ALGORITHMS FOR COMPUTING ANGLES
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1. NOTATIONS

s 2 p 22 +c, ze C.

fc

f? = £ iterated n times..

K, = {z[f3(z) # =} the filled-in Julia set.
Jc = aKc the Julia set

fc has two fixed points a(c) and B(c).

Convention: B(c) is the most repulsive (the one on the right).

M= {c[Kc is connectedl = {c|0 ¢ K.}

Do = {c|0 is periodic for fc} (centers of hyperbolic com-
ponents).

v, = {c]0 is strictly preperiodic} (Misiurewicz points).

D, = {clfc has a rational neutral cycle}! (roots of hyperbolic
components) .
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2. POTENTIAL AND EXTERNAL ARGUMENTS

The potential Gc created by Kc is given by

0 if z € K
o oqa 1 +,).n _ c
G.(z) = lim ;ﬁ Log ]fc(z)l =

1 C
Log|z| + I—— Log |l + ———|
2n+1 fn(z)z

else

n
1727 s well defined for all

The map z b ¢,(z) = lim(fg(z))
z e T - Kc if Kc is connected, only for Gc(z) > GC(O) if Kc

is a Cantor set. The external argument with respect to Kc

is Argc(z) = Arg(¢c(z)). (The unit for arguments is the

whole turn, not the radian.) For z ¢ Jc = aKc, one can define
one value of Argc(z) for each way of access to z in € - Kc.
The external ray R(c,08) = {z[Argc(z) = §} is orthogonal to the
equipotential lines.

The potential created by M is GM(c) = Gc(c). The con-

formal mapping ¢,: € - M > € - D is given by

¢M(c) = ¢C(C)

This is the magic formula which allows one to get information

in the parameter plane. This gives
ArgM(c) = Argc(c) for ¢ ¢ M.

The formula extends to the Misiurewicz points. For c ¢ DO’

the situation is more subtle.

3. HOW TO COMPUTE Argc(z) FOR ¢ ¢ 1)0 v Dz, z PREPERIODIC

Set x 0, x, = fi(O), 2, =2, Z2, = fj-l(Z), B = B(c),

0" i 1 j
B' = -B(c). Join B,B', the points X and the points zj by

arcs which remain in Kc' If such an arc has to cross a
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component of U of ﬁc, let it go straight to the center and
then to the exit (the center of U is the point of U which is
in the inverse orbit of 0, "straight" is relative to the
Poincaré metric of U). You obtain a finite tree. Drawing
this tree requires some understanding of the set Kc and its
dynamics, but then it is enough to compute the required angle.
Choose an access ¢ to z, and let ;j be the corresponding
access to z4- The spine of K, is the arc from g to B'. Mark
0 each time ;j is above the spine and 1 each time it is below.
You obtain the expansion in base 2 of the external argument
6 of z by £. This simply comes from the two following facts:
a) 0 <6 <1/2 if ¢ is above the spine, 1[2 <8 <1if it
is below;
b) fc doubles the external arguments with respect to Kc' as
well as the potential, since ¢c conjugates fc to z b zz.
Note that if ¢ and z are real, the tree reduces to the segment
[B',B]) of the real line, and the sequence of 0 and 1 obtained

is just the kneading sequence studied by Milnor and Thurston

(except for convention: they use 1 and -1). This sequence
appears now as the binary expansion of a number which has a

geometrical interpretation.

4. EXTERNAL ARGUMENTS IN M

If c € Dz, then the external arguments of ¢ in M are the
external arguments of ¢ in Kc. Their number is finite, and
they are rationals with even denominators.

