ALGORITHMS FOR COMPUTING ANGLES

IN THE MANDELBROT SET

A. Douady 48 rue Monsieur le Prince 74006 Paris FRANCE

1. NOTATIONS

 $f_c: z \mapsto z^2 + c, z \in C.$

 $f^n = f$ iterated n times.

 $K_C = \{z | f_C^n(z) \neq \infty\}$ the filled-in Julia set.

 $J_{C} = \partial K_{C}$ the Julia set

 f_c has two fixed points $\alpha(c)$ and $\beta(c)$.

Convention: $\beta(c)$ is the most repulsive (the one on the right).

 $M = \{c | K_C \text{ is connected}\} = \{c | 0 \in K_C\}.$

 $v_0 = \{c \mid 0 \text{ is periodic for } f_c\}$ (centers of hyperbolic components).

 $v_2 = \{c \mid 0 \text{ is strictly preperiodic}\}\ (Misiurewicz points).$

 $v_1 = \{c | f_c \text{ has a rational neutral cycle} \}$ (roots of hyperbolic components).

2. POTENTIAL AND EXTERNAL ARGUMENTS

The potential G created by K is given by

$$G_{C}(z) = \lim \frac{1}{2^{n}} \log^{+} |f_{C}^{n}(z)| = \begin{cases} 0 & \text{if } z \in K_{C} \\ \log|z| + \sum \frac{1}{2^{n+1}} \log|1 + \frac{c}{f^{n}(z)^{2}}| \end{cases}$$

else

The map $z \mapsto \phi_C(z) = \lim (f_C^n(z))^{1/2^n}$ is well defined for all $z \in \mathbb{C} - K_C$ if K_C is connected, only for $G_C(z) > G_C(0)$ if K_C is a Cantor set. The external argument with respect to K_C is $Arg_C(z) = Arg(\phi_C(z))$. (The unit for arguments is the whole turn, not the radian.) For $z \in J_C = \partial K_C$, one can define one value of $Arg_C(z)$ for each way of access to z in $\mathbb{C} - K_C$. The external ray $R(c, \theta) = \{z | Arg_C(z) = \theta\}$ is orthogonal to the equipotential lines.

The potential created by M is $G_{\underline{M}}(c)=G_{\underline{C}}(c)$. The conformal mapping $\phi_{\underline{M}}\colon$ C - M \to C - \overline{D} is given by

$$\phi_{M}(c) = \phi_{C}(c)$$

This is the magic formula which allows one to get information in the parameter plane. This gives

$$Arg_{M}(c) = Arg_{C}(c)$$
 for $c \notin M$.

The formula extends to the Misiurewicz points. For c $\in \mathcal{D}_0$, the situation is more subtle.

3. HOW TO COMPUTE $\operatorname{Arg}_{\mathbb{C}}(z)$ FOR $c \in \mathcal{D}_0 \cup \mathcal{D}_2$, z PREPERIODIC $\operatorname{Set} x_0 = 0, \ x_i = f_c^i(0), \ z_1 = z, \ z_j = f^{j-1}(z), \ \beta = \beta(c),$ $\beta' = -\beta(c)$. Join β, β' , the points x_i and the points z_j by arcs which remain in K_c . If such an arc has to cross a

component of U of K_C , let it go straight to the center and then to the exit (the center of U is the point of U which is in the inverse orbit of O, "straight" is relative to the Poincaré metric of U). You obtain a finite tree. Drawing this tree requires some understanding of the set K_C and its dynamics, but then it is enough to compute the required angle. Choose an access ζ to z, and let ζ^j be the corresponding access to z_j . The <u>spine</u> of K_C is the arc from β to β' . Mark O each time ζ^j is above the spine and 1 each time it is below. You obtain the expansion in base 2 of the external argument θ of z by ζ . This simply comes from the two following facts:

- a) $0 < \theta < 1/2$ if ζ is above the spine, $1/2 < \theta < 1$ if it is below;
- b) f_C doubles the external arguments with respect to K_C , as well as the potential, since ϕ_C conjugates f_C to $z \vdash z^2$. Note that if c and z are real, the tree reduces to the segment $[\beta',\beta]$ of the real line, and the sequence of 0 and 1 obtained is just the kneading sequence studied by Milnor and Thurston (except for convention: they use 1 and -1). This sequence appears now as the binary expansion of a number which has a geometrical interpretation.

