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GENEALOGY OF PERIODIC POINTS OF MAPS

OF THE INTERVAL

BY

ROBERT L. DEVANEY1

Abstract. We describe the behavior of families of periodic points in one parame-

ter families of maps of the interval which feature a transition from simple dynamics

with finitely many periodic points to chaotic mappings. In particular, we give

topological criteria for the appearance and disappearance of these families. Our

results apply specifically to quadratic maps of the form F (x) = fuc(l — x).

0. Introduction. In recent years, much attention has been paid to the dynamical

properties of smooth mappings of the real line to itself. The logistic function

8p(x) = px(l — x) in particular has been studied by many authors. As the parame-

ter p for this family is varied through positive values, the associated dynamical

systems become increasingly more complex. For example, when 0 < p < I, there

are only two fixed points. All other points tend either to one of these two fixed

points or else to -oo under iteration. As p increases further, it can be shown that

more and more periodic orbits appear in a regular fashion and that as long as p is

less than approximately 3.57, the system remains relatively simple, i.e., there are

only finitely many periodic points.

On the other hand, when p > 4, the dynamical system is much more complicated

yet still well understood. All points tend to -oo with the exception of a subset A of

the unit interval which is mapped into itself. A is known to be homeomorphic to a

Cantor set (see § 1 below) and, moreover, the restriction of gM to A is topologically

conjugate to a one-sided shift automorphism on two symbols. In particular, there

are 2" fixed points for gjj, so the dynamics here are quite a bit different from those

for lower values of p. A major question in bifurcation theory is how does one

progress from the simple dynamical systems for p < 3.57 to the more complex

systems found for higher values of p. One of our goals in this paper is to investigate

how the infinitely many periodic orbits arise as p approaches 4.

More specifically, we study families of mappings f which resemble the logistic

function in that/0 is identically 0 and/, has an invariant set A^ similar to the above

when p > b. The precise hypotheses are given in § 1. For these mappings we show

that a particular point arises via a finite sequence of simple bifurcations. We

catalogue these bifurcations in the sense that we present an algorithm that decides

which lower period points give rise via a sequence of bifurcations to a given
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138 R. L. DEVANEY

periodic point in A . There may be other nonessential bifurcations along the way,

but our result shows that where a given periodic point in A^ is "born" is

independent of the particular family of mappings. This can be viewed as a

reconstruction of the past history of the periodic points.

On the other hand, we also discuss the "future" behavior of a periodic point.

That is, we present an algorithm which lists all higher period points which

ultimately bifurcate away from the given periodic point as p increases. The

important point is this: the sequence of essential bifurcations giving rise to a given

point in A is independent of the particular family chosen. This means that there

are severe topological restrictions on the generation of periodic orbits by mappings

like the logistic function.

The possibility of such a result is suggested by a remarkable result of

Guckenheimer [2] which shows that the order in which the above bifurcations

occur is independent of the family of mappings. The present paper extends these

results in that we identify not only when but also where and how a particular

periodic orbit appears. Viewed differently, we are able to trace the complete

"family tree" of a given family of periodic orbits-which higher period points

bifurcate away from it, and where these higher period families end up in AM.

We finally remark that the results below are not completely new. They can be

deduced, for example, from the work of Jonker [5]. Also, they are similar in spirit

to results of Milnor and Thurston [6], and also to more recent work of

Guckenheimer [4]. Our approach, however, is different, as we use only the topologi-

cal properties of the global bifurcation diagram rather than symbolic dynamics to

obtain our results.

1. Preliminaries. We consider smooth (at least C3) one parameter families of

maps/,: R—»R of the real line where the parameter p G [0, oo). Throughout this

paper, we assume that the family satisfies

(l)/0(x) = 0.

(2)/„(0) = /„(l) = 0.
(3) For p > 0,fp has a single critical point c^ at which f assumes its maximum.

(4) There is b such that p > b implies

|/;(x)|>l   ifx,/(1(x)e/=[0, 1].

