathbb{Z}/2 \mathbb{[T]} \) which is algebraic over \(\mathbb{Z}/2 \mathbb{T} \) cannot be the expansion in base 2 of an algebraic real number, except if periodic.) Note that the convergence of \(\theta_-(n) \) to \(\theta_-(\infty) \) is faster than any exponential convergence: the number of good digits is doubled at each time. In our view, this is due to the fact that, because of the growing of hairs, \(W_{n+1} \) is more sheltered from Brownian dust by \(W_n \) and \(W_n \) is by \(W_{n-1} \).

9. SPIRALING ANGLE

Take \(c \in \mathbb{C} \) (in \(M \) or in \(\mathbb{C} - M \)), and let \(z_0 \) be a repulsive periodic point for \(f_c \), of period \(k \) and multiplier \(\rho = (f_c^k)'(z_0) \).

There are external rays of \(K_c \) landing on \(z_0 \) (there may be a finite number or an infinity of them, almost always a finite number though). Take one of them \(R \) and let \(\tilde{R} \) be an image of \(R \) by a determination of \(z + \log(z-z_0) \). Recall that, with our
convention, \(\log z = \log|z| + 2\pi i \arg z \). When \(z \to 0 \) on \(\mathbb{R} \),
\(w = \log z \to \infty \) in \(\mathbb{C} \) and \(\text{Im } w/\text{Re } w = 2\pi \arg|z - z_0|/\log|z - z_0| \) has
a limit \(m \) that we call the **spiraling slope** of \(z_0 \). This slope
can be written \(m = \frac{2\pi \sigma}{\log|\rho|} \), and \(\sigma \) will be the **spiraling number**
(or spiraling angle). We have \(\sigma = \arg \rho - \omega \), where \(\omega \) is the
rotation angle of the action of \(f^k \) on the set of external
rays landing at \(z_0 \). If there are \(v \) such rays, then \(\omega \) is of
the form \(p/v \) with \(p \in \mathbb{Z} \). Note that \(\arg \rho \) and \(\omega \) are but
angles, i.e., \(\in \mathbb{T} = \mathbb{R}/\mathbb{Z} \), while \(\sigma \) is naturally in \(\mathbb{R} \).

In order to compute \(\omega \) and \(\sigma \), let \(c \) vary in a simply con­
nected domain \(\Lambda \subset \mathbb{C} \) and \(z_0(c) \) vary accordingly, remaining
repulsive periodic of period \(k \). We make the following observa­
tions:

1. \(\omega \) is continuous in \(c \), and is invariant under the Hubbard­
Branner stretching procedure (here it means just sliding \(c \)
along the external rays of \(M \)).
2. \(\omega \) remains constant in \(\Lambda \) if the number of external rays
landing in \(z_0(c) \) is finite and constant.
3. \(\sigma \) tends to 0 when \(|p| \to 1 \), i.e., when \(z_0 \) turns indif­
ferent periodic (note that \(m \) does not necessarily tend to
0, and may well tend to \(\infty \) so that you see the Julia set
spiraling a lot).

If we take \(c \in \mathbb{C} - W_0 \) and \(z_0(c) = \alpha(c) \), the least repulsive
fixed point of \(f_c \), we obtain the following: is the internal
argument in \(W_0 \) of \(\pi_{W_0}(c) \), which can be defined in the following
way if you admit that \(M \) is locally connected. If \(c \in M \),
\(\pi_{W_0}(c) \) is the point where an arc in \(M \) from \(c \) to 0 enters \(W_0 \).
If \(c \notin M \), let \(\pi_M(c) \) be the point where the external ray of \(M \)
through \(c \) lands in \(M \). Then \(\pi_{W_0}(c) = \pi_{W_0}(\pi_M(c)) \). In fact,
one can modify this definition so that it does not depend on
the local connectivity of M, and determines $\pi \omega_0(c)$ unambig-
ously.

10. HOW TO DETERMINE $\pi \omega_0(c)$ KNOWING 1 PAIR (t,t') SUCH THAT
$t \sim_c t'$, $t \neq t'$

Here is the algorithm: expand t and t' in base 2:

\[t = \ldots u_1 u_2 \]

\[t' = \ldots u'_1 u'_2 \]

Set $\delta_i = u_i - u'_i \mod 2$. If the sequence δ_i ends in 1,0,0,0,...,
i.e., $\delta_i = 0$ for $i \geq n$, $\delta_{n-i} = 1$, then $\theta = 2^n t = 2^n t'$ is the
external argument of c in M, and the internal argument of
$\pi \omega_0(c)$ is the angle $t \pmod{0}$ such that $0 < \theta < 0 + (t \pmod{0})$ (the
functions θ and θ are defined in Section 6). If the sequence
δ_i ends with 1111..., then $\pi \omega_0(c) = -3/4$ (internal argument
1/2). Else, look for 10 somewhere in the sequence, i.e.,
$\delta_{n-1} = 1$, $\delta_n = 0$. Then there is a t_0 such that $\theta = 2^n t$ and
$\theta' = 2^n t'$ both belong to $[\theta_-(t_0), \theta_+(t_0)]$, and that is the
internal argument of $\pi \omega_0(c)$. Why? Let z be the point in K_c
with t and t' as external arguments. The rays $R(2^{n-1} t)$ and
$R(2^{n-1} t')$ are each on one side of the spine of K_c, therefore
$f_c^{n-1}(z)$ belongs to this spine. Now the image of the spine
$[\beta, \beta']_{K_c}$ is the arc $[\beta, c]_{K_c}$ from β to c in K_c, and because
$R(2^n t)$ and $R(2^n t')$ are on the same side of the spine, neces-
sarily $f_c^n(z) \in [\alpha(c), c]_{K_c}$. From this observation the result
follows easily.
11. ACKNOWLEDGEMENTS

Sections 2 to 8 are a report on joint work with J. H. Hubbard. Section 9 is a reflexion in common with Bessis, Geronimo, Moussa in Saclay, which might take a more precise form eventually. Section 10 is due to Tan Lei, a Chinese student in Orsay.