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1. NOTATIONS 

2 
f ! Z M +C, Z€(E. 
fn = f iterated n times.. 
K = {z|fn(z) fi «>} the filled-in Julia set. c ' c 
J = 3K the Julia set c c 
f has two fixed points a(c) and 3(c). 
Convention: 3(c) is the most repulsive (the one on the right). 
M = {c|K is connected} = {c|0 e K }. 1 c ■ c 
VQ = {c|0 is periodic for f } (centers of hyperbolic com­

ponents) . 
V2 = {c|0 is strictly preperiodic} (Misiurewicz points). 
P, = {c|f has a rational neutral cycle} (roots of hyperbolic 

components). 
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POTENTIAL AND EXTERNAL ARGUMENTS 

The potential G created by K is given by 
. \0 i f z e K 

G c (z ) = l i m ^ L o g + | f £ ( z ) | = J ° 
2 L o g | z | + E —-ry L o g | l + 

2 n + l — f n ( z ) 2 

else 
n l/2n 

The map z H (z) = lim(f (z)) ' is well defined for all 
z e (C - K if K is connected, only for G (z) > G (0) if K c c c c c 
is a Cantor set. The external argument with respect to K 
is Arg (z) = Arg(<t> (z)). (The unit for arguments is the c c 
whole turn, not the radian.) For z e J = 8K , one can define 
one value of Arg (z) for each way of access to z in (C - K . c u c 
The external ray R(c,0) = {z|Arg (z) = 6} is orthogonal to the 
equipotential lines. 

The potential created by M is G (c) = G (c). The con-
formal mapping <J>:(E-M + { C - D i s given by 

V c ) - <(,c(c) 

This is the magic formula which allows one to get information 
in the parameter plane. This gives 

ArgM(c) = Arg (c) for c i M. 

The formula extends to the Misiurewicz points. For c e PQ, 
the situation is more subtle. 

HOW TO COMPUTE Arg (z) FOR c e PA u Vn, z PREPERIODIC c u z 

Set xQ = 0, x± = f£(0), zx = z, Zj = f j - 1(z), 3 = 3(c), 
31 = -3(c). Join 3/31/ the points x. and the points z. by 
arcs which remain in K . If such an arc has to cross a 

c 
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o 
component of U of K , let it go straight to the center and 
then to the exit (the center of U is the point of U which is 
in the inverse orbit of 0, "straight" is relative to the 
Poincare metric of U). You obtain a finite tree. Drawing 
this tree requires some understanding of the set K and its 
dynamics, but then it is enough to compute the required angle. 
Choose an access £ to z, and let z? be the corresponding 
access to z.. The spine of K is the arc from 3 to 3'. Mark 
0 each time C is above the spine and 1 each time it is below. 
You obtain the expansion in base 2 of the external argument 
6 of z by C. This simply comes from the two following facts: 
a) 0 < 6 < 1/2 if £ is above the spine, 1/2 < 0 < 1 if it 

is below; 
b) f doubles the external arguments with respect to K , as c c 

2 well as the potential, since <\> conjugates f to z k z . 
Note that if c and z are real, the tree reduces to the segment 
[3',3] of the real line, and the sequence of 0 and 1 obtained 
is just the kneading sequence studied by Milnor and Thurston 
(except for convention: they use 1 and -1). This sequence 
appears now as the binary expansion of a number which has a 
geometrical interpretation. 

4. EXTERNAL ARGUMENTS IN M 

If c e V , then the external arguments of c in M are the 
external arguments of c in K . Their number is finite, and 
they are rationale with even denominators. 

A point cQ e V is in the interior of M, thus has no 
external arguments. But the corresponding point c. e V 

(the root of the hyperbolic component whose center is cQ) has 
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2 arguments 0 and 0_, which are rational with odd denominators. 
They can be obtained as follows: Let U Q be the component of 
the interior of K containing 0 and U. = f * ( U n ) , so that U-, C^» 1 C U 1 

contains c Q. On the boundary of U Q, there is a periodic point 
a Q whose period divides k = period of 0. Then 8 and 0_ are 
the external arguments of a, = f (an) corresponding to ± c Q u 
accesses adjacent to U,. 