Clearly, the logistic function /M(x) = px(l — x) is one such family.

The sequence of points fp(x) = f ° / ° • ■ • ° f(x) is called the orbit of x. A

glance at the graph of /, shows that if x G I but /M(x) & I, then fjj(x) £ / for

n > 2. So any point which leaves / under some iterate of f remains outside of / for

all future iterates. In the sequel we shall restrict attention to points in /. The points

whose entire orbits lie in / thus form a compact invariant set which we denote by

A . One of our goals is to understand how AM changes as p increases.

Of prime importance in A^ are the periodic orbits. These are points whose

iterates satisfy fjj+i(x) = /¿(x) for all i > 0. The minimal number n > 0 for which

this equation holds is called the prime period of the orbit. It can be shown that for

small p > 0, A,, consists of a finite number of periodic orbits. On the other hand,
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PERIODIC POINTS OF MAPS 139

when p > b, it is easily seen that A^ is a Cantor set and that there are exactly 2"

points in AM which lie on orbits of (not necessarily prime) period n. Denote by

Pern(/n) tne set OI points of period n for fn. Equivalently, Per^f^) consists of all

points fixed by/f. For polynomial mappings, Per,^/,) consists of a finite number of

points. In general, however, this need not be the case. However, we shall place

generic hypotheses on the family under consideration which will guarantee that

Per„(/M) is finite.

As the parameter p increases, the number of points in Per„(/fl) changes at the

bifurcation points. For generic families, these bifurcations are well understood.

Either there is a saddle node bifurcation at which a new periodic point appears and

then immediately splits into two periodic orbits of the same period, or else a flip

bifurcation occurs and a new family of periodic points of twice the period

bifurcates away from the given family. Both of these bifurcations can occur in

reverse, i.e. with periodic points coalescing and/or disappearing. These generic

bifurcations are well understood; we refer to [2] for more details and complete

proofs. Henceforth we will assume that the given family f is generic in the sense

that at all points x in Pern(fp), either the derivative \(fp)'(x)\ ¥= 1, or else there is a

generic bifurcation in one of the above senses at x. All of our results below will be

independent of the particular generic family, and so, at the end of the paper, we

will be able to extend these results to arbitrary families satisfying hypotheses

(l)-(4).

We now recall some basic facts about the symbolic dynamics of maps of the

interval. Most of what follows is similar to results in Milnor and Thurston [6]. Let

z0, z, be the two preimages of 1 for fixed p > b. Suppose z0 < zx and let I0 = [0, z0]

and /, = [z,, 1]. Then f stretches both IQ and /, homeomorphically over /; f

increases on I0 and decreases on /, and for each x G I0 (J I\, |/I(x)| > 1. Hence

AM is a hyperbolic set for p > b.

For each x G A , one may define a coding h(x) = SoSxs2 ■ • ■ where s¡ = 0 or 1

for each /'. The sequence h(x) is determined by s¡ = j if /¡(x) G Ij. So h(x) specifies

which of the two intervals I0 and /, the successive iterates of x fall into.

Let 2 denote the set of all one-sided sequences of 0's and l's with the usual

topology. 2 is clearly homeomorphic to the Cantor middle thirds set. We define the

shift automorphism a: 2 —* 2 by a(s0s1s2 • • • ) = sxs2s3 • • • . So a forgets the first

term in a sequence and is thus a two-to-one mapping onto 2. In the usual topology,

a is also continuous. Moreover, the following proposition is well known:

Proposition 4. (1) A: AM —* 2 is a homeomorphism.

(2) h » fp = o » h, i.e. h is a topological conjugacy between f^A  and a.

(3) Periodic points of period n + 1 for f are in one-to-one correspondence via h

with periodic sequences of the form s0sx ■ ■ ■ sns0 • ■ ■ sn ■ ■ • .

Smale first proved these facts for the "horseshoe" diffeomorphism of the plane

[9]. More detailed treatments of this example can be found in [7] or [8].

