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Abstract. When is a topological branched self-cover of the sphere equivalent to a rational
map on CP1? William Thurston gave one answer in 1982, giving a negative criterion (an
obstruction to a map being rational). We give a complementary, positive criterion: the
branched self-cover is equivalent to a rational map if and only if there is an elastic spine that
gets “looser” under backwards iteration.
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1. Introduction

In this paper, we complete the program laid out in earlier work [Thu16b], and give a
positive characterization of post-critically finite rational maps among branched self-covers of
the sphere.

Definition 1.1. A topological branched self-cover of the sphere is a finite set of points P Ä S2

and a map f : pS2, P q Ñ pS2, P q, also written f : pS2, P q ˝, so that f is a covering map
(with degree greater than 1) when restricted to a map from S2zf´1pP q to S2zP . That is,
f is a branched cover so that fpP q Ä P and P contains the critical values. Two branched
self-covers are equivalent if they are related by conjugacy of S2 (possibly changing the set P )
and homotopy relative to P .

One source of topological branched self-covers is post-critically finite rational maps. Let
pC “ CP1, and suppose fpzq “ P pzq{Qpzq is a rational map with a finite, forward-invariant
set P that contains all critical values. Then, if we forget the conformal structure, f : ppC, P q ˝
is a topological branched self-cover.

Question 1.2. When is a topological branched self-cover equivalent to a post-critically finite
rational map?
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2 THURSTON

One answer to Question 1.2 was given by W. Thurston 30 years ago [DH93], recalled as
Theorem 7.4. He proved a negative characterization: there is a certain combinatorial object
(an annular obstruction) that exists exactly when f : pS2, P q ˝ is not equivalent to a rational
map. In this paper, we give a complementary, positive, characterization: a combinatorial
object that exists exactly when f is equivalent to a rational map.

Before stating the main theorem, we give a combinatorial description of topological
branched self-covers f : pS2, P q ˝ in terms of graph maps.1 Pick a graph spine �

0

for S2zP
(a deformation retract of S2zP ) and considering its inverse image �

1

“ f´1p�
0

q Ä S2zf´1pP q.
There are two natural homotopy classes of maps from �

1

to �
0

.
‚ A covering map fi

�

commuting with the action of f :

�
1

�
0

S2zf´1pP q S2zP .
f

fi�

‚ A map Ï
�

commuting up to homotopy with the inclusion of S2zf´1pP q in S2zP :

�
1

�
0

S2zf´1pP q S2zP .incl.

Ï�

„

The homotopy class of Ï
�

is unique, since �
0

is a deformation retract of S2zP .
This data fi

�

, Ï
�

: �
1

Ñ �
0

is a virtual endomorphism of �
0

. It, together with a ribbon graph
structure on �

0

, determines f up to equivalence (Theorem 3 in Section 2).
For our characterization of rational maps, we also need an elastic structure on � “ �

0

, by
which we mean an elastic length –peq P R°0

on each edge e of �. (We treat – as an ordinary
length for purposes of di�erentiation, etc.) An elastic graph G “ p�, –q is a graph � and an
elastic structure – on �. For a PL map Â : G

1

Ñ G
2

between elastic graphs, the embedding
energy is
(1.3) EmbpÂq :“ ess sup

yPG2

ÿ

xPÂ´1pyq
|Â1pxq|.

The essential supremum ignores sets of measure zero. In particular, ignore vertices of G
2

and images of vertices of G
1

. On a homotopy class, EmbrÂs is defined to be the infimum of
EmbpÏq for Ï P rÂs. EmbrÂs is realized and controls whether G

1

is “looser” than G
2

as an
elastic graph [Thu16a, Theorem 1].

In the context of a branched self-cover f : pS2, P q ˝, if G “ G
0

is an elastic spine for S2zP ,
we get a virtual endomorphism fiG, ÏG : G

1

Ñ G
0

, where G
1

inherits an elastic structure by
pulling back via fi. We can then consider EmbrÏGs, the embedding energy of ÏG : G

1

Ñ G
0

,
or the iterated version EmbrÏG,ns. (See Section 5 for iteration.)

In a mild generalization, we also consider disconnected surfaces.
Definition 1.4. A branched self-cover f : p�, P q ˝ is a (possibly disconnected) compact
closed surface �, a finite subset P Ä �, and a map f : � Ñ � that

1In this paper, a graph map is a continuous map, not necessarily taking vertices to vertices.
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‚ is a branched covering map with branch values contained in P ,
‚ has (constant) degree greater than 1,
‚ maps P to P , and
‚ is a bijection on components of �.

(The restriction to fi
0

-bijective maps avoids dynamically uninteresting cases.) A standard
Euler characteristic argument shows that each component of � is either a sphere or a torus,
and that in the torus case the branching is trivial.
Definition 1.5. For the purposes of this paper, a Riemann surface S “ p�, Êq is a topological
surface �, possibly disconnected or with boundary, and a conformal structure Ê on �. A
rational map is a closed Riemann surface S and a conformal, fi

0

-bijective map f : S ˝.
Definition 1.6. A branched self-cover f : p�, P q ˝ is of non-compact type if each component
of � contains a point of P that eventually falls into a cycle with a branch point (under
forward iteration of f). It is of hyperbolic type if each component of � contains a point of P
and each cycle of P contains a branch point.

In either case, the branching is non-trivial, so � is a union of spheres. If f is a rational
map, it is of non-compact type i� the Julia set is does not contain any component of � and
it is of non-compact type i� the dynamics on the Julia set is hyperbolic. Thus the term
“non-compact type” refers to the orbifold of f , while the term “hyperbolic type” refers to
dynamics of f and not to the orbifold.
Theorem 1. Let f : p�, P q ˝ be a branched self-cover of hyperbolic type. Then the following
conditions are equivalent.

(1) The branched self-cover f is equivalent to a rational map.
(2) There is an elastic graph spine G for �zP and an integer n ° 0 so that EmbrÏG,ns † 1.
(3) For every elastic graph spine G for �zP and for every su�ciently large n (depending

on f and G), we have EmbrÏG,ns † 1.
Loosely speaking, Theorem 1 says that f is equivalent to a rational map i� elastic graph

spines get looser under repeated backwards iteration. As compared to the earlier Theorem 7.4,
Theorem 1 makes it easier to prove a map is rational: you can just exhibit an elastic spine G
and a suitable map in the homotopy class of ÏG,n. (In practice, n “ 1 often su�ces.) We
prove Theorem 1 as Theorem 11 in Section 5, including some additional equivalent conditions.

There are several ingredients to prove Theorem 1, as outlined in Figure 1 and summarized
below. Much of this has appeared in other papers; the main new contributions of this paper
are in Sections 4 and 5.

The zeroth ingredient is the graphical description of topological branched self-covers in
terms of spines, crucial to our entire approach. This is essentially a graphical version of
Nekrashevych’s automata for iterated monodromy groups [Nek05]. It is described in Section 2,
culminating in Theorem 3.

The first ingredient is a characterization of rational maps in terms of conformal embeddings
of Riemann surfaces, a surface version of the graph criterion in Theorem 1. This has been
folklore in the community for some time and is recalled as Theorem 3.3 in Section 3.
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f rational

DS: f´1pSq strictly
conformally embeds in S

DG, n: EmbrÏS,ns † 1

DS: SFrÏSs † 1 DG, n: SFrÏG,ns † 1

SFrÏSs † 1 SFrÏGs † 1

Ingdt. 5:
Sect. 5

Ingdt. 1:
Thm. 3.3

Ingdt. 2:
Thm. 1.9

Prop. 5.6

Prop. 5.14

Prop. 5.6

Ingdt. 3:
Thm. 1.14Ingdt. 4:

Thm. 2

Figure 1. An outline of the equivalences used in proving Theorem 1, for a
fixed branched self-cover f : p�, P q ˝

The second ingredient is a characterization of conformal embeddings of Riemann surfaces
in terms of extremal length of multi-curves on the surface. This appeared in earlier work
with Kahn and Pilgrim [KPT15], as we now summarize. Recall that the extremal length of a
simple multi-curve c on a Riemann surface measures the maximum thickness of a collection
of annuli around c.
Definition 1.7. For f : R ãÑ S a topological embedding of Riemann surfaces, the (extremal
length) stretch factor of f is the maximal ratio of extremal lengths between the two surfaces:

SFrf s :“ sup
c : CÑR

ELSrf ˝ cs
ELRrcs ,

where the supremum runs over all simple multi-curves c on R with ELRrcs ‰ 0.
Definition 1.8. An annular extension of a Riemann surface R is any surface obtained by
attaching a conformal annulus to each boundary component of R, and a conformal embedding
f : R ãÑ S between Riemann surfaces is annular if it extends to a conformal embedding of
an annular extension of R into S.
Theorem 1.9 (Kahn-Pilgrim-Thurston [KPT15]). Let R and S be Riemann surfaces and
let f : R ãÑ S be a topological embedding so that no component of fpRq is contained in a
disk or a once-punctured disk. Then f is homotopic to a conformal embedding if and only if
SFrf s § 1. Furthermore, f is homotopic to an annular conformal embedding if and only if
SFrf s † 1.

We also use Theorem 5.11, a strengthening of Theorem 1.9 that behaves well under covers.

The third ingredient is a relation between the embedding energy of Equation (1.3) to a
stretch factor of maps between graphs (rather than surfaces) [Thu16a].
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↵
ù

↵

t ù

Figure 2. Geometrically thickening an elastic ribbon graph. Left: An edge
of elastic length – is thickened to an – ˆ ‘ rectangle. Right: At a vertex, glue
each half of the end of each rectangle to one of the neighbors according to the
ribbon structure.

Definition 1.10. Let G “ p�, –q be an elastic graph. A multi-curve on G is a (not necessarily
connected) 1-manifold C and a PL map c : C Ñ G. It is (strictly) reduced if c is locally
injective. The extremal length of pC, cq is

(1.11) ELpcq :“
ª

yPG

ncpyq2 d–pyq

where ncpyq is the number of elements in c´1pyq. If c is reduced, then ncpyq depends only on
the edge containing y, and Equation (1.11) reduces to

(1.12) ELpcq “
ÿ

ePEdgepGq
–peqncpeq2.

As usual, ELrcs is the extremal length of any reduced representative of rcs.
For rÏs : G Ñ H a homotopy class of maps between elastic graphs, the (extremal length)

stretch factor is the maximum ratio of extremal lengths:

(1.13) SFrÏs :“ sup
c : CÑG

ELHrÏ ˝ cs
ELGrcs

where the supremum runs over all non-trivial multi-curves on G.

Theorem 1.14 ([Thu16a, Theorem 1]). For rÏs : G Ñ H a homotopy class of maps between
marked elastic graphs,

EmbrÏs “ SFrÏs.
The above two quantities are also equal to the maximum ratio of Dirichlet energies between

the two graphs. This arises naturally in the proof of Theorem 1.14, and also justifies the
terminology of “loosening” of elastic graphs. But this fact is not used in the present paper,
so we will not develop it further here.