4. EXTERNAL ARGUMENTS IN M

If $c \in v_2$, then the external arguments of c in M are the external arguments of c in K_c . Their number is finite, and they are rationals with even denominators.

A point $c_0 \in \mathcal{V}_0$ is in the interior of M, thus has no external arguments. But the corresponding point $c_1 \in \mathcal{V}_1$ (the root of the hyperbolic component whose center is c_0) has

2 arguments θ_+ and θ_- , which are rational with odd denominators. They can be obtained as follows: Let U_0 be the component of the interior of K_{C_0} containing 0 and $U_1 = f_C^1(U_0)$, so that U_1 contains C_0 . On the boundary of U_0 , there is a periodic point α_0 whose period divides k = period of 0. Then θ_+ and θ_- are the external arguments of $\alpha_1 = f_{C_0}(\alpha_0)$ corresponding to accesses adjacent to U_1 .

5. USE OF EXTERNAL ARGUMENTS

We write $\theta \sim_{\mathbf{C}} \theta'$ if the external rays $\mathbf{R}(\mathbf{c},\theta)$ and $\mathbf{R}(\mathbf{c},\theta')$ land in the same point of $\mathbf{K}_{\mathbf{C}}$, i.e., if θ and θ' are two external arguments of one point in $\mathbf{J}_{\mathbf{C}}$. For $\mathbf{c} \in \mathcal{D}_0 \cup \mathcal{D}_2$, the classes having 3 elements or more is made of rational points, each class with 2 elements is limit of classes made of rational points. Knowing this equivalence relation, one can describe $\mathbf{K}_{\mathbf{C}}$ as follows: start from a closed disc, and pinch it so as to identify the points of argument θ and θ' each time you have $\theta \sim_{\mathbf{C}} \theta'$. You end up with a space homeomorphic to $\mathbf{K}_{\mathbf{C}}$. A similar description can be given for M. It will be valid if we know that M is locally connected (a fact which is highly suggested by the many pictures of details of M that we have).

6. INTERNAL AND EXTERNAL ARGUMENTS IN OW

 W_0 denotes the main component of M (the big cardioid). Internal arguments in W_0 are defined using a conformal representation of W_0 onto the unit disc D. The internal argument $\operatorname{Arg}_{W_0}(c)$ is just the argument of $f_c'(\alpha,c)$) (in fact the argument of $\alpha(c)$). If a point $c \in \partial W_0$ has a rational internal argument $c = p_0/q_0$ (irreducible form), a complment $c = p_0/q_0$ is attached at $c = p_0$ at the point $c = p_0$. Thus $c = p_0$ arguments

$$\theta_{-} = a_{-}/2^{q_{0}} - 1$$
 and $\theta_{+} = a_{+}/2^{q_{0}} - 1$.

Theorem 1.

$$\theta_{-}(t) = \sum_{s < t} 1/2^{q(s)} - 1 = \sum_{0 < p/q < t} 1/2^{q}$$
.

 $\theta_+(t)$ = same with \leq t instead of < t. (Here p(s)/q(s) is the irreducible representation of the rational number s. In the second sum, all representations are allowed.)

Proof. Clearly
$$\theta_{+}(t) - \theta_{-}(t) \ge 1/2^{q(t)} - 1$$

$$\theta_{-}(t) \ge \sum_{s < t} 1/2^{q(s)} - 1.$$

$$1 - \theta_{+}(t) \ge \sum_{t < s < 1} 1/2^{q(s)} - 1.$$
Lemma. $\sum_{s \in \{0,1\} \cap Q} 1/2^{q(s)} - 1 = 1.$

Therefore the inequalities above are equalities, which proves the theorem.