In this paper, we shall be concerned only with the periodic orbits. To simplify

notation, we shall drop the tail of the infinite sequence of 0's and l's and consider a
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140 R. L. DEVANEY

string of symbols s_ = sx ■ ■ ■ s„ as representing the periodic orbits

sx • • • snsx • • ■ sn • • • . Moreover, we shall freely use the identification of Per„(/)

with such strings given by the topological conjugacy h. Let 2„ denote the set of all

strings of length n of the form sx ■ ■ ■ sn.

For each p > b, the 2" periodic points of period n for f are ordered in / = [0, 1]

from left to right. This ordering remains unchanged as p varies in the following

sense. For p > b, there are 2" smooth nonintersecting curves in / X [b, oo) of the

form (x( p), p) satisfying fjj(x( pj) = x( p). Hence the ordering of the periodic

points when p = b determines the ordering for all p > b. As a result we need only

consider changes in the periodic point structure of f for 0 < p < b.

Number the points in Per,//,) n / from left to right beginning at 0 and ending at

2" — 1. Let N(x) be the integer corresponding to x in this ordering. Also, let B(x)

denote A(x) in binary notation. The following proposition relates A(x) to an

ordering of strings of symbols of length n in 2„.

Proposition 5. Let h(x) = sx • ■ ■ sn. Then B(x) = ax ■ ■ ■ an where Oj =

2-í_ i s¡ mod 2.

Proof. First recall that sx ■ • • sn is the unique point in Pern(/6) lying in

I, ...", = Is n fj\ls ) n • • • C\f^n~x\ls ) and that/¿ is monotonie on this closed

interval. Furthermore,

/,...., -/, n fbx(is) n • • • nV(0so       ». s0       Jb   V M ■">   V s.l

= ts0nfb-x(iSln--- ntfr-'KQ)

— Isa n jb (Js¡... sj-

This means that the ordering of Pern + ,(/6) is obtained from the ordering of Per„(/6)

as follows. Since fb increases on I0, we first list all strings of length n in order but

preceded by a 0. Then fb decreases on /, so that the strings of length n are then

listed in reverse order and preceded by a 1. This new list is the ordering of

Per„+ ,(/,)•

Now by induction, we first note that B(0) = 0 and B(l) = 1 so that B gives the

binary location for the fixed points of fb. Now assume that a, • • • an =

B(sx ■ ■ ■ sn) gives the binary location of sx ■ ■ ■ sn G 2„. Then the above remarks

show that 5(0, sx ■ ■ ■ sn) = 0ax ■ ■ ■ an and 5(1, sx ■ • ■ sn) = lá, • • • ân where

àj = ay + 1 mod 2. Since a, • • ■ an + â, • • • ân = 1 • • • 1 it follows that

B(0, 5,.s„) < B(0, r, •• • t„),       5(1, sx ■ ■ ■ sn) > 5(1, tx ■ ■ ■ t„),

iff B(sx ■ ■ ■ sn) < B(tx ■ ■ ■ tn). Consequently B(s0sx • • • sA gives the binary order-

ing of Per„ + x(fb) as required.    D

The preceding proposition relates a geometric property of /¿-the ordering of

Per„(/¿) in /-with an algebraic property of strings of length n in 2„-the binary

location. We now discuss a second such link between the geometry of fb and the

algebra of a. For an isolated periodic point p G Per„(/,,), we let Ind„(p) denote the

topological intersection number of g?aph(f£) with the diagonal in / X / at (p, p).

That is, Ind„(p) = +1 if f¡j(x) — x is increasing atp; Ind„(p) = -1 iffjj(x) — x is
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PERIODIC POINTS OF MAPS 141

decreasing atp; and Ind„(p) = 0 otherwise. For a generic family of mappings, all

periodic points are isolated, and so Ind„(x) is well defined for each x in Per„(/M).

Also, if f is a polynomial of degree > 2, then again each periodic point is isolated

and the index is well defined.

For strings of length n in 2„ we also define an algebraic index. Let

I(sx---sn) = (-lf^\

I is related to the topological index in the natural way.