The fourth ingredient is a relation between extremal lengths on graphs and on certain
degenerating families of surfaces. Suppose that G is an elastic ribbon graph. (A ribbon graph
is a graph with a specified counterclockwise cyclic order of the edges incident to each vertex.)
Its Á-thickening NÁG is the conformal surface obtained by replacing each edge e of G by a
rectangle of size –peq ˆ Á and gluing the rectangles at the vertices using the given cyclic order,
as shown in Figure 2. A ribbon map Ï : G

1

Ñ G
2

between ribbon graphs is a map that lifts
to a topological embedding NÁÏ : NÁG1

ãÑ NÁG2

(Definition 2.7).
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Theorem 2. Let G and H be two elastic ribbon marked graphs with trivalent vertices, and
let Ï : G Ñ H be a ribbon map between them. Let m be the minimal value of –peq for e an
edge in G or H. Then, for Á † m{2,

SFrÏs{p1 ` 8‘{mq § SFrN‘Ïs § SFrÏs ¨ p1 ` 8‘{mq.
Theorem 2 is proved in Section 4. We can get some intuition for Theorem 2 from a corollary,

which motivates the term “embedding energy” but is not otherwise used.

Corollary 1.15. Let G
1

and G
2

be two elastic ribbon marked graphs with trivalent vertices,
and let Ï : G

1

Ñ G
2

be a ribbon map between them. Then if EmbrÏs † 1, for all su�ciently
small Á there is a conformal embedding in rNÁÏs. On the other hand, if for some su�ciently
small Á there is a conformal embedding in rNÁÏs, then EmbrÏs § 1.

Proof. Immediate from Theorem 2, Theorem 1.14, and Proposition 4.12. ⇤

The fifth and final ingredient is a study of the behavior of the stretch factor/embedding
energy under iteration. Let f : pS2, P q ˝ be a branched self-cover. Then we have a virtual
endomorphism fi, Ï : X

1

Ñ X
0

, where the Xi are either Riemann surfaces or elastic graphs.
By iterating, we get a sequence of virtual endomorphisms fin, Ïn : Xn Ñ X

0

, each with its
own stretch factor SFrÏns. From general principles (Proposition 5.6), it is not hard to prove
that the stretch factor grows or shrinks exponentially. That is,
(1.16) SFrfi, Ïs :“ lim

nÑ8
n
a

SFrÏns
exists, whether we are working with elastic graphs or with Riemann surfaces. We call this limit
the asymptotic stretch factor. General principles also show that SFrfi, Ïs doesn’t depend on
the particular conformal or elastic structure we start with (Proposition 5.7), and furthermore
Theorem 2 implies that SFrfi, Ïs is the same in these two cases (Proposition 5.14). Theorem 3.3
and a strengthening of Theorem 1.9 then show that SFrfi, Ïs † 1 i� f is equivalent to a
rational map. This is then translated to a proof of Theorem 1, as explained in Section 5.

The last two sections have material complementary to the main proof. In Section 6, we
explain how a virtual endomorphism pfi, Ïq gives an asymptotic energy Ep

prfi, Ïs for each p,
with E2

2

agreeing with SFrfi, Ïs, with a few comments on what this might mean.
In Section 7 we contrast Theorem 1 with the original characterization, Theorem 7.4.

1.1. Prior work. Kahn’s work on degenerating surfaces [Kah06, Section 3] has close ties to
this work. In particular, his work is quite similar in spirit to Corollary 1.15. His notion of
domination of weighted arc diagrams is equivalent to embedding energy being less than one,
in the following dualizing sense. Given a ribbon elastic graph G “ p�, –q, each edge e of �
has a dual arc Ae on N�, the arc between boundary components that meets e in one point.
We can then consider the dual weighted arc diagram

WG :“
ÿ

ePEdgep�q

Ae

–peq .

Proposition 1.17. If Ï : G
1

Ñ G
2

is a ribbon map of ribbon elastic graphs, then EmbrÏs § 1
i� WG1 dominates WG2.
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Proof. This follows from tracing through the definitions of both notions. ⇤
The notion of weighted arc diagrams is a little more general than elastic graphs, as not

every weighted arc diagram is of the form WG for some elastic spine G: For any ribbon elastic
graph G, the set of arcs in WG is filling. See also [Thu16b, Section 8.5].

The graphical description of branched self-covers in Section 2 has been used surprisingly
little. They are closely related to the description in terms of automata and bisets by
Nekrashevych. More specifically, these graphical descriptions are examples of his combinatorial
models for expanding dynamical systems [Nek14]. (Nekrashevych also allows models with
higher-dimensional cells.)

Theorem 3.3 has been circulating in the community. The non-trivial direction is written as
[CPT16, Theorem 5.2] or [Wan14, Theorem 7.1].

The overall plan of this argument was summarized earlier [Thu16b], and some of the
arguments were sketched there. For completeness, the logically necessary arguments are
reproduced and expanded here.

1.2. Future work. There is a version of Theorem 1 for maps of non-compact type.
Theorem 2 can be generalized considerably, to allow grafting along arbitrary embedded

arcs and/or circles (with some weakening of the conclusion).

Acknowledgements. This paper is dedicated to William Thurston, 1946–2012, and Tan Lei,
1963–2016. My introduction to rational maps came from inspiring dinner-table conversations
with the two of them. I will miss the joy they brought to the subject.

This project grew out of joint work with Kevin Pilgrim, and owes a great deal to conversa-
tions with him and with Jeremy Kahn. In addition, there were many helpful conversations
with Maxime Fortier-Bourque, Frederick Gardiner, Volodymyr Nekrashevych, and Tan Lei.

This material is based upon work supported by the National Science Foundation under
Grant Number DMS-1507244.

2. Spines for branched self-covers

Definition 2.1. A virtual endomorphism of a group G is a finite-index subgroup H Ä G
and a homomorphism Ï : H Ñ G.

A virtual endomorphism of a topological space X consists of a space Y and a pair of maps
fi, Ï : Y Ñ X

where fi is a covering map of constant, finite degree and Ï is considered up to homotopy.

A virtual endomorphism of spaces gives a virtual endomorphism of groups, as follows.
Suppose X and Y are connected and locally connected and x

0

P X is a basepoint. If we pick
y

0

P fi´1px
0

q, then fi
1

pY, y
0

q is naturally a subgroup of fi
1

pX, x
0

q. If we homotop Ï so that
Ïpy

0

q “ x
0

, then Ï˚ gives a group homomorphism from fi
1

pY, y
0

q to fi
1

pX, x
0

q, i.e., a virtual
endomorphism of fi

1

pX, x
0

q.
Virtual endomorphisms of topological (orbi)spaces are also called topological automata

by Nekrashevych [Nek14]. If you drop the condition that fi be a covering map, the same
structures were called topological graphs or topological correspondences by Katsura [Kat04]
and multi-valued dynamical systems by Ishii and Smillie [IS10].
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Definition 2.2. A homotopy morphism between two virtual endomorphisms, from fiX , ÏX :
X

1

Ñ X
0

to fiY , ÏY : Y
1

Ñ Y
0

, is a pair of maps f
0

: X
0

Ñ Y
0

and f
1

: X
1

Ñ Y
1

so that
f

0

˝ fiX “ fiY ˝ f
1

f
0

˝ ÏX „ ÏY ˝ f
1

where „ means homotopy.
A homotopy equivalence between pfiX , ÏXq and pfiY , ÏY q is a pair of homotopy morphisms

pf
0

, f
1

q from X to Y and pg
0

, g
1

q from Y to X, so that f
0

˝ g
0

„ idY0 and g
0

˝ f
0

„ idX0 . This
implies that f

1

˝ g
1

„ idY1 and g
1

˝ f
1

„ idX1 , as shown below.

X
1

X
0

Y
1

Y
0

fiX

ÏX

fiY

ÏY

f0g0f1g1 „ „

If f : p�, P q ˝ is a branched self-cover of a surface, let �
0

“ �zP and �
1

“ �zf´1pP q.
The restriction of f gives a map fi

�

: �
1

Ñ �
0

, and the natural inclusion of surfaces gives a
map Ï

�

: �
1

Ñ �
0

, together forming a surface virtual endomorphism
(2.3) fi

�

, Ï
�

: �
1

Ñ �
0

.

A spine of �
0

is a graph �
0

Ä �
0

that is a deformation retract of �
0

. If we replace �
0

in
(2.3) by a spine �

0

, we get spaces and maps
‚ �

1

“ f´1p�
0

q Ä �
1

;
‚ deformation retractions Ÿi : �i Ñ �i;
‚ the restriction of f to a covering of graphs fi

�

: �
1

Ñ �
0

; and
‚ Ï

�

“ Ÿ
0

˝ Ï
�

: �
1

Ñ �
0

.
These form a graph virtual endomorphism
(2.4) fi

�

, Ï
�

: �
1

Ñ �
0

.

Since the Ÿi are homotopy equivalences, rÏ
�

s is determined by rÏ
�

s. While Ï
�

is a topological
inclusion, Ï

�

is just a continuous map of graphs. We say pfi
�

, Ï
�

q is compatible with the
branched self-cover f . Since any two spines for �

0

are homotopy equivalent, the homotopy
equivalence class rfi

�

, Ï
�

s is determined by f .
To go the other direction and recover the rational map from the graph virtual endomorphism

fi
�

, Ï
�

: �
1

Ñ �
0

, we need some more data.

Definition 2.5. A ribbon structure on a graph � is, for each vertex v of �, a cyclic ordering
on the ends of edges incident to v. A ribbon structure gives a canonical thickening of � into
an oriented surface with boundary N�, the underlying topological surface of the Riemann
surface NÁ� from Figure 2. There is a natural inclusion iN�

: � ãÑ N� and projection fiN�

:
N� Ñ �.

We will see that a virtual endomorphism of a ribbon graph is compatible with at most one
branched self-cover. For an example of what this data looks like, consider the rational map

fpzq “ p1 ` z2q{p1 ´ z2q,
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�1 1
b b

c

c

a a

�1 1
c ba

fi Ï

(a) Virtual endomorphism of a spine for
S2

zt´1, 1, 8u . The marked point 8 is
at infinity.

