THE POLYNOMIALS ASSOCIATED WITH A JULIA SET

W. SCHMIDT and N. STEINMETZ

Abstract

We prove that, with two exceptions, the set of polynomials with Julia set \mathscr{g} has the form $\left\{\sigma p^{n}: n \in \mathbb{N}\right.$, $\sigma \in \Sigma\}$ where p is one of these polynomials and Σ is the symmetry group of \mathscr{J}. The exceptions occur when \mathscr{J} is a circle or a straight line segment.

Several papers $[1,2,3,5]$ have appeared dealing with the relation between polynomials having the same Julia set \mathscr{J} (for notation the reader is referred to [8]). This relation is very simple and by no means surprising.

Theorem. For any Julia set (of a polynomial) \mathscr{J}, which is not a circle or a straight line segment, there exists a polynomial p such that any polynomial with Julia set \mathscr{F} can be written in the form σp^{n}, where σ is a rotation mapping \mathscr{J} onto itself, and n is a positive integer.

Proof. We denote by $\Sigma=\Sigma(\mathscr{J})$ the symmetry group of \mathscr{J}, that is, the group of Möbius transformations mapping \mathscr{J} onto itself. There exists a polynomial p of lowest degree associated with \mathscr{J}. Without loss of generality, we may assume that p is given by

$$
p(z)=z^{d}+a_{d-2} z^{d-2}+\ldots+a_{0}
$$

since otherwise we could consider the Julia set $M(\mathscr{\mathscr { L }})$, the conjugate group $M \Sigma M^{-1}$ and the conjugate polynomial $M \circ p \circ M^{-1}$, where $M(z)=\alpha z+\beta$ is a suitably chosen Möbius transformation. Baker and Eremenko [1] have shown that p may be written as

$$
p(z)=z^{\mu} p_{0}\left(z^{m}\right)
$$

where m is the order of the symmetry group of \mathscr{J}, namely

$$
\Sigma=\left\{z \longmapsto \delta z: \delta^{m}=1\right\},
$$

and p_{0} is a polynomial. In a similar way, any polynomial q associated with \mathscr{J} can be written in this form, say $q(z)=z^{v} q_{0}\left(z^{m}\right)$. It is easily seen that $p \circ q=\delta q \circ p$ holds, and also that the polynomials

$$
\hat{p}(z)=z^{\mu}\left(p_{0}(z)\right)^{m} \quad \text { and } \quad \hat{q}(z)=z^{v}\left(q_{0}(z)\right)^{m}
$$

commute; this can also be found in [1]. According to results due to Julia [6], Fatou [4] and Ritt [7], we have to consider three different cases.
(a) $\hat{p}(z)=z^{d}$ is a monomial. Then p is a monomial too, and the Julia set is the unit circle.

Received 16 September 1993; revised 9 December 1993.
1991 Mathematics Subject Classification 30D05.
(b) \hat{p} is conjugate to some polynomial T, such that T or $-T$ is a Tchebychev polynomial for the interval $[-2,2]$. Then from

$$
T(\alpha z+\beta)=\alpha z^{\mu}\left(p_{0}(z)\right)^{m}+\beta
$$

and the fact that T^{\prime} has only simple zeros, it follows that $m \leqslant 2$, and hence $m=2$. Also, we have $\beta= \pm 2$, since only the values ± 2 are critical for T, and so

$$
T\left(\alpha z^{2} \pm 2\right)=\alpha(p(z))^{2} \pm 2
$$

holds. We consider the respective conjugates

$$
h(i \sqrt{ } \alpha z)=i \sqrt{ } \alpha p(z), \quad h(\sqrt{ } \alpha z)=\sqrt{ } \alpha p(z)
$$

and obtain

$$
(h(z))^{2}=2-T\left(2-z^{2}\right), \quad(h(z))^{2}=2+T\left(z^{2}-2\right)
$$

respectively. In both cases, the interval [$-2,2$] is completely invariant under h, and so the Julia set of h coincides with $[-2,2]$ and the Julia set of p is a straight line segment.
(c) There exist integers k and l such that $\hat{p}^{k}=\hat{q}^{l}$. In particular, it follows that $(\operatorname{deg} \hat{p})^{k}=(\operatorname{deg} \hat{q})^{l}$ and so d divides $\operatorname{deg} q$, that is, $q(z)=c z^{d s}+\ldots$. Now we use a device that can be found in Ritt's paper [7]. Let

$$
B(z)=z\left(1+\frac{\alpha_{1}}{z^{m}}+\ldots\right)
$$

be the normalized solution of Böttcher's functional equation

$$
B(p(z))=(B(z))^{d}
$$

it depends only on the Julia set $\mathscr{\mathscr { L }}$, since, near infinity, $\log |B(z)|$ represents the Green's function of the outer domain of \mathscr{J} with pole at ∞. In a neighbourhood of this point, we define a function r by the relation

$$
B(r(z))=c(B(z))^{s}
$$

Then $B(r(p(z)))=c(B(z))^{d^{8}}=B(q(z))$, and hence

$$
r \circ p=q
$$

follows. Writing $r(z)=r_{0}(z)+O(1 / z)$ as $z \rightarrow \infty$, where r_{0}, a polynomial, denotes the principal part of r at ∞, we obtain

$$
q(z)-r_{0}(p(z))=O\left(z^{-d}\right)
$$

and hence $r=r_{0}$ is a polynomial. It is obvious that r maps each of the sets \mathscr{J} and \mathscr{F}-the common Fatou set-onto itself, and hence either r has Julia set \mathscr{J} or else $r(z)=\delta z, \delta^{m}=1$, holds. Repetition of this argument, if necessary, leads to the conclusion that $q=\delta p^{n}$. Conversely, each polynomial δp^{n} has Julia set \mathscr{J}. This proves our theorem.

Remark. It is clear that in the non-exceptional case, δp^{k} and $\varepsilon p^{n}, \varepsilon^{m}=1$, are permutable if and only if $\delta^{v-1}=\varepsilon^{\mu n-1}$ holds. This was already observed by Ritt.

References

1. I. N. Baker and A. Eremenko, 'A problem on Julia sets', Ann. Acad. Sci. Fenn. Ser. A 12 (1987) 229-236.
2. A. F. Beardon, 'Symmetries of Julia sets', Bull. London Math. Soc. 22 (1990) 576-582.
3. A. F. Beardon, 'Polynomials with identical Julia sets', Complex Variables 17 (1992) 195-200.
4. P. Fatou, 'Sur l'iteration analytique et les substitutions permutables', J. Math. 2 (1923) 343-362.
5. J. L. Fernández, 'A note on the Julia set of polynomials', Complex Variables 12 (1989) 83-85.
6. G. Julia, 'Mémoire sur la permutabilité des fractions rationelles', Ann. Sci. École Norm. Sup. 39 (1922) 131-215.
7. J. F. Ritt, 'On the iteration of rational functions', Trans. Amer. Math. Soc. 21 (1920) 348-356.
8. N. Steinmetz, Rational iteration (de Gruyter, Berlin, 1993).

Universität Dortmund Institut für Mathematik D-44221 Dortmund Germany