Proposition 6. Let x G Per,//,). Then I(h(x)) = Ind„(x).

Proof. Suppose h(x) = sx • ■ ■ sn and that B(sx • ■ ■ sA = ax ■ ■ ■ an. Then

I(sx ■ ■ ■ sA = (-l)2^ = (-If". On the other hand, for fixed points of /6", the

derivative X(x) = (fb)'(x) is alternately positive and negative with |\(x)| > 1. Since

A(0) > 1 by assumption, it follows that

Ind„(x) = (-1)"<*>.

Then the result is an immediate consequence of the previous proposition, as N(x) is

even or odd depending on whether an = 0 or an = 1.    □

2. Families of periodic orbits. In this section we complete the description of the

generation of periodic orbits as p increases. The generic hypotheses on/, imply that

the set of solutions of the equation fj^(x) = x forms a union of smooth curves in

/ X [0, b] which we denote by Tn. The associated picture in / X [0, b] is called the

global bifurcation diagram of period n.

Certain of the curves in Tn extend all of the way to the line p = b, while others

do not. Our goal in this section is to identify which of the periodic points for p = b

are related via sequences of saddle node and/or flip bifurcations to other points in

Per„(/é).

Toward that end, for p G Pern(fb), we denote by y(p) the smooth curve in Tn

which terminates at (p, b) G I X [0, b]. This curve is called the fixed point curve

associated to p. If p is not a fixed point for/,, then y(p) rejoins p = b at a second

point q. That is, y(p) = y(q). We say that p is related to q in this case and write

p ~ q. Note that q may or may not be on the /¿-orbit of p. Indeed, the period 2

points associated to the sequences 01 and 10 in 22 are related and do lie on the

same orbit, while the period 3 orbits with sequences 101 and 100 are related, but

necessarily lie on distinct orbits. This follows immediately from the considerations

below.

If p and q both have prime period n, then it follows from our generic hypotheses

that either p is related to q or else y(p) n y(q) = 0. For the only way two distinct

curves in Tn can cross is at a flip bifurcation. Here, either a new orbit with twice

the period bifurcates away, or else such an orbit coalesces with the original family.

On the other hand, if p and/or q have period less than n, then y(p) may meet y(q)

at a point (y, v) where a flip bifurcation occurs. In this case, the prime period of

one of the points, say q, must be exactly twice the prime period of the other. We

say thatp gives birth to q and denote this byp -> q. More generally, we say that q is
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142 R. L. DEVANEY

a descendant of order k of p if there is a sequence q0 = p, qx, . . . , qk = q of points

in Per„(/,) satisfying qi —»#,+ , for / = 0, 1, . . . , k — 1. We write p —» q in this case.
k

Note that if p—*q, then the prime period of q is 2* times the prime period of p.

Also if p gives birth to q, then ^ is a descendant of p of order 1.

Many periodic points for fb are not descendants of points with lower periods;

that is, many periodic points do not arise out of flip bifurcations. A point p in

Per„(/fc) is called primary if each point in y(p) has the same prime period.

Equivalently, p is a primary periodic point provided there are no points (y, v) along

y(p) which also lie on y(q) for some q with lower period than p. Primary periodic

points are clearly those which "begin" at saddle nodes.

Remark. Note that fixed point curves which begin at flip bifurcations may also

admit saddle node bifurcations even before the parameter value corresponding to

the flip bifurcations. See Figure 1.

Figure 1. An "inverse flip" bifurcation

We define the period of a fixed point curve y(p) to be the prime period of p. The

following proposition shows that there is at most one point along y(p) which has

prime period less than p.

Proposition 7. Suppose y(p) has period n. Then there exists at most one point

(y, v) G y(p) with f™(y) = y with m < n.

