## ALGORITHMS FOR COMPUTING ANGLES

IN THE MANDELBROT SET

A. Douady<br>48 rue Monsieur le Prince 74006 Paris FRANCE

## 1. NOTATIONS

$f_{c}: z \nmid z^{2}+c, z \in \mathbb{C}$.
$\mathrm{f}^{\mathrm{n}}=\mathrm{f}$ iterated n times.
$K_{c}=\left\{z \mid f_{c}^{n}(z) \notinfty \infty\right.$ the filled-in Julia set.
$J_{c}=\partial K_{c}$ the Julia set
$f_{c}$ has two fixed points $\alpha(c)$ and $\beta(c)$.
Convention: $\beta(c)$ is the most repulsive (the one on the right)
$\mathrm{M}=\left\{\mathrm{c} \mid \mathrm{K}_{\mathrm{c}}\right.$ is connected $\}=\left\{\mathrm{c} \mid 0 \in \mathrm{~K}_{\mathrm{c}}\right\}$.
$D_{0}=\left\{c \mid 0\right.$ is periodic for $\left.f_{c}\right\}$ (centers of hyperbolic components).
$D_{2}=\{c \mid 0$ is strictly preperiodic $\}$ (Misiurewicz points).

```
D
    components).
```

2. POTENTIAL AND EXTERNAL ARGUMENTS

The potential $G_{C}$ created by $K_{C}$ is given by
$G_{c}(z)=\lim \frac{1}{2^{n}} \log ^{+}\left|f_{c}^{n}(z)\right|=\left\{\begin{array}{l}0 \quad \text { if } z \in K_{c} \\ \log |z|+\sum \frac{1}{2^{n+1}} \log \left|1+\frac{c}{f^{n}(z)^{2}}\right|\end{array}\right.$
else
The map $z \nvdash \phi_{C}(z)=\lim \left(f_{C}^{n}(z)\right)^{1 / 2^{n}}$ is well defined for all $z \in \mathbb{C}-K_{C}$ if $K_{C}$ is connected, only for $G_{C}(z)>G_{C}(0)$ if $K_{C}$ is a Cantor set. The external argument with respect to $K_{C}$ is $\operatorname{Arg}_{C}(z)=\operatorname{Arg}\left(\phi_{C}(z)\right.$ ). (The unit for arguments is the whole turn, not the radian.) For $z \in J_{C}=\partial K_{C}$, one can define one value of $\mathrm{Arg}_{C}(z)$ for each way of access to $z$ in $\mathbb{C}-K_{C}$. The external ray $R(c, \theta)=\left\{z \mid \operatorname{Arg}_{c}(z)=\theta\right\}$ is orthogonal to the equipotential lines.

The potential created by $M$ is $G_{M}(c)=G_{C}(c)$. The conformal mapping $\phi_{M}: \mathbb{C}-M \rightarrow \mathbb{C}-\bar{D}$ is given by

$$
\phi_{M}(c)=\phi_{C}(c)
$$

This is the magic formula which allows one to get information in the parameter plane. This gives

$$
\operatorname{Arg}_{M}(c)=\operatorname{Arg}_{C}(c) \quad \text { for } c \notin M
$$

The formula extends to the Misiurewicz points. For $c \in D_{0}$, the situation is more subtle.
3. HOW TO COMPUTE $\operatorname{Arg}_{c}(z)$ FOR $c \in D_{0} \cup D_{2}, z$ PREPERIODIC Set $x_{0}=0, x_{i}=f_{c}^{i}(0), z_{1}=z, z_{j}=f^{j-1}(z), \beta=\beta(c)$, $\beta^{\prime}=-\beta(c)$. Join $\beta, \beta^{\prime}$, the points $x_{i}$ and the points $z_{j}$ by arcs which remain in $K_{c}$. If such an arc has to cross a
component of $U$ of $\stackrel{\circ}{K}_{c}$, let it go straight to the center and then to the exit (the center of $U$ is the point of $U$ which is in the inverse orbit of 0, "straight" is relative to the Poincaré metric of U ). You obtain a finite tree. Drawing this tree requires some understanding of the set $K_{c}$ and its dynamics, but then it is enouqh to compute the required angle. Choose an access $\zeta$ to $z$, and let $\zeta^{j}$ be the corresponding access to $z_{j}$. The spine of $K_{c}$ is the arc from $\beta$ to $\beta^{\prime}$. Mark 0 each time $\zeta^{j}$ is above the spine and 1 each time it is below. You obtain the expansion in base 2 of the external argument $\theta$ of $z$ by $\zeta$. This simply comes from the two following facts: a) $0<\theta<1 / 2$ if $\zeta$ is above the spine, $1 / 2<\theta<1$ if it is below;
b) $f_{c}$ doubles the external arguments with respect to $K_{c}$, as well as the potential, since $\phi_{C}$ conjugates $f_{c}$ to $z \nmid z^{2}$. Note that if $c$ and $z$ are real, the tree reduces to the segment $\left[\beta^{\prime}, \beta\right]$ of the real line, and the sequence of 0 and 1 obtained is just the kneading sequence studied by Milnor and Thurston (except for convention: they use 1 and -1 ). This sequence appears now as the binary expansion of a number which has a geometrical interpretation.
4. EXTERNAL ARGUMENTS IN M