A point c0 € DO is in the interior of M, thus has no

external arguments. But the corresponding point ¢, ¢ Dl

1
(the root of the hyperbolic component whose center is cg) has
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2 arguments 8, and 6_, which are rational with odd denominators.
They can be obtained as follows: Let U0 be the component of
the interior of K containing 0 and U, = fl(U ), so that U

c0 i c' 0 1
contains Co- On the boundary of UO’ there is a periodic point
ay whose period divides k = period of 0. Then e+ and 6_ are
the external arguments of oy = fc (ao) corresponding to

0
accesses adjacent to Ul'

5. VUSE OF EXTERNAL ARGUMENTS

We write 6 Ve ©' if the external rays R{c,0) and R(c,8')
land in the same point of Kc, i,e., if 6 and 6' are two
external arguments of one point in Jc’ For c ¢ Do ] 02, the
classes having 3 elements or more is made of rational points,
each class with 2 elements is limit of classes made of
rational points. Xnowing this equivalence relation, one can
describe Kc as follows: start from a closed disc, and pinch
it so as to identify the points of argument 6 and 6' each. time
you have 0 Ve 6'. You end up with a space homeomorphic to Kc.
A similar description can be given for M. It will be valid if
we know that M is locally connected (a fact which is highly

suggested by the many pictures of details of M that we have).
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6. INTERNAL AND EXTERNAL ARGUMENTS IN SWO

W, denotes the main component of M (the big cardioid).

0
Internal arguments in Wo are defined using a conformal repre-
sentation of Wo onto the unit disc D. The internal argument
Argwo(c) is just the argument of fé(a,c)) (in fact the argument
of a(c)). If a point ¢ ¢ awo has a rational internal argument
t = po/q0 (irreducible form), a complment W, of period 9,

is attached at W0 at the point ¢. Thus ¢ has 2 external

argumenﬁ§
9o 99
6_=2_/2" -1 and 6 =a/2 -1.
Theorem 1.
o (t) = z 1,298 _ 3o 5 129
s<t 0<p/g<t

e+(t) = same with < t instead of < t. (Here p(s)/q(s) is the
irreducible representation of the rational number s. In the

second sum, all representations are allowed.)

Proof. Clearly 6, (t) - 6_(t) = 1/23(%) _ 3

o (t) =2 ¢ 1,29(8) _ 3,
s<t

1-6,() > = 1729(s) _ g,
tes<l

Lemma . T 1729(8) _ 1 -1,
se(0,1) n®

Therefore the inequalities above are equalities, which

proves the theorem.

Proof of Lemma. Consider the integer points (q,p) with

0 < p < q, and provide each (q,p) with the weight 1/2P,  sum-

ming on horizontal lines gives total weight = 1. Summing on
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rational lines through 0 gives total weight = I 1/2q(t) - 1.
t

Corollary. The set of values of 6 such that R(M,0) lands
on awo has measure 0.

7. TUNING

Let W be a hyperbolic component of M, of period k, and

5 the center of W. There is a copy Mw of , sitting in M, and

in which W corresponds to che main cardioid Vo This is par-
ticularly striking for a primitive component, and was observed
by Mandelbrot in ~1980. More precisely, there is a continuous
injection ww: M > M such that wW(O) = Cys ww(wo) =W,

My = ¢W(M), aMw < 9M. For x € M, the point ww(x) will be

called "¢, tuned by x" and denoted c, L x or W L x. The

0

filled-in Julia set Kc can be obtained in taking Kc and
0 0
replacing, for component U of ﬁc , the part U (which is
0

0

ixX

homeomorphic to the closed disc D) by a copy of Kx’

Theorem 2. Let 6_ and 6+ be the two external arguments in
M of the root 2] of W, and let t be an external argument of x

in M. Then to t there corresponds an external argument t' of

Co L X in M, which can be obtained by the following algorithm:
Expand 6_, 6 _ and t in base 2:
0_ = . ugug cen uﬁ = .ugug oo ugug ...-ugug eoe
e+ = . uiu% N ui
t = 818, «v. 8 e .

Then
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/ULO\ )

For
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s S, s S, S
1] -—
t' = cUpT el Uy ul cee U u1 . e
We denote this algorithm by t' = (6_,6+) 1 t. According to

the principle: "You plough in the z-plane and harvest in the

parameter plane," this theorem relies on Proposition 1 below.
-]

Let U1 be the component of K which contains x, = x,, and o
Cy 1 0 1

the root of Ul (the point on BUl which is repulsive periodic

of period dividing k). Recall that 6 _ and 6_ are the external

arguments of oy in Kc corresponding to the accesses adjacent

0

to Ul'

Proposition 1. Let z be a point in BUl with internal argu-
ment t. Then z has an external argument t' in M given by

tho=(6_,6,) 1 t.