Proof. Let (yt, vj) he two such points with / = 1,2 and let y, denote that portion

of y(p) connecting (yx, vj) to (y2, vj). We may assume that the prime period of any

point (x, p) G y, is n. By our generic hypotheses, (y¡, vj) are not endpoints of y„

and both^, and.y2 have period n/2. Let y2 denote the curve (f£/2(x), p) for each

(x, p) G y,. Then y, and y2 are smooth curves which join together smoothly at

(yx, vj) and (y2, vj). This implies that y, u y2 is a smooth closed curve in Tn. Hence

y, u y2 cannot meet p = b and, in particular, (p, b) £ y, u y2. This gives a

contradiction and completes the proof.    □

Our goal now is to identify which periodic points give birth to higher period

points. In the next section we shall deal with the converse: which periodic points in

Per,//,) are primary and which arise out of flip bifurcations. This will allow us to

give a complete "family history" of any point in Per,//,). The important point is

that these relationships turn out to be independent of the particular generic family

chosen. Hence there are severe topological restrictions on how periodic points can
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PERIODIC POINTS OF MAPS 143

arise and persist in such a family. These ideas were suggested to us by a remarkable

result of Guckenheimer which we now discuss.

For p G Per„(/,), let m(p) denote the minimum p-value along the associated

fixed point curve y(p) in / X [0, b]. Also, denote by M(p) the point along the orbit

of p with largest jc-coordinate. In our terminology, Guckenheimer's result may then

be stated as follows:

Theorem (Guckenheimer [2]). Suppose f is a generic family of mappings. Let p„

p2 G Pern(fb) and suppose Ind„(p,) = -1. Then m(pj) < m(pj) iff M(pj) < M(p2).

Using this theorem one can decide the order in which bifurcations must occur;

that is, given a pair of periodic points, one can determine which of the two was

created by an earlier bifurcation. Our goal in this paper is to extend these results by

identifying the complete bifurcation history of each point in Per,//,).

As above, we continue to identify points in Per,//,) with their associated strings

of length n in 2„. For s = sx ■ ■ ■ sn G 2„, we define a new sequence | =

sx ■ ■ ■ sn_xsn, where sn = sn + 1 mod 2. The sequence f is said to be conjugate to s_.

Our main tool in the sequel is the following theorem.

Theorem A. Let s_= sx • • • sn G~Zn satisfy

(1) s has prime period n.

(2) I(s) = -1.

(3) M(s) = s.

Then there is a unique fixed point curve with period 2/i which intersects both y(s) and

the line p = b. The rightmost point on this orbit is conjugate to the sequence

sx ■ ■ ■ snsx ■ ■ ■ sn, i.e. is given by sx ■ ■ ■ snsx ■ ■ • sn.

Remark. The point on y(s) at which the higher period fixed point curve branches

off is called its birthplace. Note that, as in Figure 1, it is possible for a given family

of periodic orbits to "live" before its birthplace. Also, if 5 = sx ■ ■ ■ sn and t =

/, • • • tk, we denote by st the new string of length n + k given by

sx ■ ■ ■ sntx ■ ■ ■ tk.

Proof. Let \(y) denote the derivative fjj(y)- Let £ be the portion of the curve

y(s) connecting (s_, b) and the point (y, m(s)), i.e. the point with minimal p-period

along y(s). Aty, we have \(y) = 1, whereas Xn(s) < -1. Hence there are an odd

number of isolated points along £ at which X = -1. At each of these points, a

family of 2« periodic points bifurcates away from £. We claim that exactly one of

these families persists up to p = b. To see this, we first observe that an odd number

of fixed point curves must persist up to p = b. This follows from Proposition 7

which shows that the fixed point curves branching away from y(s) can only

disappear in pairs. Now let sx, . . . , s2k+x denote the set of points in Per2n(fb)

satisfying B(¿) > B(sj) and y(sj) n y(sj) ¥= 0. We may assume that B(sj) < B(sf)

if i <j. Then if k > 0, we must have that I(sx) = I(s3) = -1, since there must be

an even number of points in Per2„(/6) between sj and s'+x and since I(ss) = 1.

