THE POLYNOMIALS ASSOCIATED WITH A JULIA SET
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ABSTRACT

We prove that, with two exceptions, the set of polynomials with Julia set ¢ has the form {op": neN,
o€X} where p is one of these polynomials and X is the symmetry group of #. The exceptions occur when
F is a circle or a straight line segment.

Several papers [1,2,3,5] have appeared dealing with the relation between
polynomials having the same Julia set # (for notation the reader is referred to [8]).
This relation is very simple and by no means surprising.

THEOREM. For any Julia set (of a polynomial) ¢, which is not a circle or a straight
line segment, there exists a polynomial p such that any polynomial with Julia set ¢ can
be written in the form op™, where o is a rotation mapping ¢ onto itself, and n is a positive
integer.

Proof. We denote by £ = X(¢) the symmetry group of ¢, that is, the group of
Moébius transformations mapping _# onto itself. There exists a polynomial p of lowest
degree associated with #. Without loss of generality, we may assume that p is given
by

p(2)=z2%+a, .,z +.. . +a,

since otherwise we could consider the Julia set M(#), the conjugate group MZIM™!
and the conjugate polynomial Mopo M, where M(z) = az+f is a suitably chosen
Mobius transformation. Baker and Eremenko [1] have shown that p may be written
as

p(2) = 2°po(2™),
where m is the order of the symmetry group of #, namely
={z—0z:0" =1},

and p, is a polynomial. In a similar way, any polynomial g associated with ,# can be
written in this form, say g(z) = z°q,(z™). It is easily seen that pog = dgop holds, and
also that the polynomials

P(@) = #(py(2))" and §(z) = 2°(q,(2)"

commute; this can also be found in [1]. According to results due to Julia [6], Fatou
[4] and Ritt {7], we have to consider three different cases.

(@) p(z) = z*is a monomial. Then p is a monomial too, and the Julia set is the unit
circle.
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(b) p is conjugate to some polynomial T, such that T or — T is a Tchebychev
polynomial for the interval [—2,2]. Then from

T(az+p) = az'(py(2))" + B

and the fact that 7” has only simple zeros, it follows that m < 2, and hence m = 2.
Also, we have f = +2, since only the values +2 are critical for 7, and so

T(az* +2) = a(p(2))* £2
holds. We consider the respective conjugates

h(ivaz) = ivap(z), h(vaz)=+ap(z),
(h2))* =2-T2-2%), (h(@2)*=2+T(z"-2),

respectively. In both cases, the interval [—2,2] is completely invariant under 4, and
so the Julia set of 4 coincides with [—2,2] and the Julia set of p is a straight line
segment.

(c) There exist integers k and / such that p* = §'. In particular, it follows that
(deg p)* = (deg §)* and so d divides deg g, that is, g(z) = cz*+.... Now we use a device
that can be found in Ritt’s paper [7]. Let

and obtain

B(z) = z(1+§%+...)

be the normalized solution of Bottcher’s functional equation

B(p(2)) = (B(2))";

it depends only on the Julia set _#, since, near infinity, log |B(z)| represents the Green’s
function of the outer domain of # with pole at co. In a neighbourhood of this point,
we define a function r by the relation

B(r(2)) = c(B(2))".
Then B(r(p(z))) = c¢(B(2))* = B(g(z)), and hence

rop=gq

follows. Writing r(z) = r(z)+ O(1/z) as z — o0, where r,, a polynomial, denotes the
principal part of r at 0o, we obtain

4(2)=ro(p(2)) = O(z™),

and hence r = r, is a polynomial. It is obvious that r maps each of the sets ,# and
F-—the common Fatou set—onto itself, and hence either r has Julia set # or else
r(z) = dz, 0™ = 1, holds. Repetition of this argument, if necessary, leads to the con-
clusion that g = dp*. Conversely, each polynomial dp™ has Julia set #. This proves
our theorem.

Remark. 1t is clear that in the non-exceptional case, dp* and gp*, ¢™ = 1, are
permutable if and only if 8" = ¢**~! holds. This was already observed by Ritt.
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