Sketch of Proof of Proposition 1. Let ai be the point in

Uy opposite to ay (point of internal argument 1/2) and call

the geodesic [al,ai] the spine of Ul‘ Let Ui be the connected
o i i -
component in K containing x, = £t (0), so that U, = f* l(U ),
S i o i o 1

and define the spine of Ui as the image of the spine of Ul'

Recall that the spine of Kc is the arc [B,B'] in Kc .
0 0

Lemma. For each i, either Ui is off the spine of Kc ’

0
either the spine of Ui is the trace in Uy of the spine of Kc .
0

We don't prove this lemma here. Now, if the first digit

s, of t is 0, 2z is on the same side of the spine of Ul as the
ray R(6_). Then z; = f:_l(z) will be on the same side of the
i-1

spine of Ui as R(2 6_) (thus also on the same side of the

spine of K, ) for i = 1,...,k. Therefore the ith digit si of

0
.0 _ . §
t' is u;- If s, = 1, then z follows 9+, and Si = uy for
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i=1,...,k. At time k+l, is back in Ul, but with

Zx+1
internal argument 2t, so that s is replaced by S, (the
internal argument is preserved in the map from Ui to Ui+1 for
i=1,...,k-1, and doubled from Uk = U0 to Ul). And we
start for a second run, and so on...

Now let us come to the situation of Theorem 2. There is
a homeomorphism ¥ of K, onto the part of Kcolx which corresponds
to ﬁl in Kco. This homeomorphism conjugates f_ to fgo

1x°

Lemma 2. If y € Jx = aKx has external argument t, then the
external arguments of Y(y) in Kc 1x are the same as the exter-

0
nal arguments in Kc of the point y' ¢ 8U1 whose internal
0

argument is t.

We don't prove this lemma here, but if you think of it,
it is very natural. Theorem 2 now follows from results dis-
cussed in Section 4, applied to y = x or to y = the root of

(-]
the component Vl of K, containing x.

Remark. The copy Mw of M sits in M, but in some places,
where Mw ends M goes on. Then there are points x in M with 1
external argument such that Cop Lt X has several external argu-
ments. How is this compatible with the algorithm described in
Theorem 2? Well, this algorithm is not univalent: It starts
by expanding t in base 2, and numbers of the form p/zl have
two expansions. Actually ¢y L x may have more than 2 external
arguments; the algorithm will give the two which correspond to

accesses adjacent to Mw.
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Example

(1/7,2/7) + .00...0011111...
extra ray ‘

172" = .00...01
[ (1/7,2/7) L .00...01

An elephant in M. Its copy in W has two smokes
coming out of its trunk if W
is the rabbit component.

8. FEIGENBAUM POINT AND MORSE NUMBER

Let wn be the n-th component of ﬁ in the Myrberg-Feigenbaum
cascade: Wl is the disc D(-1, 1/4) and we have Wn = Wl 1
Wy boeen W, - Denote co(n) and cl(n) the center and the root
of Wn' According to Feigenbaum theory, co(n) converges to
c, = -1.401... exponentially with ratio 1/4.66... . The exter-

nal arguments 6_{(n) and e+(n) of cl(n) are obtained by Theorem

2, starting from

|

il
(=)
[t

6_(1) = 1/3 . and

1
=
(=]

0,(1) = 2/3 = _
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One gets:
8_(2) = . 0110
e+(2) = . 1001