Since M(s) = s_, it also follows that M(sj) = sj and M(sj*) = sj, for otherwise some

of the fixed point curves associated to the points on the orbit of sj would intersect
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each other. By Guckenheimer's theorem, it then follows that m(s3) > m(sx). But

this implies that the curves y(s') and y(j3) must cross. Since both curves have

period 2«, this is impossible.

We now show that this unique bifurcation family meets p = b at si. First

observe that, by Proposition 6, I(ss) = 1. Hence B(ss) = ax • ■ ■ a2n with aln = 0.

Then B(ss) = ax ■ • ■ a2n_xâ2n with â2n = 1 so that B(ss) > B(ss). If the bifurcation

family meets p = b at some larger symbol, say /, then we must have m(t) < m(ss)

since y(ss) has period 2/t and cannot cross y(t). Again invoking Guckenheimer's

result, it follows that there must be a larger point than ss on its orbit. We now show

that in fact if is the largest point on its orbit, and this contradiction will finish the

proof.

Since B(ss) < B(ss) and B(s) > B(oks) for k = 1, . . . , n - 1, it follows that

B{aks, aksj) < B(oks, aks) < B(ss)

for k = I,.... ,n — 1. Hence we need only show that B(oks, aks) < B(ss) for

k = 1, . . ., n to complete the proof. We show instead that B(oks) < B(s) for

k = 0, ...,« - 1.
Let B(s) = bx ■ ■ • bn. Since I(sj) = -1, it follows that bn = 1 so that when k = 0,

B(s)=bx- ■ -bn_xbn<bx- ■ •*>„= B(s).

For k = 1, . . . , n - 1, we argue as follows. Suppose B(oks) > B(s). Let B(aks)

= ax • • • an. Then B(aks) = ax ■ ■ ■ a„_k_xân_k ■ ■ ■ â„. Since B(aksj) < B(sj) it

follows that ax = bx, ... ,an_k_x = bn_k_x. Since B(akS) > B(s) > B(aks) we

must then have a„^k = 0 and ân_k = 1. Thus there are two cases: either bn_k =0

orbn_k = 1.

Suppose first that bn_k = 0. Since sx = 1 it follows that an_k_x = 1 and that

a„  k   , • - • a„ < b„_k_x • • ■ bn. But we haven-k-\ n n    k     1 n

an-k+\ ■ ■ ■ an = B(sx ■ ■ ■ sk) > B(sn_k + X ■ ■ ■ sn) = bn_k + x ■ ■ ■ bn.

This contradiction establishes the result when bn_k = 0. If bn_k = 1 we must have

bn-k + \ ''■*■*< ân_k+x • ■ • ân. Since sx = 1, we have ân_k + i = 0 and therefore

b„-k + i = 0. Since bn_k = 1, it follows that s„_k+x = 1. Hence B(sn_k+X ■ ■ ■ sn) =

¿>„_*+1 ■ ■ ■ bn. As before, B(sx ■ ■ ■ sk) = ân_k+i • • • â„ so that

an-k + \ ■ ■ ■ an = B(si    ••**)> B(s„_k+i • • • sn) = b„_k+i ■ ■ ■ b„.

Therefore ân_x + x • ■ ■ â„ < bn_k + x • • • bn and again we have a contradiction.    □

As a consequence of Theorem A, we can determine recursively the higher period

orbits which are descendants of order k of a given periodic point. For example, we

have

Corollary B. Let p correspond to the fixed point of fb with negative index. Then
k

p-»j* where M(sk) = sk and the sk are determined recursively by the formula

In particular, the first few periodic points related to p are given by the sequences

1,  10,  1011,  10111010,  1011101010111011_A similar scheme holds for any

other periodic point with negative index.
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3. Related periodic orbits. Our goal in this section is to describe the past history

of a given periodic point in 2„. More precisely, we present an algorithm which

decides whether two sequences are related, or more generally, if one is a descen-

dant of order k of the other.

Let s_= sx ■ ■ ■ sn and t = tx ■ ■ • tn and suppose s_ — t. We say that s and /

separate the critical point if sx ^ tx. In this case, the x-coordinates of the two ends

of y(s) lie on opposite sides of the critical point of/,.