�1 1
a ab b

�1 1
a b

fi Ï

(b) Virtual endomorphism of a rose
graph

0

1

(a,A) (a,b)(b,1) (b,1)

(c) Dual Moore diagram . 1 is the iden-
tity element in the group F

2

“ xa, by,
and capital letters denote inverses.

ap0 ¨ wq “ 1 ¨ bpwq
ap1 ¨ wq “ 0 ¨ Apwq
bp0 ¨ wq “ 1 ¨ w

bp1 ¨ wq “ 0 ¨ w

(d) Textual description of automaton

Figure 3. Representations of the rational map z fiÑ p1 ` z2q{p1 ´ z2q.

with critical portrait

(2.6) 0 1 8 ´1.
p2q

p2q

We take P to be the post-critical set t´1, 1, 8u. We can take �
0

to be a �-graph embedded in
�

0

“ S2zP and take �
1

to be f´1p�
0

q, as indicated in Figure 3a. The map fi is the covering
map that preserves labels and orientations on the edges. The map Ï might, for instance, be
chosen so that

‚ the two a edges of �
1

map to the a and b edges of �
0

,
‚ the two b edges of �

1

map to the c edge of �
0

, and
‚ the two c edges of �

1

map constantly to the two vertices of �
0

.
To read o� the critical portrait, first recall that from a connected ribbon graph embedded in

the plane, the complementary regions are intrinsically determined by following the boundary
of the ribbon surface. Thus we can talk about the regions of �

0

and �
1

. Then, for instance,
“1” is in the region of �

1

surrounded by an a edge and a b edge, so must map by f to “8”,
which is in the exterior region of �

0

, also surrounded by an a edge and a b edge. On the
other hand, “8” in the exterior region of �

1

is surrounded by an a, c, a, and c edge, and so
maps with double branching to “´1”, in the region of �

0

surrounded by a and c. Proceeding
in this way, we recover the critical portrait (2.6).
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This data is essentially equivalent to an automaton in the style of Nekrashevych [Nek05].
To construct the automaton, first choose a spanning tree T

0

inside �
0

and collapse it to get a
rose graph spine R

0

for �
0

. (A rose graph is a graph with one vertex.) If we collapse fi´1pT
0

q
inside �

1

, we get R
1

, which is likewise a spine for �
1

. (R
1

is not itself a rose graph.) Since R
0

is also a spine for S2zP , there is a virtual endomorphism fiR, ÏR : R
1

Ñ R
0

. In the running
example, if we take the spanning tree to be edge c in Figure 3a, we get the graphs R

0

and R
1

in Figure 3b.
The graph R

1

constructed above is quite close to the dual Moore diagram for the corre-
sponding automaton, shown in Figure 3c for the running example. To get from Figure 3b to
Figure 3c, perform the following steps.

(1) Homotop the graph map Ï : R
1

Ñ R
0

so that it is sends vertices to the vertex of R
0

.
In the example, the two b edges of R

1

get mapped to points.
(2) Take the diagram D to be R

1

as a graph, with the vertices numbered arbitrarily.
(3) Label each edge e of D by, first, the label of e in R

1

and, second, the element of
fi

1

pR
0

q represented by Ïpeq.
The dual Moore diagram encodes an automaton, which in the example is given textually in
Figure 3d.

Returning to the general theory, not all combinations of a graph virtual endomorphism
fi, Ï : �

1

Ñ �
0

and a ribbon graph structure on �
0

are compatible with a branched self-cover.
Definition 2.7. If � and �1 are ribbon graphs, a ribbon map Ï : � Ñ �1 is a map that
lifts to an orientation-preserving topological embedding NÏ : N� ãÑ N�1, in the sense that
Ï “ fiN�

1 ˝ NÏ ˝ iN�

.
Lemma 2.8. If Ï : � Ñ �1 is a map between ribbon graphs and � and �1 are connected, then
up to isotopy there is at most one orientation-preserving lift NÏ : N� Ñ N�1.
Proof. This follows from the fact that any two orientation-preserving homotopic embeddings
from one connected surface to another are isotopic, which in turn follows from work of Epstein
[Eps66] by looking at the boundary curves [Put16]. It is also proved as a side e�ect of work
of Fortier Bourque on conformal embeddings [FB15]. ⇤
Definition 2.9. Suppose that fi, Ï : �

1

Ñ �
0

is a graph virtual endomorphism where �
0

has a ribbon graph structure. We can use the covering map fi to pull back the ribbon
structure on �

0

to a ribbon structure on �
1

. Then we say the data form a ribbon virtual
endomorphism if Ï is a ribbon map. A ribbon homotopy morphism between two ribbon
virtual endomorphisms is a homotopy morphism as in Definition 2.2 so that f

0

and f
1

are
ribbon maps.
Remark 2.10. It is not immediately clear how to give an e�cient algorithm to check whether
a topological map Ï : � Ñ �1 between ribbon graphs is a ribbon map, but we can give an
ine�cient algorithm. If we specify, for each regular point y P �1, the order in which the
points in Ï´1pyq appear on the corresponding cross-section of N�1, it is easy to check locally
whether there is an embedded lift. Since there are only finitely many choices of orders, this
can be checked algorithmically.
Definition 2.11. A map Ï : X Ñ Y between locally path-connected topological spaces is
fi

0

-bijective if it gives a bijection from the connected components of X to the connected
components of Y . (Recall that branched self-covers are assumed to be fi

0

-bijective.) The
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map Ï is fi
1

-surjective if, for each x P X, the induced map Ï˚ : fi
1

pX, xq Ñ fi
1

pY, Ïpxqq is
surjective.
Theorem 3. Branched self-covers of surfaces f : p�, P q ˝, up to equivalence, are in bijection
with ribbon virtual endomorphisms fi, Ï : �

1

Ñ �
0

so that Ï is fi
0

-bijective and fi
1

-surjective,
up to ribbon homotopy equivalence.
Proof. If we are given a branched self-cover f : p�, P q ˝, we have already seen how to pick
a compatible spine �

0

Ä �zP and construct a ribbon virtual endomorphism fi, Ï : �
1

Ñ �
0

,
unique up to ribbon homotopy equivalence. It is immediate that Ï is fi

0

-bijective and
fi

1

-surjective.
It remains to check the other direction. Suppose we have a ribbon virtual endomorphism

as in the statement. Let �
0

“ N�
0

and �
1

“ N�
1

. Since Ï is fi
0

-bijective, Lemma 2.8 tells
us the lift NÏ : �

1

ãÑ �
0

is unique. Let p�
0

be the marked surface obtained by attaching a
disk with a marked point in the center to each boundary component of �

0

. Let P
0

Ä p�
0

be
the set of marked points.

Recall that a simple closed curve C on a closed surface is separating i� it is homologically
trivial, and that it is non-separating i� there is a “dual” simple closed curve C 1 that intersects C
transversally in one point.

Let C
1

be a boundary component of �
1

and consider the simple curve C
0

“ NÏpC
1

q Ä
�

0

Ä p�
0

. If C
0

is non-separating, let C 1
0

be a dual curve. Then C 1
0

cannot be homotoped to
lie in the image of NÏ, contradicting fi

1

-surjectivity. So C
0

is separating and divides p�
0

into
two components, with one component containing the image of NÏ. If the other component is
not a disk with 0 or 1 marked points, then again Ï is not fi

1

-surjective. If NÏpC
1

q bounds a
disk with no marked points in p�

0

(so bounds a disk in �
0

), say that C
1

is collapsed.
Now construct p�

1

by attaching a disk Di to each boundary component Ci of �
1

. Mark the
center of Di if Ci is not collapsed. Let P

1

Ä p�
1

be the set of marked points. By the choices
made in the construction, NÏ extends to a homeomorphism g : p�

1

Ñ p�
0

inducing a bijection
from P

1

to P
0

.
Since the ribbon structure on �

1

is the pull-back of the ribbon structure on �
0

, the covering
map fi extends to a covering of surfaces Nfi : �

1

Ñ �
0

. Since Nfi restricts to a covering map
from BN�

1

to BN�
0

, we can extend Nfi to a branched cover h : p�
1

Ñ p�
0

with hpP
1

q Ä P
0

and branch values contained in P
0

.
The desired branched self-covering is then f “ h ˝ g´1 : pp�

0

, P
0

q ˝. The original virtual
endomorphism fi, Ï : �

1

Ñ �
0

is compatible with f . ⇤
Example 2.12. To see that the ribbon structure is necessary in Theorem 3, consider the
1{5 and 2{5 rabbit (i.e., the centers of the 1{5 and 2{5 bulb of the Mandelbrot set), with
compatible graph virtual endomorphisms shown in Figure 4. The two branched self-covers are
di�erent, but the graph virtual endomorphisms are the same except for the ribbon structure.

Remark 2.13. The relationship with Nekrashevych’s automata can be used to give another
proof of the uniqueness part of Theorem 3 [Nek05, Theorem 6.5.2] .

3. Quasi-conformal surgery

We now turn to the (standard) characterization of rational maps in terms of conformal
embeddings of surfaces. For this section, we generalize to maps of non-compact type, since
we can do it with little extra work.
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Figure 4. Spines for the 1{5 rabbit (left) and 2{5 rabbit (right). There
are extra marked points at infinity. The map fi is the cover that preserves
colors/labels and the map Ï is determined by the deformation retraction.

Let f : p�, P q ˝ be a branched self-cover of non-compact type. Let PF (with F for Fatou)
be the set of points in P whose forward orbit under f lands in a branched cycle, and let PJ

(with J for Julia) be P zPF . Let �
0

be the complement of a disk neighborhood of PF in �,
with marked subset P

0J :“ PJ . Parallel to (2.3), there is a branched virtual endomorphism
fi, Ï : p�

1

, P
1Jq Ñ p�

0

, P
0Jq,

where �
1

:“ f´1p�
0

q, P
1J is PJ as a subset of �

1

, fi is a branched cover with branch values
contained in P

0J , and Ï induces a bijection between P
1J and P

0J and is considered up to
homotopy relative to P

1J .
Given a branched virtual endomorphism of surfaces fi, Ï : p�

1

, P
1Jq Ñ p�

0

, P
0Jq, if there is

a conformal structure Ê
0

on �
0

there is a pull-back conformal structure Ê
1

:“ fi˚Ê
0

on �
1

.
Then pfi, Ïq is said to be conformal with respect to Ê

0

if Ï is homotopic (rel P
1J) to an

annular conformal embedding from p�
1

, Ê
1

q to p�
0

, Ê
0

q.
Definition 3.1. The Teichmüller space of a branched virtual endomorphism of surfaces fi, Ï :
p�

1

, P
1Jq Ñ p�

0

, P
0Jq is the space Teichpfi, Ïq of isotopy classes of complex structures Ê

0

on �
0

so that pfi, Ïq is conformal with respect to Ê
0

.
Remark 3.2. Often the condition that the embedding be annular is omitted.
Theorem 3.3. Let f : p�, P q ˝ be a branched self-cover of non-compact type, and let fi, Ï :
p�

1

, P
1Jq Ñ p�

0

, P
0Jq be the associated branched virtual endomorphism. Then f is equivalent

to a rational map i� Teichpfi, Ïq is non-empty.
Proof. We start with the easy direction. If f is equivalent to a rational map, replace it with
its rational map f : ppC, P q ˝. Let J Ä pC be the Julia set of f . Then P X J “ PJ . Set S

0

to be a suitable open neighborhood of J , chosen so that f´1pS
0

q Ä S
0

. Then we can take
S

1

“ f´1pS
0

q.
To be concrete about the “suitable open neighborhood”, let F be the Fatou set of f , and

choose a Green’s function on F , by which we mean a harmonic function G : F Ñ p0, 8s so
that

Gpfpzqq “ ⁄zGpzq
where ⁄z ° 1 is a locally constant function on F so that ⁄fpzq “ ⁄z. Concretely, if z is
attracted to a cycle in PF of period p and total branching d, then ⁄z “ d1{p. On a basin Bi
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of F with Böttcher coordinate Ïi : Bi Ñ D, we can take Gpzq “ ´Ki log |Ïi| on Bi for some
constant Ki.

Extend G to all of pC by setting Gpzq “ 0 for z P J . Pick Á ° 0, and take S
0

to be the
union of G´1pr0, Ásq and all basins in F that do not contain a point of PF . We then have a
conformal branched virtual automorphism fi, Ï : pf´1pS

0

q, PJq Ñ pS
0

, PJq.
The other direction is a special case of [CPT16, Theorem 5.2] or [Wan14, Theorem 7.1].