L}

6_(3) = . 0II0I001

8, (3) . 10010110

+

6_(4) = . DIT0T00II00I0II0
The numbers 6_(n) converge to a number 6_(«) known as the
Morse number. (It has been proved to be transcendental by
Van der Pooten, an Australian number theorist in Bordeaux.
The idea is that a sequence of digits which represents an
element in Z/2 [[T]] which is algebraic over Z/2 (T) cannot
be the expansion in base 2 of an algebraic real number, except
if periodic.) Note that the convergence of 6_(n) to 6_(=) is
faster than any exponential convergence: the number of good
digits is doubled at each time. In our view, this is due to

the fact that, because of the growing of hairs, W is more

n+l

sheltered from Brownian dust by W and W is by Wo-1°

9. SPIRALING ANGLE

Take ¢ ¢ € (in M or in €T - M), and let 2z, be a repulsive

0
periodic point for fc' of period k and multiplier p = (fg)'(zo).
There are external rays of K, landing on z, (there may be a
finite number or an infinity of them, almost always a finite

number though). Take one of them R and let R be an image of

R by a determination of z + Log(z -zo). Recall that, with our
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convention, Log z = Log|z| + 2mi Arg z. When z + 0 on R,
w=1ILog z > » in R and Im w/Re w = 2nArg,z-z0[/Log|z-zo| has

a limit m that we call the spiraling slope of zy. This slope

can be written m = EB%%%T , and o will be the spiraling number
(or spiraling angle). We have ¢ = Arg p -~ w, where w is the

rotation angle of the action of fk on the set of external

rays landing at z If there are v 3uch rays, then w is of

0°

the form p/v with p ¢ Z . Note that Arg p and w are but

angles, i.e., ¢ ™ = R/%Z, while o is naturally in IR.

In order to compute w and ¢, let ¢ vary in a simply con-
nected domain A < € and zo(c) vary accordingly, remaining
repulsive periodic of period k. We make the following observa-
tions:

1. w is continuous in ¢, and is invariant under the Hubbard-
Branner stretching procedure (here it means just sliding c
along the external rays of M).

2. w remains constant in A if the number of external rays
landing in zo(c) is finite and constant.

3. o tends to 0 when |p| + 1, i.e., when z, turns indif-
terent periodic (note that m does not necessarily tend to
0, and may well tend to = so that you see the Julia set
spiraling a lot).

If we take ¢ ¢ C-W, and zo(c) = oa((c), the least repulsive

0
fixed point of fc, we obtain the following: is the internal

argument in W0 of m, (c), which can be defined in the following

W
0

way if you admit that M is locally connected. If ¢ ¢ M,

m.. (c) is the point where an arc in M from c to 0 enters WO'

W,

If ¢ ¢ M, let ﬂM(c) be the point where the external ray of M

through ¢ lands in M. Then T (c) = (m_(c)). 1In fact,
0 Wo M
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one can modify this definition so that it does not depend on

(c) unambig-
0

the local connectivity of M, and determines L

uously.

10. HOW TO DETERMINE T (c) KNOWING 1 PAIR (t,t') SUCH THAT
0
t Nc t', t# ¢!

Here is the algorithm: expand t and t' in base 2:

t = .ulu2 cee

L} P 1 L}
t' = .ulu2 . s
Set 6i =u; - ui mod 2. If the sequence 6i ends in 1,0,0,0,...,
i.e., 6§, =0 for i zn, 8 _; =1, then 6 = 2" £ = 2" t' is the

external argument of ¢ in M, and the internal argument of

nwo(c) is the angle t0

functions 6_ and 6+ are defined in Section 6). If the sequence

such that e_(to) < 0 < 6+(t0) (the

Gi ends with 1111..., then T (c) = -3/4 (internal argument
0
1/2). Else, look for 10 somewhere in the sequence, i.e.,

§ =1, Gn = 0. Then there is a t, such that 6 = 2%t and

n-1 0

8' = 2"t' both belong to [8_(t,),0, (£;)], and that is the

internal argument of T, (c). Why? Let z be the point in Kc
0
with t and t' as external arguments. The rays rR(2" lt) and

n—lt') are each on one side of the spine of Kc’ therefore

fg-l(z) belongs to this spine. Now the image of the spine

[B,S']K is the arc [B,c]K from 8 to ¢ in Kc' and because
c
R(Znt) and R(Znt') are on the same side of the spine, neces-

sarily frcl(z) € [oc(c),c]K . From this observation the result
c
follows easily.
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