5. USE OF EXTERNAL ARGUMENTS 

We write 0 ^ 0' if the external rays R(c,0) and R(c,0') 
land in the same point of K , i.e., if 0 and 01 are two 
external arguments of one point in J . For c e VQ u t?2, the 
classes having 3 elements or more is made of rational points, 
each class with 2 elements is limit of classes made of 
rational points. Knowing this equivalence relation, one can 
describe K as follows: start from a closed disc, and pinch 
it so as to identify the points of argument 0 and 0' each time 
you have 0 ^ 0'. 5fou end up with a space homeomorphic to K . 
A similar description can be given for M. It will be valid if 
we know that M is locally connected (a fact which is highly 
suggested by the many pictures of details of M that we have). 

\? 
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6 . INTERNAL AND EXTERNAL ARGUMENTS IN 3WQ 

WQ denotes the main component of M (the big cardioid). 
Internal arguments in WQ are defined using a conformal repre­
sentation of WQ onto the unit disc D. The internal argument 
ArgT1 (c) is just the argument of f'(a,c)) (in fact the argument 

w0 c 
of a(c)). If a point c e 3WQ has a rational internal argument 

t = PQ/^Q (irreduc*ble form), a complment W. of period qQ 
is attached at WQ at the point c. Thus c has 2 external 
argument^ 

q0 q0 0_ = a_/2 u - 1 and 6+ = a+/2 u - 1. 

Theorem 1. 

6 (t) = I l/2q(s) - 1 = l l/2q . 
s<t 0<p/q<t 

6 (t) = same with ̂  t instead of < t. (Here p(s)/q(s) is the 
irreducible representation of the rational number s. In the 
second sum, all representations are allowed.) 

Proof. Clearly 6+(t) ~ 6_(t) > l/2q(t) - 1 
6 (t) * Z l/2q(s) - 1. 

s<t 

i - e^jt) * z i/2 q ( s ) - i. 
+ t<s<l 

Lemma. E l/2q(s) - 1 = 1 . 
S€(0,1)nO 

Therefore the inequalities above are equalities, which 
proves the theorem. 

Proof of Lemma. Consider the integer points (q,p) with 
0 < p < q, and provide each (qfp) with the weight 1/2P. Sum­
ming on horizontal lines gives total weight = 1. Summing on 
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rational lines through 0 gives total weight = £ l/2 q - 1. 
t 

Corollary. The set of values of 6 such that R(M,6) lands 
on 9W0 has measure 0. 

7. TUNING 

Let W be a hyperbolic component of M, of period k, and 
c Q the center of W. There is a copy M^ of , sitting in M, and 
in which W corresponds to che main cardioid W^. This is par­
ticularly striking for a primitive component, and was observed 
by Mandelbrot in ^1980. More precisely, there is a continuous 
injection ip : M -* M such that ^ w(0) = c Q, ^ W(W Q) = W, 
M w = <PW(M), 3MW c 3M. For x e M, the point ^ w(x) will be 
called "c Q tuned by x" and denoted c Q i x or W i x. The 
filled-in Julia set K ,„ can be obtained in taking K and 

co l x
 o _ c0 replacing, for component U of K , the part 5 (which is 

homeomorphic to the closed disc 5) by a copy of K . 

Theorem 2. Let 0_ and 6 be the two external arguments in 
M of the root o, of W, and let t be an external argument of x 
in M. Then to t there corresponds an external argument t' of 
c Q i x in M, which can be obtained by the following algorithm: 

Expand 0_, 6 and t in base 2: 

a ' 0 0 
6_ = . u , u 2 

e
+ = • 'uiu2 

fc = , S 1 S 2 * * 

O1 
. . . ^ = 

H 
. . . ^ 

n 

0 0 
' u l u 2 

0 0 0 0 
V i ••• ukui 

Then 
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^o-f 

rW^y 

i 
' % -

C Q X X 
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We denote this algorithm by t' = (8_,8+) i t. According to

the principle: "You plough in the z-plane and harvest in the

parameter plane," this theorem relies on Proposition 1 below.
o

Let Ul be the component of K which contains xl = xo' and a lCo
the root of Ul (the point on aUl which is repulsive periodic