The technique is due to Douady and Hubbard [DH85]. We sketch the proof here.
Suppose Ê

0

is a point in Teichpfi, Ïq, and consider the corresponding conformal maps fi, Ï :
pS

1

, P
1Jq Ñ pS

0

, P
0Jq. We extend fi and Ï to maps pfi, pÏ : p pS

1

, P
1

q Ñ p pS
0

, P
0

q between closed
surfaces as in the proof of Theorem 3, but with attention to keeping the maps conformal
except in controlled ways.

‚ Let pS
0

be the compact Riemann surface without boundary obtained by attaching disks
to the boundary components of S

0

. Let D
0

be the union of the disks attached to S
0

and let V
0

Ä D
0

be the union of concentrically contained smaller disks. Let P
0F be

the set of points in the center of each component of V
0

(and D
0

). Let P
0

“ P
0J \ P

0F .
‚ Let pS

1

be the corresponding conformal branched cover of pS
0

, branched at points in P
0

,
with pfi : pS

1

Ñ pS
0

extending fi. Let D
1

be pfi´1pD
0

q. Define P
1F Ä pS

1

by picking those
points in pfi´1pP

0F q that are in the center of non-collapsed boundary components of S
1

,
as in the proof of Theorem 3. Let V

1

Ä D
1

be the union of those components of
pfi´1pV

0

q that contain a point in P
1F and let P

1

“ P
1J \ P

1F .
Next we will define a di�eomorphism pÏ : p pS

1

, P
1

q Ñ p pS
0

, P
0

q in stages.
‚ On S

1

, the map pÏ agrees with Ï.
‚ Each component of V

1

contains a point p
1

P P
1

, which maps to a point p
0

P P
0

with
branching k. On this component, pÏ is the map zk from the disk of V

1

to the disk
of D

0

containing p
0

.
‚ It remains to define pÏ on D

1

zV
1

, which is a union of annuli and unmarked disks.
Define pÏ to be an arbitrary di�eomorphism extending the maps defined so far. This
is possible since we haven’t changed the isotopy class from the homeomorphism from
Theorem 3.

Observe that pÏ and pÏ´1 are quasi-conformal, since they are di�eomorphisms on compact
manifolds. The map pÏ takes the pieces of pS

1

to the pieces of pS
0

:

S
1

D
1

zV
1

V
1

S
0

D
0

.

\ \

\

conf. q.
c.

co
nf

.

Now let f : p pS
0

, P
0

q ˝ be pfi ˝ pÏ´1. Then f is K-quasi-conformal for some K • 1, f is
conformal on ÏpS

1

q \ D
0

, and fpD
0

q “ V
0

Ä D
0

. If f is not conformal at x P pS
1

, then
fpxq P D

0

, so f is conformal at fpxq and at all further forward iterates of fpxq. That is,
in the forward orbit of any x P pS1, there is at most one n so that f is not conformal at
f ˝npxq. Thus f ˝n is also K-quasi-conformal with the same value of K. We can therefore
apply Sullivan’s Averaging Principle to find an invariant measurable complex structure on pS

1

,
which by the Measurable Riemann Mapping Theorem can be straightened to give an honest
conformal structure and a post-critically finite map [Sul81]. ⇤
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Remark 3.4. Theorem 3.3 is also true if we take PF to be an invariant subset of the points
of P whose forward orbit lands in a branched cycle, as long as there is at least one point of
PF in each component of �. For instance, for polynomials we may take PF “ t8u.

4. Extremal length on thickened surfaces

Our next goal is to relate extremal length on elastic graphs and on Riemann surfaces. We
first recall di�erent definitions of extremal length on surfaces.

Definition 4.1. Let A be a conformal annulus. Then the extremal length ELpAq is defined
by the following equivalent definitions. (Equivalence is standard.)

(1) There are real numbers s, t P R°0

so that A is conformally equivalent to the quotient
of the rectangle r0, ss ˆ r0, ts by identifying p0, yq with ps, yq for y P r0, ts. Then ELpAq
is s{t, the circumference divided by the width.

(2) Pick a Riemannian metric g in the conformal class of A. For fl : A Ñ R•0

a suitable
(Borel-measurable) scaling function, let ¸˝pflgq be the minimal length, with respect to
the pseudo-metric flg, of any curve homotopic to the core of A, and let Areapflgq be
the area of A with respect to flg. Then

(4.2) ELpAq “ EL˝pAq “ sup
fl

¸˝pflgq2

Areapflgq .

(3) For g and fl as above, let ¸Kpflgq be the minimal length with respect to flg of any
curve running from one boundary component of A to the other. Then

ELKpAq “ sup
fl

¸Kpflgq2

Areapflgq(4.3)

ELpAq “ 1{ ELKpAq.(4.4)

Definition 4.5. Let S be a general Riemann surface, and let pC, cq be a simple multi-curve
on S (a union of non-intersecting simple closed curves), with components ci : Ci Ñ S. Then
ELSrcs is defined in the following equivalent ways.

(1) If g is a Riemannian metric on S in the distinguished conformal class, then

(4.6) ELSrcs “ sup
fl

¸flgrcs2

AreaflgpSq ,

where again fl : S Ñ R•0

runs over all Borel-measurable scaling factors and ¸flgrcs is
the minimal length of any multi-curve in rcs with respect to flg.

(2) Extremal length may be defined by finding the “fattest” set of annuli around rcs, as
follows. For i “ 1, . . . , k, let Ai be a (topological) annulus. Then

(4.7) ELrcs “ inf
Ê,f

kÿ

i“1

ELÊpAiq,

where the infimum runs over all conformal structures Ê on the Ai (i.e., a choice of
modulus) and over all embeddings f :

ó
i Ai ãÑ S that are conformal with respect

to Ê and so that f restricted to the core curve of Ai is isotopic to ci.
These two definitions are equivalent [KPT15, Proposition 3.7].

For a non-simple homotopy class of multi-curves on S, use Equation (4.6) as the definition.
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To prove Theorem 2, we need to estimate extremal length on NÁG from below and above.
We prove two propositions for the two directions.

Proposition 4.8. Let G be an elastic ribbon graph. Then for rcs any homotopy class of
multi-curve on NG, we have

ELGrcs § Á ELNÁGrcs.
(We use rcs for the homotopy class on both G and on NÁG.)

Proof. We use Equation (4.6) to estimate ELNÁGrcs from below. Take as the base metric g
the standard piecewise-Euclidean metric in which an edge e gives an –peq ˆ Á rectangle NÁe.

The test function fl is the piecewise-constant function which is ncpeq on NÁe. (Recall that
ncpeq is the number of times c runs over e.) Then the shortest representative of rcs will run
down the center of each rectangle, so

¸flgrcs “
ÿ

ePEdgep�q
pncpeqq2–peq.

On the other hand, the area is

Areapflgq “
ÿ

ePEdgepGq
p–peqncpeqq ¨ pÁncpeqq,

so

Á ELNÁGrcs • Á¸flgrcs2

Areapflgq “
Á
´∞

ncpeq2–peq
¯

2

Á
∞

ncpeq2–peq “ ELGrcs. ⇤

Proposition 4.9. Let G “ p�, –q be an elastic ribbon graph with trivalent vertices, and let
m “ mint –peq | e P Edgep�q u be the lowest weight of any edge in G. Then, for Á † m{2 and
c any simple multi-curve on NG, we have

Á ELNÁGrcs † ELGrcs ¨ p1 ` 8Á{mq.
Proof. We use Equation 4.7 to estimate ELNÁGrcs from above.

First find suitable embedded annuli. We have ncpeq sections of annuli running over NÁe,
which we divide into pieces corresponding to these di�erent annuli. Divide up the central
portion of NÁe into n horizontal strips of equal height Á{n. Inside an Á ˆ Á square near each
end, make adjustments so the annuli will glue together well at the vertices. (These squares
do not overlap since Á † m{2.) Specifically, near one end of e, n

1

of the annulus sections
will continue to the left-hand neighbor of e at the corresponding vertex and n

2

will continue
to the right-hand neighbor, with n

1

` n
2

“ ncpeq. Divide the interval r0, Á{2s into n
1

equal
sections, divide the interval rÁ{2, Ás into n

2

equal sections, and connect the corresponding
endpoints by diagonal lines. Do the same near the other end of e. Let A be the resulting
union of conformal annuli, as shown in Figure 5.

To give an upper bound on the total extremal length of annuli in A, we will give a lower
bound on ELKpAq. We do this by finding a suitable test metric flg, where g is the restriction
of the standard piecewise-Euclidean metric on NÁG to the annuli.

With this setup, take fl to be ncpeq on the central section of NÁe and
?

5ncpeq on the
squares at the ends of NÁe. In the standard metric g, the vertical width of the annuli is Á{nc

in the center section and at least Á{2nc in the end squares. In the metric flg, the vertical
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Figure 5. The annuli for Proposition 4.9 inside the rectangle corresponding
to an edge of elastic weight –. Each portion of an annulus lies within a strip
bounded by horizontal segments in the middle and diagonal segments near the
ends.

width is at least Á in the center section and Á ¨
?

5{2 in the squares. In the squares, since the
edges of the annuli are sloped, the actual width ¸KpAq may be less than the vertical width;
but since the slope of the edges dividing di�erent pieces of A is in r´1{2, 1{2s, we have

¸flg,KpAq • Á ¨
?

5{2 ¨ cosptan´1p1{2qq “ Á.

Thus we have
Areapflgq “

ÿ

ePEdgep�q

“
ncpeq2p–peq ´ 2ÁqÁ ` 2 ¨ 5ncpeq2Á2

‰

§ Á ELGrcs ¨ p1 ` 8Á{mq

ELKpAq • ¸flg,KpAq2

Areapflgq • Á

ELGrcs ¨ p1 ` 8Á{mq
Á ELNÁGrcs § Á{ ELKpAq § ELGrcs ¨ p1 ` 8Á{mq.

The test function fl is never continuous, so there is a strict inequality. ⇤
The constant in Proposition 4.9 depends only on the local geometry of G and is thus

unchanged under covers.
Remark 4.10. The restriction to trivalent graphs in Proposition 4.9 can presumably be
removed. Since every graph is homotopy-equivalent to a trivalent graph, it is not necessary
for our applications.

We have to do a little more work to deduce Theorem 2 from Propositions 4.8 and 4.9:
stretch factor for graphs is defined with respect to all multi-curves, while for surfaces we
restrict attention to simple multi-curves. We must check that the di�erence between two
notions of stretch factor does not matter.
Definition 4.11. Let S

1

and S
2

be Riemann surfaces. For Ï : S
1

ãÑ S
2

a topological
embedding, the simple stretch factor SF

simp

rÏs is the stretch factor from Definition 1.7. For
Ï : S

1

Ñ S
2

a continuous map, the general stretch factor is

SF
gen

rÏs :“ sup
rcs : CÑS1

ELrÏ ˝ cs
ELrcs
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where the supremum runs over all multi-curves on S
1

(not necessarily simple).
Let G

1

and G
2

be elastic graphs. For Ï : G
1

Ñ G
2

a map between them, the general stretch
factor SF

gen

rÏs is the stretch factor from Definition 1.10.
Now suppose Ï : G

1

Ñ G
2

is a ribbon map between ribbon graphs. A simple multi-curve
on G

1

is a multi-curve c : C Ñ G
1

that lifts to a simple multi-curve on NG
1

(i.e., so that c is
a ribbon map). Then the simple stretch factor is

SF
simp

rÏs :“ sup
c simple

ELrÏ ˝ cs
ELrcs

where the supremum runs over all homotopy classes of simple multi-curves c : C Ñ G
1

on G
1

.
Observe that if c is a simple multi-curve, then Ï ˝ c is also a simple multi-curve, since NÏ is
an embedding.