<u>Proof of Lemma</u>. Consider the integer points (q,p) with 0 , and provide each <math>(q,p) with the weight $1/2^p$. Summing on horizontal lines gives total weight = 1. Summing on

rational lines through 0 gives total weight = $\sum_{t=0}^{\infty} 1/2^{q(t)} - 1$.

Corollary. The set of values of θ such that $R(M,\theta)$ lands on ∂W_{Ω} has measure 0.

7. TUNING

Let W be a hyperbolic component of M, of period k, and c_0 the center of W. There is a copy M_W of , sitting in M, and in which W corresponds to the main cardioid W_0 . This is particularly striking for a primitive component, and was observed by Mandelbrot in ~ 1980 . More precisely, there is a continuous injection $\psi_W \colon M \to M$ such that $\psi_W(0) = c_0$, $\psi_W(W_0) = W$, $M_W = \psi_W(M)$, $\partial M_W \in \partial M$. For $x \in M$, the point $\psi_W(x)$ will be called " c_0 tuned by x" and denoted c_0 1 x or W 1 x. The filled-in Julia set $K_{C_0 \downarrow X}$ can be obtained in taking K_{C_0} and replacing, for component U of K_{C_0} , the part U (which is homeomorphic to the closed disc U) by a copy of K_{V} .

Theorem 2. Let θ_- and θ_+ be the two external arguments in M of the root c_1 of W, and let t be an external argument of x in M. Then to t there corresponds an external argument t' of c_0 1 x in M, which can be obtained by the following algorithm:

Expand θ_{-} , θ_{+} and t in base 2:

$$t = .s_1 s_2 ... s_n ...$$

Then

$$t' = .u_1^{s_1} ... u_k^{s_1} u_1^{s_2} ... u_k^{s_2} u_1^{s_3} ...$$

We denote this algorithm by t' = (θ_-, θ_+) 1 t. According to the principle: "You plough in the z-plane and harvest in the parameter plane," this theorem relies on Proposition 1 below. Let U_1 be the component of $\mathring{K}_{\mathbf{C}_0}$ which contains $\mathbf{x}_1 = \mathbf{x}_0$, and α_1 the root of U_1 (the point on ∂U_1 which is repulsive periodic of period dividing k). Recall that θ_+ and θ_- are the external arguments of α_1 in $K_{\mathbf{C}_0}$ corresponding to the accesses adjacent to U_1 .

<u>Proposition 1.</u> Let z be a point in ∂U_1 with internal argument t. Then z has an external argument t' in M given by $t' = (\theta_-, \theta_+) + t.$

Sketch of Proof of Proposition 1. Let α_1' be the point in U_1 opposite to α_1 (point of internal argument 1/2) and call the geodesic $[\alpha_1,\alpha_1']$ the spine of U_1 . Let U_i be the connected component in $\overset{\circ}{K}_{C_0}$ containing $x_i = f_{C_0}^i(0)$, so that $U_i = f_{C_0}^{i-1}(U_1)$, and define the spine of U_i as the image of the spine of U_1 . Recall that the spine of K_{C_0} is the arc $[\beta,\beta']$ in K_{C_0} .

Lemma. For each i, either U_i is off the spine of K_{C_0} , either the spine of U_i is the trace in \tilde{U}_i of the spine of K_{C_0} .

We don't prove this lemma here. Now, if the first digit s_1 of t is 0, z is on the same side of the spine of U_1 as the ray $R(\theta_-)$. Then $z_1 = f_{c_0}^{i-1}(z)$ will be on the same side of the spine of U_1 as $R(2^{i-1}\theta_-)$ (thus also on the same side of the spine of K_{c_0}) for $i=1,\ldots,k$. Therefore the ith digit s_1' of t' is u_1^0 . If $s_1=1$, then z follows θ_+ , and $s_1'=u_1^1$ for

 $i=1,\ldots,k$. At time k+1, z_{k+1} is back in U_1 , but with internal argument 2t, so that s_1 is replaced by s_2 (the internal argument is preserved in the map from U_i to U_{i+1} for $i=1,\ldots,k-1$, and doubled from $U_k=U_0$ to U_1). And we start for a second run, and so on...