If $c \in D_{2}$, then the external arguments of $c$ in $M$ are the external arguments of $c$ in $K_{c}$. Their number is finite, and they are rationals with even denominators.

A point $c_{0} \in D_{0}$ is in the interior of $M$, thus has no external arguments. But the corresponding point $c_{1} \in D_{1}$ (the root of the hyperbolic component whose center is $c_{0}$ ) has

2 arguments $\theta_{+}$and $\theta_{-}$, which are rational with odd denominators. They can be obtained as follows: Let $U_{0}$ be the component of the interior of $K_{c_{0}}$ containing 0 and $U_{i}=f_{c}^{i}\left(U_{0}\right)$, so that $U_{1}$ contains $c_{0}$. On the boundary of $U_{0}$, there is a periodic point $\alpha_{0}$ whose period divides $k=$ period of 0 . Then $\theta_{+}$and $\theta_{-}$are the external arguments of $\alpha_{1}=f_{c_{0}}\left(\alpha_{0}\right)$ corresponding to accesses adjacent to $U_{1}$.
5. USE OF EXTERNAL ARGUMENTS

We write $\theta \sim_{c} \theta^{\prime}$ if the external rays $R(c, \theta)$ and $R\left(c, \theta^{\prime}\right)$ land in the same point of $K_{C}$, i.e., if $\theta$ and $\theta^{\prime}$ are two external arguments of one point in $J_{C}$. For $c \in D_{0} \cup D_{2}$, the classes having 3 elements or more is made of rational points, each class with 2 elements is limit of classes made of rational points. Knowing this equivalence relation, one can describe $K_{C}$ as follows: start from a closed disc, and pinch it so as to identify the points of argument $\theta$ and $\theta^{\prime}$ each time you have $\theta \sim_{c} \theta^{\prime}$. You end up with a space homeomorphic to $K_{c}$. A similar description can be given for M. It will be valid if we know that $M$ is locally connected (a fact which is highly suggested by the many pictures of details of $M$ that we have).

6. INTERNAL AND EXTERNAL ARGUMENTS IN $\partial W_{0}$
$W_{0}$ denotes the main component of $M$ (the big cardioid). Internal arguments in $W_{0}$ are defined using a conformal representation of $W_{0}$ onto the unit disc $D$. The internal argument $\operatorname{Arg}_{W_{0}}$ (c) is just the argument of $f_{c}^{\prime}(\alpha, c)$ ) (in fact the argument of $\alpha(c))$. If a point $c \in \partial W_{0}$ has a rational internal argument $t=p_{0} / q_{0}$ (irreducible form), a complment $W_{t}$ of period $q_{0}$ is attached at $W_{0}$ at the point $c$. Thus $c$ has 2 external arguments

$$
\theta_{-}=a_{-} / 2^{q_{0}}-1 \text { and } \theta_{+}=a_{+} / 2^{q_{0}}-1 .
$$

Theorem 1 .

$$
\theta_{-}(t)=\sum_{s<t}^{\sum} 1 / 2^{q(s)}-1=\sum_{0<p / q<t} 1 / 2^{q} .
$$

$\theta_{+}(t)=$ same with $\leq t$ instead of $<t$. (Here $p(s) / q(s)$ is the irreducible representation of the rational number s. In the second sum, all representations are allowed.)

```
Proof. Clearly \(\theta_{+}(t)-\theta_{-}(t) \geq 1 / 2^{q(t)}-1\)
    \(\theta_{-}(t) \geq \sum_{s<t} 1 / 2^{q(s)}-1\).
    \(1-\theta_{+}(t) \geq \sum_{t<s<1} 1 / 2^{q(s)}-1\).
```



Therefore the inequalities above are equalities, which proves the theorem.