of period dividing k). Recall that 8+ and 8 are the external

arguments of a l in K corresponding to the accesses adjacentCo

Proposition 1. Let z be a point in aUl with internal argu­

ment t. Then z has an external argument t' in M given by

Sketch of Proof of Proposition 1. Let ai be the point in

Ul opposite to a l (point of internal argument 1/2) and call

the geodesic [al,ai] the spine of Ul • Let Ui be the connected
o i i-Icomponent in Kc containing x. = f (0), so that U; = f (Ul ),

o 1 Co • Co
and define the spine of Ui as the image of the ~pine of Ul •

Recall that the spine of K is the arc [a,a'] in K
Co Co

Lemma. For each i, either Ui is off the spine of K ,Co
either the spine of U

1
' is the trace in Ui of the spine of K

Co

We don't prove this lemma here. Now, if thp. first digit

sl of t is 0, z is on the same side of the spine of Ul as the

ray R(8_). Then z. = fi-l(z) will be on the same side of the
7 Co

spine of U. as R(2 1
- l 8 ) (thus also on the same side of the

~

spine of Kc ) for i = l, ••• ,k. Therefore the ith digit si of
00 1t' is ui . If 6 1 = 1, then z follows 8+, and $i = ui for
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i = l,...,k. At time k+1, z, . is back in U.,, but with 
internal argument 2t, so that s, is replaced by s2 (the 
internal argument is preserved in the map from U. to U. , for 
i = l,...,k-l, and doubled from U, = UQ to U,) . And we 
start for a second run, and so on... 

Now let us come to the situation of Theorem 2. There is 
a homeomorphism ^ of K__ onto the part of K which corresponds 

X C ** J»X k to U, in K . This homeomorphism conjugates f to f . 1 c0 x 0 
Lemma 2. If y e J = 3K has external argument t, then the 

external arguments of ̂ (y) in K are the same as the exter-
c0 

nal arguments in K of the point y1 € 8U1 whose internal c0 L 

argument is t. 

We don't prove this lemma here, but if you think of it, 
it is very natural. Theorem 2 now follows from results dis­
cussed in Section 4, applied to y = x or to y ■= the root of 

o 
the component V, of K containing x. 

Remark. The copy ̂  of M sits in M, but in some places, 
where M̂ - ends M goes on. Then there are points x in M with 1 
external argument such that cQ l x has several external argu­
ments. How is this compatible with the algorithm described in 
Theorem 2? Well, this algorithm is not univalent: It starts 

0 by expanding t in base 2, and numbers of the form p/2 have 
two expansions. Actually cQ i x may have more than 2 external 
arguments; the algorithm will give the two which correspond to 
accesses adjacent to M^ 
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( 1 / 7 , 2 / 7 ) i . 0 0 . . . 0 0 1 1 1 1 1 . 
extra ray \ 

x / 
(1/7,2/7) 1 ..00...01 

\ 

\ 

An elephant in M. Its copy in W has two smokes 
coming out of its trunk if W 
is the rabbit component. 

8. FEIGENBAUM POINT AND MORSE NUMBER 

Let W be the n-th component of M in the Myrberg-Feigenbaum 
cascade: W1 is the disc D(-l, 1/4) and we have W = W, ± 
w i * i W,. Denote cQ(n) and c, (n) the center and the root 
of W . According to Feigenbaum theory, cQ(n) converges to 
c^ = -1.401... exponentially with ratio 1/4.66... . The exter­
nal arguments 0_(n) and 0 (n) of c.,(n) are obtained by Theorem 
2, starting from 

0_(1) = 1/3 = 701 and 

0+(l) = 2/3 = .10 . 
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One g e t s : 

e_ 

en 

e_ 

. (2 ) 

h(2) 

„(3) 