Lemma 1. Suppose s_ ~ / and s_ and t_ separate the critical point. Then oks_ and okt do

not separate the critical point unless oks = s or oks = t.

Proof. If oks_ and okt separate the critical point, then y(s) intersects y(oks) since

m(sj) = m(oks). Since oks and s have the same period, it follows that y(s) = y(aks).

□

Lemma 2. Suppose M(s) = s and s_ — t. Then a~x(s) and a~x(t) separate the critical

point.

Proof. There is one point on the orbits of s and t which separates the critical

point, say Sj, and /0. Consider o(sjj) and a(t0). If B(sj) > B(asj,) then B(t) > B(at0)

also, for otherwise y(s) = y(asA. Now the graph of/, shows that a~xs and o~xt are

contained between sM and t0. Hence it follows that y(sM) and y(o'xs) must intersect.

D
We can now describe when two sequences are related.

Theorem C. Suppose s_~~ t_ and M(sj) = s_. Then either

(a) t = s, or

(h) s_=uû and t = mm.

Conversely, if M(sJ = s_ and s = mm, then s ~ûu. Otherwise, sr ~ s.

Proof. Suppose first that s_ — / with M(s) = s_. Let sM and t0 be the unique points

on the orbits of í and t_ which separate the critical point. We have sM = sx ■ ■ ■ sk

and t0 = sxs2 ■ • ■ sk. Now either Sj¡ and /0 lie on the same orbit or else they lie on

distinct orbits. In the first case it follows that t0 = amSj, where m = k/2, so that

sj) = si ' ' ' smh ' ' * sm anc* ío = *i ' ' ' sms\ ' ' ' Sm- % Lemma 2, j = a^, so that

i = mm as required. In the second case we must have s_ = s2 ■ ■ ■ sksx and / =

s2 ' ' ' Vi again as required.

For the converse, we first assume that M(s) = s and that s_=uû where u =

sx ■ ■ ■ sn. We first claim that I(u) = -1. Since M(s) = s, we have B(uû) > B(ûu).

Let B(u) <■ a, • • • an. Then we have

a, • • • an> B(û)ax ■ ■ ■ a„_xân.

It follows that a„ = 1. Hence 2"_, Sj = 1 mod 2, and we have that I(u) = -1. We

also clearly have B(oku) < B(u) for k = 1, . . . , n — 1, so that by Theorem A, u

gives birth to s_ = uû. Since o"uû = ûu, it follows that miî—iîm.

On the other hand, if í is not of the form mm and s — /, then by Lemma 2, a~xs_

and o~xt separate the critical point. Hence t = s. This completes the proof.    □
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Thus, to determine how a given orbit arises, we iterate o until we find M(sj). If

M(s) = uû, then the orbit originates at a flip bifurcation along the orbit of u. In all

other cases, s arises as a saddle node, and in fact if M(sj) = v, then v —û. Using

this procedure, one can construct the entire prior history of a given periodic orbit.

Finally, we remark that our results above go over immediately to the case of a

family of polynomial mappings satisfying hypotheses (l)-(4). Let f be such a

family. Now f does not in general meet the generic hypotheses imposed in §2.

However, the global bifurcation diagram of period n does consist of a finite

number of continuous curves, since these curves are given as the zero set of a

polynomial in two variables.

Let /¡ be a sequence of mappings converging to f in the C ' topology (on /). For

each /', there is a number b¡ such that fj\A, is topologically conjugate to the shift on

two symbols for p > b¡. Let jëï, and let y¡(sj) he the fixed point curve associated

to s_ for /| in / X [0, bj]. By Theorem A, there is t G 2„ such that t G y ¡(s) for all i.

Since fp'-tfp uniformly on /, the curves y¡(s) converge to a closed set G(sj) which

contains a continuous curve y(s) connecting í and / in A, X {b}. Hence s — t forf

also. The other relationships among the periodic points follow similarly.
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