Proof of Lemma. Consider the integer points ( $q, p$ ) with $0<p<q$, and provide each $(q, p)$ with the weight $1 / 2^{p}$. Summing on horizontal lines gives total weight $=1$. Summing on
rational lines through 0 gives total weight $=\sum_{t} 1 / 2^{q(t)}-1$.
Corollary. The set of values of $\theta$ such that $R(M, \theta)$ lands on $\partial W_{0}$ has measure 0 .
7. TUNING

Let $W$ be a hyperbolic component of $M$, of period $k$, and $c_{0}$ the center of $W$. There is a copy $M_{W}$ of, sitting in $M$, and in which $W$ corresponds to che main cardioid $W_{n}$. This is particularly striking for a primitive component, and was observed by Mandelbrot in 21980 . More precisely, there is a continuous injection $\psi_{W}: M \rightarrow M$ such that $\psi_{W}(0)=c_{0}, \psi_{W}\left(W_{0}\right)=W$, $M_{W}=\psi_{W}(M), \partial M_{W} \subset \partial M$. For $x \in M$, the point $\psi_{W}(x)$ will be called " $c_{0}$ tuned by $x$ " and denoted $c_{0} \perp x$ or $W \perp x$. The filled-in Julia set $K_{C_{0}}{ }_{x}$ can be obtained in taking $K_{c_{0}}$ and replacing, for component $U$ of $\stackrel{\circ}{K}_{C_{0}}$, the part $\vec{U}$ (which is homeomorphic to the closed disc $\overline{\mathrm{D}}$ ) by a copy of $\mathrm{K}_{\mathrm{x}}$.

Theorem 2. Let $\theta_{-}$and $\theta_{+}$be the two external arguments in $M$ of the root ${ }^{\prime} 1$ of $W$, and let $t$ be an external argument of $x$ in M. Then to $t$ there corresponds an external argument $t$ ' of $c_{0} \perp x$ in $M$, which can be obtained by the following algorithm:

Expand $\theta_{-}, \theta_{+}$and $t$ in base 2:

$$
\begin{aligned}
& \theta_{-}=\Gamma_{u_{1}^{0} u_{2}^{0} \ldots u_{k}^{0}}^{=}=u_{1}^{0} u_{2}^{0} \ldots u_{k}^{0} u_{1}^{0} \ldots u_{k}^{0} u_{1}^{0} \ldots{ }_{u_{1}}^{1} u_{2}^{1} \ldots u_{k}^{1} \\
& \theta_{+}=\ldots \\
& t=. s_{1} s_{2} \ldots s_{n} \ldots .
\end{aligned}
$$

Then




$$
t^{\prime}=u_{1}^{s_{1}} \ldots u_{k}^{s_{1}} u_{1}^{s_{2}} \ldots u_{k}^{s_{2}}{ }_{u_{1}}^{s_{3}} \ldots
$$

We denote this algorithm by $t^{\prime}=\left(\theta_{-}, \theta_{+}\right) \perp t$. According to the principle: "You plough in the $z$-plane and harvest in the parameter plane," this theorem relies on Proposition 1 below. Let $U_{1}$ be the component of ${ }^{\circ} C_{0}$ which contains $X_{1}=x_{0}$, and $\alpha_{1}$ the root of $U_{1}$ (the point on $\partial U_{1}$ which is repulsive periodic of period dividing $k$ ). Recall that $\theta_{+}$and $\theta_{-}$are the external arguments of $\alpha_{1}$ in $K_{C_{0}}$ corresponding to the accesses adjacent to $U_{1}$.

Proposition 1. Let $z$ be a point in $\partial U_{1}$ with internal argument $t$. Then $z$ has an external argument $t^{\prime}$ in M given by $t^{\prime}=\left(\theta_{-}, \theta_{+}\right) \perp t$.