Proposition 4.12. Let Ï : G
1

Ñ G
2

be a ribbon map between ribbon elastic graphs. Then

SF
gen

rÏs “ SF
simp

rÏs “ EmbrÏs.
To prove Proposition 4.12, we use train tracks.

Definition 4.13 ([Thu16a, Definition 3.14]). A train track T is a graph in which the edges
incident to each vertex are partitioned into equivalence classes, called gates, with at least
two gates at each vertex. A train-track (multi-)curve on T is a (multi-)curve that enters and
leaves by di�erent gates each time it passes through a vertex. A weighted train track is a
train track T with a weight wpeq for each edge e of T , satisfying a triangle inequality at each
gate g of each vertex v:

(4.14) wpgq §
ÿ

g1
gate at v
g1‰g

wpg1q

where wpgq is the sum of the weights of all edges in g. (If there are only two gates at v, this
inequality is necessarily an equality.)

Lemma 4.15. Let pT, wq be a weighted train track with a ribbon structure. Then there is a
sequence of simple train-track multi-curves pCi, ciq and positive weighting factors ki so that
kici approximates w, in the sense that

lim
iÑ8

kinci “ w.

This lemma is close to standard facts in the theory of train tracks. There is no assumption
that the train track structure and the ribbon structure are compatible. Compare to [Thu16a,
Proposition 3.16], which gives the exact weights (without approximation), but does not yield
a set of simple multi-curves.

Proof. We first prove that if w is integer-valued and has even total weight at each vertex
then there is a simple train-track multi-curve pC, cq so that nc “ w.

On each edge e of T , take wpeq parallel strands on Ne. We must show how to stitch
together these strands at the vertices without crossing strands or making illegal train-track
turns. Focus on a vertex v. If one of the incident edges has zero weight, delete it. If one
of the train-track triangle inequalities is an equality, smooth the vertex (in the sense of
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[Thu16a, Definition 3.14]) so that there are only two gates at v. After this, if there are at
least three gates at v, then all inequalities are strict and Equation (4.14) is strengthened to

(4.16) wpgq § ´2 `
ÿ

g1
gate at v
g1‰g

wpg1q

by the parity condition. Now find any two edges at v that are adjacent in the ribbon structure
and belong to di�erent gates. Join adjacent outermost strands from these two edges. We are
left with a smaller problem, where the weights on these two strands are reduced by 1. The
train-track inequalities are still satisfied, using Equation (4.16) when there are three or more
gates. By induction we can join up all the strands to a simple multi-curve.

For general weights, find a sequence of even integer weights wi on T and factors ki so that
limiÑ8 kiwi “ w and the wi satisfy the train-track inequalities for T . The above argument
gives a simple multi-curve pCi, ciq for each wi, as desired. ⇤

Proof of Proposition 4.12. We already know that EmbrÏs “ SF
gen

rÏs. From the definition,
it is clear that SF

simp

rÏs § SF
gen

rÏs. It remains to prove that EmbrÏs § SF
simp

rÏs. By
[Thu16a, Proposition 6.12], there is a weighted train-track T on a subgraph of G

1

that fits
into a tight sequence

T
t›Ñ G

1

Â›Ñ G
2

where t is the inclusion of the subgraph, Â P rÏs and Â˝t is a train-track map. (“Tight” means
that the energies are multiplicative, which in this case means that ELrÂ ˝ ts “ ELrts EmbrÂs,
and furthermore all three maps t, Â, and Â ˝ t are minimizers in their homotopy classes.)
T inherits a ribbon structure from G

1

. By Lemma 4.15, we can find a sequence of simple
multi-curves pci, Ciq on T so that

Ci
ci›Ñ T

t›Ñ G
1

Â›Ñ G
2

approaches a tight sequence, in the sense that t ˝ ci and Â ˝ t ˝ ci are both reduced and

lim
iÑ8

ELrÂ ˝ t ˝ cis
ELrt ˝ cis

“ ELrÂ ˝ ts
ELrts “ EmbrÏs.

Since t is the inclusion, the sequence of weighted multi-curves t ˝ ci is simple, as desired. ⇤

Proof of Theorem 2. Immediate from Propositions 4.8, 4.9, and 4.12. ⇤

Question 4.17. For Ï : S
1

ãÑ S
2

a topological embedding of Riemann surfaces, how does
SF

gen

rÏs behave? By considering quadratic di�erentials, it is not hard to see that if Ï is not
homotopic to an annular conformal embedding, then

SF
simp

rÏs “ SF
gen

rÏs • 1.

On the other hand, if Ï is homotopic to a conformal embedding then

SF
simp

rÏs § SF
gen

rÏs § 1.

But this leaves many questions open.
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X
0

X
0

¨ ¨ ¨ X
0

X
0

X
1

X
1

¨ ¨ ¨ X
1

X
1

Xn

Ï Ï Ïfi fi fi

Ïn fin

n ` 1 copies of X
0

, n copies of X
1

Figure 6. The pullback construction of Xn.

5. Iteration and asymptotic stretch factor

5.1. General theory. To complete the proof of Theorem 1, we turn to the behavior of
energies under iteration. Recall first that if Ï : X

1

Ñ X
0

is any continuous map and fi
0

:
Y

0

Ñ X
0

is a covering map, we can form the pull-back

X
1

X
0

.

Y
1

Y
0

Ï

fi0

rÏ

fi1

Then fi
1

is also a covering map. In this setting, we call rÏ a cover of Ï.

Definition 5.1. A topological correspondence is a pair of topological spaces X
1

and X
0

and
a pair of maps between them: fi, Ï : X

1

Ñ X
0

.
For n • 0, the n’th orbit space Xn of a topological correspondence is the n-fold product of

X
1

with itself over X
0

using fi and Ï, i.e., the pull-back Xn in Figure 6. Concretely, Xn is
the set of tuples

py
0

, x
1

, y
1

, x
2

, y
2

, . . . , yn´1

, xn, ynq P X
0

ˆ pX
1

ˆ X
0

qn

so that Ïpxiq “ yi´1

and fipxiq “ yi for 1 § i § n, with the subspace topology. Of the natural
maps from Xn to X

0

, we distinguish

Ïnpy
0

, x
1

, . . . , xn, ynq “ y
0

finpy
0

, x
1

, . . . , xn, ynq “ yn.

The corresponding iterate of pfi, Ïq is fin, Ïn : Xn Ñ X
0

. If pfi, Ïq is a virtual endomorphism,
so is pfin, Ïnq.

If we have two topological correspondences fiX , ÏX : X
1

Ñ X
0

and fiY , ÏY : Y
1

Ñ Y
0

and a
morphism pf

0

, f
1

q from pfiX , ÏXq to pfiY , ÏY q, then we can also use the pull-back property to
iterate the morphism, getting a map fn : Xn Ñ Yn. Concretely,

fnpy
0

, x
1

, y
1

, . . . , xn, ynq “ pf
0

py
0

q, f
1

px
1

q, f
0

py
1

q, . . . , f
1

pxnq, f
0

pynqq.
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If Ï is injective (as for surface virtual endomorphisms from branched self-covers), fi ˝ Ï´1 is
a partially-defined map on X

0

. Then Ïn is also injective and fin ˝Ï´1

n is the n-fold composition
of fi ˝ Ï´1 with itself, restricted to the subset where the composition is defined. This justifies
the term ‘iteration’.

Definition 5.2. Consider a category of spaces with a structure that can be lifted to covers
(like an elastic structure on graphs or a conformal structure on surfaces). Suppose that we
have a non-negative energy E defined for suitable maps Ï : X Ñ Y that is sub-multiplicative,
in the sense that
(5.3) EpÂ ˝ Ïq § EpÂqEpÏq,
and invariant under covers, in the sense that if rÏ : rX Ñ rY is a cover of Ï, then
(5.4) EprÏq “ EpÏq.
Then for fi, Ï : X

1

Ñ X
0

a virtual endomorphism between such spaces, where the structure
on X

1

is lifted from the structure on X
0

via fi, the asymptotic energy is
(5.5) Epfi, Ïq :“ lim

nÑ8 EpÏnq1{n.

Proposition 5.6. Let fi, Ï : X
1

Ñ X
0

be a virtual endomorphism and let E be an energy
that is sub-multiplicative and invariant under covers. Then the limit defining the asymptotic
energy converges and is equal to the infimum of the terms. In particular, Epfi, Ïq § EpÏq.
Proof. For 0 § k § n, let Ïk

n : Xn Ñ Xk be the map
Ïk

npy
0

, x
1

, . . . , xn, ynq “ py
0

, x
1

, . . . , xk, ykq.
Then Ïn “ Ïk ˝ Ïk

n. An examination of the diagrams reveals that Ïk
n is a cover of Ïn´k, so

EpÏk
nq “ EpÏn´kq. We therefore have EpÏnq § EpÏkqEpÏn´kq by Equation (5.3). Then the

sequence logpEpÏnqq is sub-additive, and Fekete’s Lemma gives the result.2 ⇤
If an energy EpÏq is invariant under homotopy of Ï, we will write it as ErÏs.

Proposition 5.7. Let fi, Ï : X
1

Ñ X
0

be a virtual endomorphism and let E be an energy that
is sub-multiplicative, invariant under covers, and invariant under homotopy. Then Epfi, Ïq
is invariant under homotopy equivalence of pfi, Ïq.
Proof. Let fi1, Ï1 : X 1

1

Ñ X 1
0

be a virtual endomorphism homotopy equivalent to pfi, Ïq, with
homotopy equivalences given by fi : Xi Ñ X 1

i and gi : X 1
i Ñ Xi for i “ 0, 1. We need to

compare ErÏns and ErÏ1
ns. Let fn : Xn Ñ X 1

n be the iterate of pf
0

, f
1

q. Since fn is a cover of
f

0

, we have Erfns “ Erf
0

s. Furthermore, Ïn is homotopic to g
0

˝ Ï1
n ˝ fn. Then

ErÏns § Erg
0

sErÏ1
nsErfns “ ErÏ1

ns
`
Erf

0

sErg
0

s
˘

ErÏns1{n § ErÏ1
ns1{n

`
Erf

0

sErg
0

s
˘

1{n
.

Passing to the limit on both sides, we have

Epfi, Ïq § Epfi1, Ï1q.
By the same reasoning in the other direction, Epfi1, Ï1q § Epfi, Ïq. ⇤

2Fekete’s Lemma: if panq

8
n“1 is sub-additive, then limnÑ8 an{n exists and is equal to the infimum of the

terms.
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If E is sub-multiplicative, invariant under covers, and invariant under homotopy, we will
write Erfi, Ïs to indicate that the asymptotic energy is independent of homotopy equivalence.

5.2. Specific energies. We now turn to the specific energies of interest on elastic graphs or
conformal surfaces. There are three relevant energies:

‚ the stretch factor SF for conformal surfaces;
‚ the stretch factor SF for elastic graphs; and
‚ the embedding energy Emb for elastic graphs.