= 

. olio 

. 1001 

. 01101001 

8 + (3 ) * . 10010110 

e_(4) = . oiioiooiiooiono 

The numbers 9_ (n) converge to a number 6_ (°°) known as the 
Morse number. (It has been proved to be transcendental by 
Van der Pooten, an Australian number theorist in Bordeaux. 
The idea is that a sequence of digits which represents an 
element in ffi/2 [ [T] ] which is algebraic over 2Z/2 (T) cannot 
be the expansion in base 2 of an algebraic real number, except 
if periodic.) Note that the convergence of 9_ (n) to 9_(°°) is 
faster than any exponential convergence: the number of good 
digits is doubled at each time. In our view, this is due to 
the fact that, because of the growing of hairs, W , is more 

sheltered from Brownian dust by W and W is by W ,. 
n n ■* n-± 

9. SPIRALING ANGLE 

Take c e (C (in M or in I - M) , and let zQ be a repulsive 
k periodic point for f , of period k and multiplier p = (f )'(zn) c c u 

There are external rays of K landing on zn (there may be a c u 
finite number or an infinity of them, almost always a finite 
number though). Take one of them R and let R be an image of 
R by a determination of z + Log(z-z Q). Recall that, with our 
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convention, Log z = Log|z| + 27ri Arg z. When z -* 0 on R, 
w = Log z -*■ <» in R and Im w/Re w = 2irArg|z - z Q |/Log|z - z | has 
a limit m that we call the spiraling slope of z~. This slope 
can be written m = |—r , and a will be the spiraling number 
(or spiraling angle) . We have a = Arg p - OJ, where GO is the 
rotation angle of the action of f on the set of external 
rays landing at zfl. If there are v such rays, then OJ is of 
the form p/v with p e 7Z . Note that Arg p and OJ are but 
angles, i.e., e TT = IR/ZZ, while a is naturally in IR . 

In order to compute OJ and a, let c vary in a simply con­
nected domain A C (C and z Q(c) vary accordingly, remaining 
repulsive periodic of period k. We make the following observa­
tions: 

1. OJ is continuous in c, and is invariant under the Hubbard-
Branner stretching procedure (here it means just sliding c 
along the external rays of M ) . 

2. OJ remains constant in A if the number of external rays 
landing in z 0(c) is finite and constant. 

3. a tends to 0 when |p| ■> 1, i.e., when z 0 turns indif­
ferent periodic (note that m does not necessarily tend to 
0, and may well tend to °° so that you see the Julia set 
spiraling a lot). 
If we take c e (C - W Q and z Q(c) = a(c), the least repulsive 

fixed point of f , we obtain the following: is the internal 
argument in W n of TTW (c) , which can be defined in the following u w Q 

way if you admit thab M is locally connected. If c e M, 
TT (c) is the point where an arc in M from c to 0 enters W Q. 
If c i M, let TT M(C) be the point where the external ray of M 
through c lands in M. Then TT (C) = TT (TT ( C ) ) . In fact, 

w 0 0 M 
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one can modify this definition so that it does not depend on 
the local connectivity of M, and determines n (c) unambig-

w0 
uously. 

10. HOW TO DETERMINE TT (c) KNOWING 1 PAIR (t,f) SUCH THAT W0 
t * c t1, t * t1 

Here is the algorithm: expand t and t' in base 2: 

t = . u, u2 ... 

t' = -u^u^ . .. 

Set 6. = u. - u! mod 2. If the sequence 6. ends in 1,0,0,0,..., 
i.e., 6. = 0 for i £ n, 6 _. = 1 , then 0 = 2n t = 2 n t' is the 
external argument of c in M, and the internal argument of 
TT (c) is the angle tQ such that 0_(tQ) < 0 < 0+(tQ) (the 
functions 0_ and 0 are defined in Section 6). If the sequence 
6. ends with 1111..., then TT (c) = -3/4 (internal argument 
1 W Q 

1/2). Else, look for 10 somewhere in the sequence, i.e., 
6 n = 1, <5 = 0 . Then there is a tn such that 0 = 2nt and n-1 ' n 0 
01 = 2ntf both belong to [0_(tQ),0+(tQ)], and that is the 
internal argument of TT (c). Why? Let z be the point in K 

w0 ±
 c 

with t and t1 as external arguments. The rays R(2 t) and 
R(2 t1) are each on one side of the spine of K , therefore 
f (z) belongs to this spine. Now the image of the spine 
[3,3']™- is the arc [3,c]-. from 3 to c in K , and because n c n c ° 
R(2 t) and R(2 t1) are on the same side of the spine, neces­
sarily fc(z) e [a(c),cJK . From this observation the result c 
follows easily. 
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