Sketch of Proof of Proposition 1. Let $\alpha_{1}^{\prime}$ be the point in $\mathrm{U}_{1}$ opposite to $\alpha_{1}$ (point of internal argument $1 / 2$ ) and call the geodesic $\left[\alpha_{1}, \alpha_{1}^{\prime}\right]$ the spine of $U_{1}$. Let $U_{i}$ be the connected component in $\stackrel{\circ}{K}_{c_{0}}$ containing $x_{i}=f_{c_{0}}^{i}(0)$, so that $U_{i}=f_{c_{0}}^{i-1}\left(U_{1}\right)$, and define the spine of $U_{i}$ as the image of the spine of $U_{1}$. Recall that the spine of $K_{C_{0}}$ is the arc $\left[\beta, \beta^{\prime}\right]$ in $K_{C_{0}}$.

Lemma. For each $i$, either $U_{i}$ is off the spine of $K_{C_{0}}$, either the spine of $\mathrm{U}_{\mathrm{i}}$ is the trace in $\overline{\mathrm{U}}_{\mathrm{i}}$ of the spine of $\mathrm{K}_{\mathrm{c}_{0}}$.

We don't prove this lemma here. Now, if the first digit $s_{1}$ of $t$ is $0, z$ is on the same side of the spine of $U_{1}$ as the ray $R\left(\theta_{-}\right)$. Then $z_{i}=f_{C_{0}}^{i-l}(z)$ will be on the same side of the spine of $U_{i}$ as $R\left(2^{i-1} \theta_{-}\right)$(thus also on the same side of the spine of $K_{C_{0}}$ ) for $i=1, \ldots, k$. Therefore the ith digit $s_{1}^{\prime}$ of $t^{\prime}$ is $u_{i}^{0}$. If $s_{1}=1$, then $z$ follows $\theta_{+}$, and $s_{i}^{\prime}=u_{i}^{l}$ for
$i=1, \ldots, k$. At time $k+1, z_{k+1}$ is back in $U_{1}$, but with internal argument $2 t$, so that $s_{1}$ is replaced by $s_{2}$ (the internal argument is preserved in the map from $U_{i}$ to $U_{i+1}$ for $i=1, \ldots, k-1$, and doubled from $U_{k}=U_{0}$ to $\left.U_{1}\right)$. And we start for a second run, and so on...

Now let us come to the situation of Theorem 2. There is a homeomorphism $\psi$ of $K_{x}$ onto the part of $K_{c_{0} \perp x}$ which corresponds to $\bar{U}_{1}$ in $K_{C_{0}}$. This homeomorphism conjugates $f_{x}$ to $f_{c_{0} \perp x^{\prime}}^{k}$

Lemma 2. If $y \in J_{X}=\partial K_{x}$ has external argument $t$, then the external arguments of $\psi(y)$ in $K_{c_{0} 1 \mathrm{x}}$ are the same as the external arguments in $K_{c_{0}}$ of the point $y^{\prime} \in \partial U_{1}$ whose internal argument is $t$.

We don't prove this lemma here, but if you think of it, it is very natural. Theorem 2 now Eollows from results discussed in Section 4, applied to $\mathrm{y}=\mathrm{x}$ or to $\mathrm{y}=$ the root of the component $V_{1}$ of $\stackrel{\circ}{K}_{x}$ containing $x$.

Remark. The copy $M_{W}$ of $M$ sits in $M$, but in some places, where $M_{W}$ ends $M$ goes on. Then there are points $x$ in $M$ with $l$ external argument such that $c_{0} \perp x$ has several external arguments. How is this compatible with the algorithm described in Theorem 2? Well, this algorithm is not univalent: It starts by expanding $t$ in base 2 , and numbers of the form $p / 2^{\ell}$ have two expansions. Actually $c_{0} \perp x$ may have more than 2 external arguments; the algorithm will give the two which correspond to accesses adjacent to $M_{W}$.