The last two are equal by Theorem 1.14, although we sometimes distinguish when we need to
use that theorem. All three are invariant under homotopy by definition.

For Ï a map between elastic graphs, the embedding energy EmbrÏs is sub-multiplicative
by [Thu16a, Proposition 2.15].

Lemma 5.8. Let Ï : X Ñ Y and Â : Y Ñ Z be either topological embeddings of conformal
surfaces or maps between elastic graphs. Then stretch factor is sub-multiplicative:

SFrÂ ˝ Ïs § SFrÏs SFrÂs.
Proof. In either case, the stretch factor is a supremum over multi-curves (simple multi-curves
for maps between surfaces). For c any suitable multi-curve on X, if ELY rÏ ˝ cs ‰ 0 we have

ELZrÂ ˝ Ï ˝ cs
ELXrcs “ ELZrÂ ˝ Ï ˝ cs

ELY rÏ ˝ cs
ELY rÏ ˝ cs

ELXrcs § SFrÂs SFrÏs.

If ELY rÏ˝cs “ 0, then also ELZrÂ ˝Ï˝cs “ 0 and we get the same inequality. Since SFrÂ ˝Ïs
is the supremum of the left-hand side over all c, we get the desired result. ⇤
Proposition 5.9. Stretch factor for maps between elastic graphs is invariant under covers.

Proof. Let Ï : G Ñ H be a map between elastic graphs and let rÏ : rG Ñ rH be a cover of
degree d. First note that we can pull-back a multi-curve pC, cq on G to a multi-curve p rC, rcq
on rG, with ELrrcs “ d ELrcs and ELrrÏ ˝ rcs “ d ELrÏ ˝ cs. It follows that SFrrÏs • SFrÏs.

For the other inequality, we use Theorem 1.14. Let Â P rÏs be a map with EmbpÂq “
EmbrÏs, and let rÂ be the corresponding lift. Then EmbrrÏs § Embp rÂq “ EmbpÂq “
EmbrÏs. ⇤

For graphs, embedding energy/stretch factor fits nicely into the general theory laid out
in Section 5.1. For surfaces, SF is not invariant under covers [KPT15, Example ??]. We
therefore modify the definition.

Definition 5.10. For Ï : R ãÑ S a topological embedding of conformal surfaces, the lifted
stretch factor ÄSFrÏs is

ÄSFrÏs :“ sup
rÏ finite

cover of Ï

SFrrÏs.

Theorem 5.11 (Kahn-Pilgrim-Thurston [KPT15, Theorem 3]). Let Ï : R ãÑ S be a topo-
logical embedding of Riemann surfaces. If SFrÏs • 1, then ÄSFrÏs “ SFrÏs. If SFrÏs † 1,
then

SFrÏs § ÄSFrÏs † 1.

Lemma 5.12. ÄSF is sub-multiplicative.
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Proof. Any cover of a composition factors as a composition of covers. ⇤

Lemma 5.13. ÄSF is invariant under covers.

Proof. Any two finite covers of a map have a common finite cover. ⇤
Let us recap what we have so far. For fiG, ÏG : G

1

Ñ G
0

an virtual endomorphism of elastic
graphs, we have an asymptotic energy SFrfiG, ÏGs, invariant under homotopy equivalence. In
particular, SF is independent of the elastic structure on G

0

.
For fiS, ÏS : S

1

Ñ S
0

a virtual endomorphism of conformal surfaces, we have an asymptotic
energy ÄSFrfiS, ÏSs, which we will also write SFrfiS, ÏSs. (See Corollary 5.15 below.) This is
invariant under quasi-conformal homotopy equivalences and therefore is independent of the
conformal structure, as long as we don’t change a puncture to a boundary component or vice
versa.

In particular, if fi, Ï : G
1

Ñ G
0

is a ribbon virtual endomorphism of elastic graphs, then
the asymptotic energy of the induced virtual endomorphism NÁfi, NÁÏ : NÁG1

Ñ NÁG0

is
independent of Á. Thus we will drop Á from the notation.

Proposition 5.14. Let fi, Ï : �
1

Ñ �
0

be a ribbon graph virtual endomorphism. Then
SFrfi, Ïs “ SFrNfi, NÏs “ lim

nÑ8
n
a

SFrNÏns.
Proof. By Proposition 5.7, we can replace the virtual endomorphism with a ribbon homotopy
equivalent one without changing SF. So we may assume that G

0

and G
1

are trivalent, with
some minimum elasticity m on any edge. Pick Á † m{2.

Theorem 2 says that SFrNÁÏns is within a factor of 1 ` 8Á{m of SFrÏns for all n. Similarly,
since SF for graphs is invariant under covers and the estimates depend only on the local
geometry, ÄSFrNÁÏns is within a factor of 1 ` 8Á{m of ÄSFrÏns. When we take the n’th root in
limit for the three terms in the statement, this factor disappears, as in Proposition 5.7. ⇤
Corollary 5.15. For any virtual surface endomorphism fi, Ï : S

1

Ñ S
0

where S
0

and S
1

have
no punctures,

SFrfi, Ïs “ lim
nÑ8

n
a

SFrÏns.

Proof. If S
0

and S
1

are closed surfaces, then SFrÏs • 1 (since there is never a non-trivial
conformal embedding) so SF is invariant under covers and the statement is trivial. Otherwise,
use the independence of asymptotic energy on the conformal structure to replace S

0

by NÁG0

for a spine G
0

of S
0

, replace S
1

by the corresponding cover, and apply Proposition 5.14. ⇤
5.3. Proof of Theorem 1. We are now ready to prove Theorem 1. We expand the statement
to include asymptotic energies.

Theorem 11. Let f : p�, P q ˝ be a branched self-cover of hyperbolic type with associated
surface virtual endomorphism pfiS, ÏSq. Then the following conditions are equivalent.

(1) f is equivalent to a rational map;
(2) there is an elastic graph spine G for �zP and an integer n ° 0 so that EmbrÏG,ns † 1;
(3) for every elastic graph spine G for �zP and for every su�ciently large n (depending

on f and G), we have EmbrÏG,ns † 1;
(4) SFrfiS, ÏSs † 1; and
(5) SFrfiG, ÏGs † 1.
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Proof. Conditions (4) and (5) are equivalent by Proposition 5.14. Conditions (2) and (3) are
equivalent to Condition (5) by Proposition 5.6 and Theorem 1.14.

Now suppose f is equivalent to a rational map. Then by Theorem 3.3, there is a con-
formal virtual endomorphism fiS, ÏS : S

1

Ñ S
0

compatible with f . Since ÏS is annular, by
Theorem 5.11 ÄSFrÏSs † 1, so by Proposition 5.6, SFrfiS, ÏSs † 1.

Conversely, suppose SFrfiS, ÏSs † 1 with respect to any conformal structure S
0

. By
Proposition 5.6, there is some n so that SFrÏS,ns § ÄSFrÏS,ns † 1, so by Theorem 1.9, ÏS,n is
homotopic to an annular conformal embedding. Then by Theorem 3.3, the n-fold composition
f ˝n is equivalent to a rational map, which implies that f itself is equivalent to a rational
map. This last step follows from W. Thurston’s Obstruction Theorem (Theorem 7.4 below),
since an obstruction for f is also an obstruction for f ˝n, but doesn’t use the full strength
of that theorem. It su�ces, for instance, to know that some power of the pull-back map on
Teichmüller space is contracting [BCT14, Section 2.5]. ⇤

6. Asymptotics of other energies

The theory of asymptotic energies developed at the beginning of Section 5 applies to any
energy that is sub-multiplicative and invariant under homotopy and covers. In particular,
it applies to any of the p-conformal energies Ep

p defined in [Thu16a, Appendix A]. These
energies Ep

prÏs are a simultaneous generalization of best Lipschitz constant LiprÏs “ E8
8rÏs,

and the embedding energy EmbrÏs “
`
E2

2

rÏs
˘

2.
Recall that a p-conformal graph, for 1 † p § 8, is a graph with a p-length –peq on each

edge e, which we will treat as a metric. A 1-conformal graph is instead a weighted graph.
For Ï : G

1

Ñ G
2

a PL map between p-conformal graphs, Ep
prÏs is defined by

(6.1)
Ep

ppÏq :“

$
’’’’’&

’’’’’%

ess sup
yPG2

nÏpyq p “ 1

ess sup
yPG2

˜
ÿ

xPÏ´1pyq
|Ï1pxq|p´1

¸
1{p

1 † p † 8

LippÏq p “ 8
Ep

prÏs :“ inf
ÂPrÏs

Ep
ppÂq.

Like Emb, the energy Ep
p is sub-multiplicative and invariant under covers, whether or not

we take homotopy classes. For a graph virtual endomorphism fi, Ï : �
1

Ñ �
0

, we thus
have asymptotic energies Ep

prfi, Ïs. By Proposition 5.7, Ep
p is invariant under homotopy

equivalence.
Ep

prÏs can be characterized as a stretch factor for energies of maps to length graphs
[Thu16a, Theorem 6]. For 1 § p § 8 and f : G Ñ K a map from a p-conformal graph to a
length graph, there are energies

(6.2)
Ep

8pfq :“ Îf 1Îp

Ep
8rf s :“ inf

gPrf s
Ep

8pgq.

Then, for Ï : G
1

Ñ G
2

a map between p-conformal graphs,

(6.3) Ep
prÏs “ sup

rf s : G2ÑK

Ep
8rf ˝ Ïs
Ep

8rf s
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where the supremum runs over all homotopy classes of maps rf s to a length graph K.
We now compare p-conformal energies and q-conformal energies for p § q.

Definition 6.4. For a metric graph G, let
mpGq :“ min

ePEdgepGq
–peq

MpGq :“
ÿ

ePEdgepGq
–peq.

Lemma 6.5. For 1 § p § q § 8 and f : G Ñ K a constant-derivative map from a metric
graph to a length graph,

Eq
8pfq § mpGq´ 1

p ` 1
q Ep

8pfq.
Proof. In general, there is an inequality

´ÿ

i

xi
q
¯

1{q

§
´ÿ

i

xi
p
¯

1{p

.(6.6)

With positive weights wi with m “ mini wi, this becomes
´ÿ

i

wixi
q
¯

1{q

§ m´ 1
p ` 1

q ¨
´ÿ

i

wixi
p
¯

1{p

.(6.7)

(Apply Equation (6.6) to the sequence wi
1{qxi.) Apply Equation (6.7) to Equation (6.2). ⇤

Lemma 6.8. For 1 § p § q § 8 and f : G Ñ K a PL map from a metric graph to a length
graph

Ep
8rf s § MpGq 1

p ´ 1
q ¨ Eq

8rf s.
Proof. Use sub-multiplicativity of the energies [Thu16a, Proposition A.13]

Ep
8pfq § Ep

q pidqEq
8pfq.

From the definition [Thu16a, Equation A.7], we see that Ep
q pidq “ MpGq q´p

pq . (Alternatively,
apply Hölder’s inequality to Equation (6.2).) ⇤

We can now see that we get that these energies give nothing new for (non-virtual) graph
endomorphisms (i.e., outer automorphisms of the free group). We use the asymptotic energy
of an endomorphism Ï, defined by ErÏs :“ Erid, Ïs “ limnÑ8 n

a
ErÏ˝ns.