Now let us come to the situation of Theorem 2. There is a homeomorphism ψ of K_x onto the part of $K_{C_0^{\perp x}}$ which corresponds to \bar{U}_1 in K_{C_0} . This homeomorphism conjugates f_x to $f_{C_0^{\perp x}}^k$.

Lemma 2. If $y \in J_x = \partial K_x$ has external argument t, then the external arguments of $\psi(y)$ in $K_{C_0^{\perp x}}$ are the same as the external arguments in K_{C_0} of the point $y' \in \partial U_1$ whose internal argument is t.

We don't prove this lemma here, but if you think of it, it is very natural. Theorem 2 now follows from results discussed in Section 4, applied to y = x or to y = the root of the component V_1 of \mathring{K}_x containing x.

Remark. The copy $\mathbf{M}_{\mathbf{W}}$ of M sits in M, but in some places, where $\mathbf{M}_{\mathbf{W}}$ ends M goes on. Then there are points x in M with 1 external argument such that \mathbf{c}_0 is x has several external arguments. How is this compatible with the algorithm described in Theorem 2? Well, this algorithm is not univalent: It starts by expanding t in base 2, and numbers of the form $\mathbf{p}/2^{\ell}$ have two expansions. Actually \mathbf{c}_0 is x may have more than 2 external arguments; the algorithm will give the two which correspond to accesses adjacent to $\mathbf{M}_{\mathbf{W}}$.

Example

An elephant in M.

Its copy in W has two smokes coming out of its trunk if W is the rabbit component.

8. FEIGENBAUM POINT AND MORSE NUMBER

Let W_n be the n-th component of \mathring{M} in the Myrberg-Feigenbaum cascade: W_1 is the disc D(-1, 1/4) and we have $W_n = W_1$ \bot W_1 \bot \ldots \bot W_1 . Denote c_0 (n) and c_1 (n) the center and the root of W_n . According to Feigenbaum theory, c_0 (n) converges to $c_\infty = -1.401\ldots$ exponentially with ratio 1/4.66.... The external arguments θ_- (n) and θ_+ (n) of c_1 (n) are obtained by Theorem 2, starting from

$$\theta_{-}(1) = 1/3 = \overline{.01}$$
 and

$$\theta_{+}(1) = 2/3 = \overline{.10}$$
.

One gets:

 $\theta (2) = . \overline{0110}$

 $\theta_{\perp}(2) = . \overline{1001}$

 $\theta (3) = . \overline{01101001}$

 $\theta_{\perp}(3) = . \overline{10010110}$

 θ (4) = . 0110100110010110

. . . .

The numbers $\theta_-(n)$ converge to a number $\theta_-(\infty)$ known as the Morse number. (It has been proved to be transcendental by Van der Pooten, an Australian number theorist in Bordeaux. The idea is that a sequence of digits which represents an element in $\mathbb{Z}/2$ [[T]] which is algebraic over $\mathbb{Z}/2$ (T) cannot be the expansion in base 2 of an algebraic real number, except if periodic.) Note that the convergence of $\theta_-(n)$ to $\theta_-(\infty)$ is faster than any exponential convergence: the number of good digits is doubled at each time. In our view, this is due to the fact that, because of the growing of hairs, W_{n+1} is more sheltered from Brownian dust by W_n and W_n is by W_{n-1} .

9. SPIRALING ANGLE

Take $c \in C$ (in M or in C - M), and let z_0 be a repulsive periodic point for f_c , of period k and multiplier $\rho = (f_c^k)'(z_0)$. There are external rays of K_c landing on z_0 (there may be a finite number or an infinity of them, almost always a finite number though). Take one of them R and let \widetilde{R} be an image of R by a determination of $z \to Log(z-z_0)$. Recall that, with our

convention, Log $z = \text{Log} |z| + 2\pi i$ Arg z. When $z \to 0$ on R, $w = \text{Log } z \to \infty$ in \mathbb{R} and Im $w/\text{Re } w = 2\pi\text{Arg} |z - z_0|/\text{Log} |z - z_0|$ has a limit m that we call the <u>spiraling slope</u> of z_0 . This slope can be written $m = \frac{2\pi\sigma}{\text{Log}|\rho|}$, and σ will be the <u>spiraling number</u> (or spiraling angle). We have $\sigma = \text{Arg } \rho - \omega$, where ω is the rotation angle of the action of f^k on the set of external rays landing at z_0 . If there are ν such rays, then ω is of the form p/ν with $p \in \mathbb{Z}$. Note that Arg ρ and ω are but angles, i.e., ϵ $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, while σ is naturally in \mathbb{R} .