## Example

$1 / 2^{n}=.00 .101$



$(1 / 7,2 / 7) \perp .00 \ldots 0011111 \ldots$
-


An elephant in $M$.
Its copy in $W$ has two smokes coming out of its trunk if $W$ is the rabbit component.
8. FEIGENBAUM POINT AND MORSE NUMBER

Let $W_{n}$ be the $n$-th component of $\stackrel{\circ}{M}$ in the Myrberg-Feigenbaum cascade: $W_{1}$ is the disc $D(-1,1 / 4)$ and we have $W_{n}=W_{1} \perp$ $W_{1} \perp \ldots \perp W_{1}$. Denote $c_{0}(n)$ and $c_{1}(n)$ the center and the root of $W_{n}$. According to Feigenbaum theory, $c_{0}(n)$ converges to $c_{\infty}=-1.401 \ldots$ exponentially with ratio $1 / 4.66 \ldots$. The exterhal arguments $\theta_{-}(n)$ and $\theta_{+}(n)$ of $c_{1}(n)$ are obtained by Theorem 2, starting from

$$
\begin{aligned}
& \theta_{-}(1)=1 / 3=\overline{.01} \quad \text { and } \\
& \theta_{+}(1)=2 / 3=\overline{.10} .
\end{aligned}
$$

One gets:

$$
\begin{aligned}
& \theta_{-}(2)=\cdot \overline{0110} \\
& \theta_{+}(2)=\cdot \overline{1001} \\
& \theta_{-}(3)=\cdot \overline{01101001} \\
& \theta_{+}(3)=\cdot \overline{10010110} \\
& \theta_{-}(4)=\cdot \overline{0110100110010110} \\
& \ldots
\end{aligned}
$$

The numbers $\theta_{-}(n)$ converge to a number $\theta_{-}(\infty)$ known as the Morse number. (It has been proved to be transcendental by Van der Pooten, an Australian number theorist in Bordeaux. The idea is that a sequence of digits which represents an element in $\mathbb{Z} / 2$ [[T]] which is algebraic over $\mathbb{Z} / 2$ (T) cannot be the expansion in base 2 of an algebraic real number, except if periodic.) Note that the convergence of $\theta_{-}(n)$ to $\theta_{-}(\infty)$ is faster than any exponential convergence: the number of good digits is doubled at each time. In our view, this is due to the fact that, because of the growing of hairs, $W_{n+1}$ is more sheltered from Brownian dust by $W_{n}$ and $W_{n}$ is by $W_{n-1}$.

## 9. SPIRALING ANGLE

Take $c \in \mathbb{C}$ (in $M$ or in $\mathbb{C}-M$ ), and let $z_{0}$ be a repulsive periodic point for $f_{c}$, of period $k$ and multiplier $\rho=\left(f_{c}^{k}\right)\left(z_{0}\right)$. There are external rays of $\mathrm{K}_{\mathrm{c}}$ landing on $\mathrm{z}_{0}$ (there may be a finite number or an infinity of them, almost always a finite number though). Take one of them $R$ and let $\tilde{R}$ be an image of $R$ by a determination of $z \rightarrow \log \left(z-z_{0}\right)$. Recall that, with our
convention, $\log z=\log |z|+2 \pi i \operatorname{Arg} z$. When $z \rightarrow 0$ on $R$, $w=\log z \rightarrow \infty$ in $\tilde{R}$ and $\operatorname{Im} w / \operatorname{Re} w=2 \pi A r g\left|z-z_{0}\right| / \log \left|z-z_{0}\right|$ has a limit $m$ that we call the spiraling slope of $z_{0}$. This slope can be written $m=\frac{2 \pi \sigma}{\log |\rho|}$, and $\sigma$ will be the spiraling number (or spiraling angle). We have $\sigma=\operatorname{Arg} \rho-\omega$, where $\omega$ is the rotation angle of the action of $f^{k}$ on the set of external rays landing at $z_{0}$. If there are $v$ such rays, then $\omega$ is of the form $p / v$ with $p \in \mathbb{Z}$. Note that $\operatorname{Arg} \rho$ and $\omega$ are but angles, i.e., $\epsilon T H=\mathbb{R} / \mathbb{Z}$, while $\sigma$ is naturally in $\mathbb{R}$.