Proposition 6.9. For rÏs : � Ñ � an endomorphism of a graph,
Ep

prÏs “ LiprÏs.
Proof. By Lemmas 6.5 and 6.8 there is a constant C • 1 so that

1
C

Liprf ˝ Ï˝ns
Liprf s § Ep

8rf ˝ Ï˝ns
Ep

8rf s § C
Liprf ˝ Ï˝ns

Liprf s .

Equation (6.3) then shows that Ep
prÏ˝ns is within a factor of C of LiprÏ˝ns. The constant

factor disappears in the limit defining Ep
prÏs. ⇤

For virtual endomorphisms, the situation is more interesting.
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Proposition 6.10. For fi, Ï : �
1

Ñ �
0

a virtual endomorphism of graphs, Ep
prfi, Ïs is a

non-increasing function of p: if 1 § p § q § 8,
Eq

qrfi, Ïs § Ep
prfi, Ïs.

Proof. Pick a metric structure G
0

on �
0

and lift it to get a series of metric graphs Gn as
usual. Then for any f : G

0

Ñ K a map to a length graph,
Eq

8rf ˝ Ïns
Eq

8rf s § 1
C

Ep
8rf ˝ Ïns
Ep

8rf s
for some constant C, since mpGnq “ mpG

0

q. Now Eq
q rÏns § Ep

prÏns{C, and the constant
factor disappears in the limit as usual. ⇤
Proposition 6.11. For fi, Ï : �

1

Ñ �
0

a virtual endomorphism of graphs with fi a covering
of degree d, if 1 § p § q § 8,

Eq
qrfi, Ïs • d

1
p ´ 1

q Ep
prfi, Ïs.

Proof. Pick a metric structure G
0

on �
0

and lift it as before. Observe that MpGnq “ dnMpG
0

q.
Then for any f : G

0

Ñ K,

Ep
8rf ˝ Ïns
Ep

8rf s §
ˆ

MpG
0

q
mpGnq

˙ 1
p ´ 1

q Eq
8rf ˝ Ïns
Eq

8rf s “ C ¨ dnp 1
p ´ 1

q q ¨ Eq
q rÏns

for some constant C. The result follows by taking the supremum, taking the n’the root, and
passing to the limit. ⇤
Corollary 6.12. Ep

prfi, Ïs is a continuous function of p.
Question 6.13. What more can be said about Ep

prfi, Ïs as p varies? For instance, an
examination of Equation (6.1) shows that for any map Ï : G

1

Ñ G
2

between metric graphs
and 1 § p § q § 8,

`
Eq

q pÏq
˘q{pq´1q §

`
Ep

ppÏq
˘p{pp´1q

and so for a virtual endomorphism
`
Eq

qrfi, Ïs
˘q{pq´1q §

`
Ep

prfi, Ïs
˘p{pp´1q

.(6.14)
When Ep

prfi, Ïs † 1, this is stronger than Proposition 6.10. What more can be said?
The cases p “ 1, 2, or 8 of the asymptotic energy are of particular interest.

‚ The most important case is E8
8rfi, Ïs, for which E8

8 † 1 i� fi, Ï : G
1

Ñ G
0

is a combina-
torial model for an expanding dynamical system in the sense of Nekrashevych [Nek14].3
This notion of expanding is quite important. In particular, the iterated monodromy
groups of an expanding dynamical system are well-behaved [Nek05], having, for
instance, solvable word problem, while still allowing for many interesting examples
(e.g., groups of intermediate growth).

‚ For p “ 2, Theorem 1 relates E2

2

rfi, Ïs † 1 to rational maps.
‚ The other natural special case is p “ 1. If the weights are all 1, E1

1

rÏs † 1 implies that
Ï is null-homotopic, so in non-trivial cases E1

1

rfi, Ïs • 1. It appears that E1

1

rfi, Ïs ° 1
when the Julia set has Sierpinski-carpet-like behavior, and that E1

1

rfi, Ïs “ 1 when
the Julia set has many local cut points in the sense of Carrasco Piaggio [CP14].

3Nekrashevych’s combinatorial models are more general, allowing higher-dimensional cells.
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7. Obstructions

7.1. Obstructions for rational maps. We now relate Theorem 1 to W. Thurston’s Ob-
struction Theorem, which we rephrase in terms of elastic multi-curves without the assumption
of hyperbolic type.

Definition 7.1. An elastic multi-curve A “ pC, –, cq on a surface � is a multi-curve c :
C ãÑ �, together with an elastic structure – on C. The support of A is the underlying
multi-curve pC, cq.

There are two operations we may do on elastic multi-curves. First, if fi : r� Ñ � is a
covering map and A is an elastic multi-curve on �, there is a multi-curve rA “ fi´1pAq on r�
obtained by pull-back in the usual way.

Second, if A “ pC, –, cq is an elastic multi-curve on �, then the join JoinpAq is the elastic
multi-curve obtained by

‚ deleting all components of C whose images are null-homotopic or bound a punctured
disk, and

‚ replacing any components pC
1

, –
1

q, . . . , pCk, –kq of A whose images are parallel with
a single component pC

0

, –
0

q, with elastic length obtained by the harmonic sum:

–
0

“ –
1

‘ ¨ ¨ ¨ ‘ –k “ 1
1

–1
` ¨ ¨ ¨ ` 1

–k

.

(The harmonic sum comes from the parallel law for resistors or for springs.)

Definition 7.2. An obstruction for f is
‚ an elastic multi-curve A on �zP and
‚ a map Â : A Ñ Joinpf´1pAqq

so that
‚ Â commutes up to homotopy with the maps to �zP and
‚ EmbpÂq § 1.

Remark 7.3. Contrast the obstruction map Â with the map Ï : f´1pGq Ñ G in the statement
of Theorem 1: the maps are going the opposite direction.

Theorem 7.4 (W. Thurston, Douady-Hubbard [DH93]). Let f : p�, P q ˝ be a topological
branched self-cover so that the first return map is not a Lattés map on any component. Then
f is equivalent to a rational map i� there is no obstruction for f .

The usual formulation of Theorem 7.4 refers to the maximum eigenvalue of a matrix
constructed out of the multi-curves underlying A. The above formulation is equivalent by
Perron-Frobenius theory, as we spell out in Proposition 7.14 below. Intuitively, Theorem 7.4
says that f is rational i� there is no conformal collection of annuli that gets (weakly) wider
under backwards iteration.

7.2. Obstructions for virtual endomorphisms. We now turn to obstructions in the more
general setting of the asymptotic p-conformal energies from Section 6. We also switch to
virtual endomorphisms of topological spaces (e.g., graphs) or orbifolds. (In the context of
branched self-covers f : p�, P q ˝, we should consider the orbifold of f .)
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Definition 7.5. For 1 † p † 8 and –
1

, –
2

P R°0

, the p-harmonic sum of –
1

and –
2

is

–
1

‘p –
2

:“
`
p–

1

q1´p ` p–
2

q1´p
˘

1{p1´pq
.(7.6)

For p “ 8, set

–
1

‘8 –
2

:“ minp–
1

, –
2

q.
This definition is chosen so that the p-energies satisfy a parallel law.

Proposition 7.7. For 1 † p § q § 8, let rÏs : Gp Ñ Hq be a homotopy class of maps from
a p-conformal graph to a q-conformal graph. Suppose that G has two parallel edges e

1

and e
2

that are mapped to homotopic paths by Ï. Let G
3

be the p-conformal graph G with e
1

and e
2

replaced by a single edge e
3

with –pe
3

q “ –pe
1

q ‘p –pe
2

q, and let rÏ
3

s : G
3

Ñ H be the natural
homotopy class. Then

Ep
q rÏ

3

s “ Ep
q rÏs.

Proof. If q “ 8, then the optimal maps in Ï and in Ï1 will be constant-derivative. The
result follows by examining the energy and comparing the derivatives. The general statement
follows from the q “ 8 case by Equation (6.3).. ⇤

For p “ 1, we do not have a p-length in the same way; instead, a 1-conformal graph is a
weighted graph, and when joining them in parallel we add the weights.
Definition 7.8. A p-conformal multi-curve A “ pC, –, cq on a space X is a multi-curve c :
C Ñ �, together with a p-conformal structure – on C. The join JoinppAq is obtained by
deleting components of C whose image is null-homotopic or torsion in fi

1

pXq and replacing
components of C whose images are parallel (up to homotopy) by a single component so that

‚ for p ° 1, the new p-length is the p-harmonic sum of the constituent p-lengths and
‚ for p “ 1, the new weight is the (ordinary) sum of the constituent weights.

If fi : X
1

Ñ X
0

is a covering map and A is a p-conformal multi-curve on X
0

, we have
the usual pull-back fi˚A, a p-conformal multi-curve on X

1

. If Ï : X
1

Ñ X
0

is a map and
A “ pC, –, cq is a p-conformal multi-curve on X

1

, the push-forward Ï˚A is JoinppC, –, Ï ˝ cq.
If fi, Ï : X

1

Ñ X
0

is a virtual endomorphism, a p-obstruction for pfi, Ïq is
‚ a p-conformal multi-curve A “ pC, –, cq on �

0

and
‚ a map Â : A Ñ Ï˚fi˚A

so that
‚ Â commutes up to homotopy with the maps to X

0

and
‚ Ep

ppÂq § 1.
Proposition 7.9. If 1 § p § q § 8, G is a q-conformal graph, and A is a p-conformal
multi-curve on G, then Ep

q rAs “ Ep
q rJoinppAqs.

Proof. Parallel to Proposition 7.7. ⇤
Proposition 7.10. Let fi, Ï : G

1

Ñ G
0

be a virtual endomorphism of p-conformal graphs. If
there is a p-obstruction for pfi, Ïq, then Ep

prÏs • 1. Likewise, if f : p�, P q ˝ is a topological
branched self-cover of hyperbolic type compatible with pfi, Ïq and there is a p-obstruction for f ,
then Ep

prÏs • 1.
Remark 7.11. In the branched self-cover case, if f is not of hyperbolic type, then considering
boundary curves shows that we always have Ep

prÏs • 1.
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Proof. Let pA, Âq be a p-obstruction forpfi, Ïq. We have a diagram of maps

fi˚A G
1

Ï˚fi˚A

A G
0

,
Â

Ï

rc

c

commuting up to homotopy. Since Ep
p is invariant under covers, Ep

prrcs “ Ep
prcs. Proposition 7.9

guarantees that
Ep

prÏ˚fi˚A Ñ G
0

s “ Ep
prrc ˝ Ïs.

Then by sub-multiplicativity and the assumptions, we have
Ep

prcs § Ep
prÂsEp

prrcsEp
prÏs § ¨Ep

prcs ¨ Ep
prÏs,

so Ep
prÏs • 1. The statement for branched self-covers follows immediately. ⇤

See Corollary 7.15 for a strengthening of Proposition 7.10.

7.3. Duality. There is a notion of p-conductance, dual to p-length. Recall that we can
describe electrical networks either in terms of resistances or in terms of conductances.
Resistances add in series and change by a harmonic sum in parallel. Conductances add in
parallel and change by a harmonic sum in series. Alternately, we can think about the relation
between extremal length and modulus of conformal annuli.