In order to compute ω and σ , let c vary in a simply connected domain \wedge c C and $z_0(c)$ vary accordingly, remaining repulsive periodic of period k. We make the following observations:

- 1. ω is continuous in c, and is invariant under the Hubbard-Branner stretching procedure (here it means just sliding c along the external rays of M).
- 2. ω remains constant in \wedge if the number of external rays landing in z_0 (c) is finite and constant.
- 3. σ tends to 0 when $|p| \rightarrow 1$, i.e., when z_0 turns indifferent periodic (note that m does not necessarily tend to 0, and may well tend to ∞ so that you see the Julia set spiraling a lot).

If we take c ϵ C - W₀ and z₀(c) = α (c), the least repulsive fixed point of f_c, we obtain the following: is the internal argument in W₀ of π_{W_0} (c), which can be defined in the following way if you admit that M is locally connected. If c ϵ M, π_{W_0} (c) is the point where an arc in M from c to 0 enters W₀. If c ℓ M, let π_{M} (c) be the point where the external ray of M through c lands in M. Then π_{W_0} (c) = π_{W_0} (π_{M} (c)). In fact,

one can modify this definition so that it does not depend on the local connectivity of M, and determines π_{W_0} (c) unambiguously.

10. HOW TO DETERMINE π_{w_0} (c) KNOWING 1 PAIR (t,t') SUCH THAT t \sim_{c} t', t \neq t'

Here is the algorithm: expand t and t' in base 2:

$$t = .u_1u_2 ...$$

$$t' = .u_1'u_2' ...$$

Set $\delta_i = u_i - u_i' \mod 2$. If the sequence δ_i ends in 1,0,0,0,..., i.e., $\delta_i = 0$ for $i \ge n$, $\delta_{n-i} = 1$, then $\theta = 2^n$ t = 2^n t' is the external argument of c in M, and the internal argument of $\pi_{w_0}(c)$ is the angle t_0 such that $\theta_-(t_0) \le \theta \le \theta_+(t_0)$ (the functions $\theta_{_}$ and θ_{\bot} are defined in Section 6). If the sequence δ_{i} ends with llll..., then $\pi_{w_{0}}(c)$ = -3/4 (internal argument 1/2). Else, look for 10 somewhere in the sequence, i.e., $\delta_{n-1} = 1$, $\delta_n = 0$. Then there is a t_0 such that $\theta = 2^n t$ and $\theta' = 2^n t'$ both belong to $\{\theta_-(t_0), \theta_+(t_0)\}$, and that is the internal argument of π_{w_0} (c). Why? Let z be the point in K_C with t and t' as external arguments. The rays $R(2^{n-1}t)$ and $R(2^{n-1}t')$ are each on one side of the spine of K_{a} , therefore $f_{c}^{n-1}(z)$ belongs to this spine. Now the image of the spine $[\beta,\beta']_{K_{\mathbf{C}}}$ is the arc $[\beta,c]_{K_{\mathbf{C}}}$ from β to c in $K_{\mathbf{C}}$, and because $R(2^nt)$ and $R(2^nt')$ are on the same side of the spine, necessarily $f_{C}^{n}(z) \in [\alpha(c), c]_{K_{C}}$. From this observation the result follows easily.

11. ACKNOWLEDGEMENTS

Sections 2 to 8 are a report on joint work with J. H. Hubbard. Section 9 is a reflexion in common with Bessis, Geronimo, Moussa in Saclay, which might take a more precise form eventually. Section 10 is due to Tan Lei, a Chinese student in Orsay.