In order to compute $\omega$ and $\sigma$, let $c$ vary in a simply connected domain $\wedge \subset \mathbb{I}$ and $z_{0}(c)$ vary accordingly, remaining repulsive periodic of period $k$. We make the following observations:

1. $\omega$ is continuous in $c$, and is invariant under the HubbardBranner stretching procedure (here it means just sliding c along the external rays of M ).
2. $\omega$ remains constant in $\wedge$ if the number of external rays landing in $z_{0}(c)$ is finite and constant.
3. $\sigma$ tends to 0 when $|p| \rightarrow 1$, i.e.. when $z_{n}$ turns indifferent periodic (note that $m$ does not necessarily tend to 0 , and may well tend to $\infty$ so that you see the Julia set spiraling a lot).

If we take $c \in \mathbb{C}-W_{0}$ and $z_{0}(c)=\alpha(c)$, the least repulsive fixed point of $f_{c}$, we obtain the following: is the internal argument in $W_{0}$ of ${ }^{T} W_{0}(c)$, which can be defined in the following way if you admit that $M$ is locally connected. If $c \in M$, $\pi_{W_{0}}(c)$ is the point where an arc in $M$ from $c$ to 0 enters $W_{0}$. If $c \notin M$, let $\pi_{M}(c)$ be the point where the external ray of $M$ through $c$ lands in $M$. Then $\pi_{W_{0}}(c)=\pi_{w_{0}}\left(\pi_{M}(c)\right)$. In fact,
one can modify this definition so that it does not depend on the local connectivity of $M$, and determines $\pi_{W_{0}}$ (c) unambiguously.
10. HOW TO DETERMINE $\pi_{w_{0}}(c)$ KNOWING 1 PAIR $(t, t ')$ SUCH THAT $t \sim_{c} t^{\prime}, t \neq t^{\prime}$

Here is the algorithm: expand $t$ and $t$ ' in base 2:

$$
\begin{aligned}
t & =. u_{1} u_{2} \cdots \\
t^{\prime} & =. u_{1}^{\prime} u_{2}^{\prime} \cdots
\end{aligned}
$$

Set $\delta_{i}=u_{i}-u_{i}^{\prime} \bmod 2$. If the sequence $\delta_{i}$ ends in $1,0,0,0, \ldots$, i.e., $\delta_{i}=0$ for $i \geq n, \delta_{n-i}=1$, then $\theta=2^{n} t=2^{n} t^{\prime}$ is the external argument of $c$ in $M$, and the internal argument of $\pi_{w_{0}}(c)$ is the angle $t_{0}$ such that $\theta_{-}\left(t_{0}\right) \leq \theta \leq \theta_{+}\left(t_{0}\right)$ (the functions $\theta_{-}$and $\theta_{+}$are defined in Section 6). If the sequence $\delta_{i}$ ends with llll..., then $\pi_{w_{0}}(c)=-3 / 4$ (internal argument 1/2). Else, look for 10 somewhere in the sequence, i.e., $\delta_{n-1}=1, \delta_{n}=0$. Then there is a $t_{0}$ such that $\theta=2^{n} t$ and $\theta^{\prime}=2^{n} t^{\prime}$ both belong to $\left[\theta_{-}\left(t_{0}\right), \theta_{+}\left({ }_{-0}\right)\right]$, and that is the internal argument of $\pi_{w_{0}}(c)$. Why? Let $z$ be the point in $K_{c}$ with $t$ and $t$ ' as external arguments. The rays $R\left(2^{n-1} t\right)$ and $R\left(2^{n-1} t^{\prime}\right)$ are each on one side of the spine of $K_{c}$, therefore $f_{c}^{n-1}(z)$ belongs to this spine. Now the image of the spine $\left[\beta, \beta^{\prime}\right]_{K_{C}}$ is the arc $[\beta, C]_{K_{C}}$ from $\beta$ to $c$ in $K_{c}$, and because $R\left(2^{n} t\right)$ and $R\left(2^{n} t^{\prime}\right)$ are on the same side of the spine, necessarily $f_{c}^{n}(z) \in\left[\alpha(c), c j_{K_{c}}\right.$. From this observation the result follows easily.
11. ACKNOWLEDGEMENTS

Sections 2 to 8 are a report on joint work with J. H. Hubbard. Section 9 is a reflexion in common with Bessis, Geronimo, Moussa in Saclay, which might take a more precise form eventually. Section 10 is due to Tan Lei, a Chinese student in Orsay.