There is a similar story for general p-conformal graphs when 1 † p † 8. Recall [Thu16a,
Definition A.18] that we can think of an edge e in a p-conformal graph as an equivalence
class of rectangles of length ¸ and width w, with the p-length – given by

– “ ¸

w1{pp´1q .

Now consider a dual view, interchanging the role of length and width. The p-conductance is

“ :“ –1´p “ w

¸p´1

“ w

¸1{pp_´1q

where p_ “ p{pp ´ 1q is the Hölder conjugate of p.
Propositions 7.7 and 7.9 say that p-conductances add in parallel.
In checking whether a p-conformal multi-curve A is a p-obstruction, there are two basic

operations. Let us recall what happens to the p-lengths.
‚ We pass to a cover by taking f´1pAq (i.e., the pullback by the covering map). A

connected cover of a circle is necessarily a (longer) circle, which is series composition.
Thus if a component of f´1pAq covers a component of A by a degree d map, the
p-length gets multiplied by d.

‚ We merge parallel components in the Joinp operation. The p-weights change by the
p-harmonic sum (Equation (7.6)).

If we work with the dual p-conductances instead, the two operations switch in complexity.
‚ If a circle of p-conductance “ is covered by a degree d map, the pull-back p-conductance

is d1´p“.
‚ The parallel composition in Joinp becomes simpler: add the constituent p-conductances.
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7.4. Obstruction matrices and invariant multi-curves. We now investigate when we
can choose p-lengths on a given curve to make it into a p-obstruction. As a result of
the previous section, if we use p-conductances to search for p-obstructions, we get linear
inequalities and can construct a matrix.
Definition 7.12. Let fi, Ï : X

1

Ñ X
0

be a virtual endomorphism, let c : C Ñ X
0

be a
multi-curve, and let 1 § p † 8. Then the p-obstruction matrix Mp

C of C is the square matrix
with rows and columns indexed by the components of C, with the pCi, Cjq entry given by

ÿ

DPfi˚Ci
Ï˚D„Cj

`
degpD fiÑ Ciq

˘
1´p

.

In other words, consider all components D of the multi-curve fi˚Ci on X
1

that push forward
to Cj, and sum a power of the degree that D covers Ci. There may be components of fi˚Ci

that do not push forward to any Cj; these components are ignored.
The matrix Mp

C is designed to mimic the action of Ï˚fi˚ on p-conformal multi-curves.
Suppose C has n components and let “ “ p“iqn

i“1

P Rn
•0

be a non-negative vector. Then
define Ap“q to be the p-conformal multi-curve in which a component Ci of C is given
p-conductance “i, or is dropped if “i “ 0.
Lemma 7.13. For “ as above,

Ï˚fi˚Ap“q “ ApMp
C“q ` A1

where A1 is a p-conformal multi-curve whose support is disjoint from C.
Proof. Immediate from Proposition 7.9. ⇤

Observe that Mp
C has non-negative entries. Therefore, by the Perron-Frobenius Theorem,

it has an positive eigenvalue of maximum absolute value with a non-negative eigenvector.
(Our assumptions do not guarantee that Mp

C is irreducible, so the eigenvector might not be
unique.) Let ⁄pMp

Cq be this positive eigenvalue.
Proposition 7.14. Let fi, Ï : X

1

Ñ X
0

be a virtual endomorphism and let pC, cq be a multi-
curve on X

0

. Then ⁄pMp
Cq • 1 i� there is a p-obstruction whose support is a sub-multi-curve

of C.
Proof. If ⁄ “ ⁄pMp

Cq • 1, let “ be the corresponding non-negative eigenvector. Then by
Lemma 7.13,

Ï˚fi˚Ap“q “ Ap⁄“q ` A1.
The p-conductances on the components of Ap“q are multiplied by ⁄ in Ï˚fi˚Ap“q and the
p-lengths are multiplied by ⁄´1{pp´1q. Thus, tracing through the definition of Ep

p from
Equation (6.1), we have Ep

p

“
Ap“q Ñ Ï˚fi˚Ap“q

‰
“ ⁄´1{p § 1, so Ap“q is an obstruction.

Conversely, suppose that we have a p-obstruction A whose support is a sub-multi-curve
of C. Form a vector “ from the p-conductances of A, extended by 0 for components of C
that are not in A. Then Lemma 7.13 and the assumption that A is a p-obstruction say that
each component of Mp

C“ is greater than or equal to the corresponding component of “. By
the Collatz-Wielandt formula, this implies that ⁄pMp

Cq • 1. ⇤
Corollary 7.15. If fi, Ï : �

1

Ñ �
0

has a p-obstruction, then so do the iterates fin, Ïn :
�n Ñ �

0

. In particular, if there is a p-obstruction for pfi, Ïq, then Ep
prfi, Ïs • 1.
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Proof. For any n • 1, a matrix M has an eigenvalue of absolute value greater than 1 i� Mn

does. Apply Proposition 7.10. ⇤
Let us investigate what the support of a p-obstruction can look like.

Definition 7.16. Let fi, Ï : X
1

Ñ X
0

be a virtual endomorphism and let pC, cq be a multi-
curve on X

0

. Then C is forwards-invariant if each component of C is homotopic to a
component of Ï˚fi˚C. (Here, Ï˚ is defined as in Definition 7.8, but without any –-lengths.)
C is irreducible if, for any two components Ci and Cj of C, there is some n so that Cj appears
in pÏ˚fi˚qnCi. (An irreducible curve is necessarily forwards-invariant.) C is back-invariant if
each component of Ï˚fi˚C is homotopic to a component of C, and C is totally invariant if
the components of C are in bijection with the components of Ï˚fi˚C.

The terminology comes from the context of branched self-covers f : pS2, P q ˝. Let C be a
multi-curve on S2zP .

‚ C is back-invariant i�, up to homotopy in S2zP , we have C Ä f´1pCq.
‚ C is forwards-invariant i� C is homotopic in S2zP to a multi-curve C

1

on S2zf´1pP q
with fpC

1

q Ä C.4
If A is a p-obstruction for pfi, Ïq, then the underlying multi-curve C of A must be forwards-
invariant. (Otherwise, no map Â : A Ñ Ï˚fi˚A is possible.) The matrix Mp

C is irreducible in
the Perron-Frobenius sense i� C is irreducible as a multi-curve. On the other hand, in the
context of rational maps it is more traditional to look at back-invariant multi-curves.

We can often switch between back-invariant and forward-invariant multi-curves. First,
some graph-theory terminology. In a directed graph, a strongly-connected component (SCC)
is a maximal set S of vertices so that every ordered pair of vertices in S can be connected by
a directed edge-path. Every directed graph is a disjoint union of its SCCs. A strict SCC is
an SCC in which every pair of edges can be connected by a non-trivial directed edge-path. A
non-strict SCC is a single vertex with no self-loop.

Given a virtual endomorphism fi, Ï : X
1

Ñ X
0

and a multi-curve C on X
0

, form the
directed graph �pCq whose vertices are the components of C, with an arrow from Ci to Cj

if Cj appears as a component of Ï˚fi˚Ci. A strict SCC of �pCq gives a forward-invariant
multi-curve, although not all forward-invariant multi-curves arise in this way.
Proposition 7.17. Let fi, Ï : X

1

Ñ X
0

be a virtual endomorphism and let C be a multi-
curve on X

0

. Then there is an irreducible forwards-invariant sub-multi-curve C
0

Ä C with
⁄pMp

C0q “ ⁄pMp
Cq.

Proof. Mp
C is block triangular with respect to the partial order on the SCCs of �pCq, so its

maximum eigenvalue will be equal to the Perron-Frobenius eigenvalue of a diagonal block
corresponding to an SCC S. If S is a single vertex with no self-loop, then ⁄pMp

Cq “ 0 and we
can take C

0

to be empty. Otherwise, take C
0

to be the union of multi-curves in S. ⇤
Proposition 7.18. Let fi, Ï : �

1

Ñ �
0

be a surface virtual endomorphism (with Ï a surface
embedding), and let C be a simple forward-invariant multi-curve on �

0

. Then there is a
simple back-invariant multi-curve C8 Å C.
Proof. For i • 1, let Ci “ Ï˚fi˚Ci´1

by induction. Then each Ci is a simple multi-curve and
Ci´1

Ä Ci. Since there is a bound on how many components a simple multi-curve on a surface
of finite type can have, the Ci eventually stabilize into a back-invariant multi-curve. ⇤

4Recall that the forward image of a multi-curve in S2
zP is not well-defined.
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Although back-invariant multi-curves are more traditional, forwards-invariant multi-curves
appear to be more generally useful. In general obstructions need not be simple and there is
no obvious analogue of Proposition 7.18.

7.5. Annular obstructions and asymptotic energy. Let fi, Ï : �
1

Ñ �
0

be a virtual
endomorphism. For any forwards-invariant multi-curve C on �

0

, there is unique value of p
so that ⁄pMp

Cq “ 1, which we denote QpCq [HP08, Lemma A.2]. Define Qpfi, Ïq to be the
maximum of QpCq over all forwards-invariant multi-curves C.

Proposition 7.19. Let fi, Ï : �
1

Ñ �
0

be a graph virtual endomorphism. Then if Ep
prfi, Ïs •

1, we have Qpfi, Ïq § p.

Proof. Immediate from Corollary 7.15 and Propositions 7.14 and 6.10. ⇤
Compare Proposition 7.19 to the following result of Haïssinsky and Pilgrim.

Theorem 7.20 (Haïssinsky and Pilgrim [HP08]). Suppose f : S2 Ñ S2 is topologically cxc.
Then Qpfq § confdimARpfq.

Here, Qpfq is the version of Qpfi, Ïq for branched self-covers. Topologically cxc is a
topological notion of expanding branched self-covers, and in particular implies that there are
no cycles with branch points in P (the opposite of the hyperbolic case). The Ahlfors regular
conformal dimension confdimARpfq is an analytically defined quantity, the minimal Hausdor�
dimension of any Ahlfors regular metric in a certain quasi-symmetry class of expanding
metrics canonically associated to f .

Theorem 7.20, like Proposition 7.19, gives upper bounds on Qpfq. However, it gives
bounds in terms of the purely analytic Ahlfors regular conformal dimension, rather than
the asymptotic energy. In addition, Theorem 7.20 applies to maps with no branched cycles
in P , while Proposition 7.19 is vacuous unless every cycle in P is branched. (If there is an
unbranched cycle in P , then Ep

prÏs • 1 for every p P r1, 8s.)
Question 7.21. Suppose f : p�, P q ˝ is a branched self-cover of hyperbolic type, with
compatible virtual endomorphism pfi, Ïq. Is it true that Ep

prfi, Ïs † 1 i� there is no p-
obstruction? Is there an analytic interpretation of either Ep

prfi, Ïs † 1 or the existence of
p-obstructions in terms of Ahlfors regular conformal dimension?

Theorem 7.4 and Theorem 1 combine to say that the answer to Question 7.21 is positive
for p “ 2. However, the proof is quite roundabout, needing the full strength of both theorems.
One could hope for a more direct proof of equivalence of the two criteria and a generalization
to other values of p. (This might also give another proof of Theorem 7.4.)
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