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Abstract. A rational map on the Riemann sphere f : bC ! bC is said to
be bicritical provided that f has exactly two critical points. In this note,
we give a complete description of which groups (up to isomorphism) arise
as the groups of deck transformations of iterates of bicritical rational
maps. Our results generalize those from a previous paper by the authors.

1. Introduction

In this note, we study particular subgroups of the group Möb of Möbius
transformations.

Definition 1.1. Let f be a rational map. The deck group of f is

Deck(f) = {µ 2 Möb | f � µ = f},

made up of all µ 2 Möb that preserve the fibers of f .

A partial analysis of the deck groups of iterates of bicritical rational maps
was carried out in [4]. However, the goal of that work was to understand
bicritical rational maps which shared an iterate, and so the deck groups of
the iterates of such maps was only studied as a convenient tool. In the
present work, we carry out a study of the deck groups of iterates of rational
maps in earnest, and give a complete classification of which subgroups of the
Möbius group can be realized as the deck group of an iterate of a bicritical
rational map.

It is well-known that a finite group of Möbius transformations is isomor-
phic to either a cyclic group, a dihedral group, or one of the polyhedral
groups A4, A5 or S4 (see e.g [3]). In particular, if f is a rational map then
for each k, the group Deck(fk) is finite, and so must be one of the possi-
bilities listed above. A study of rational maps of minimal degree with a
given deck group1 was carried out in [2]. In [6], Pakovich studies the groups
Deck1(f) =

S1
k=1Deck(fk) for rational maps f . He shows that, if f is not

a power map, then |Deck1(f)| is bounded, and this bound depends only on
the degree d. He also computes some examples of Deck(fk) for some given
rational maps.

We will be concerned mainly with the case where the rational map f is
bicritical. In this case, both the set Cf of critical points of f and the set

1In [2], elements of the deck group were called half-symmetries
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of critical values Vf = f(Cf ) of f contain exactly two elements. In [4], the
following result was proved.

Theorem 1.2. Let f be a bicritical rational map and k 2 N. Then Deck(fk)
is either cyclic or dihedral. Furthermore, if the degree of f is odd, then
Deck(fk) is cyclic.

We provide a sketch-proof of Theorem 1.2 in the present paper; the reader
wishing to see the full details is referred to [4].

In the case where Cf = Vf , we will say that f is a power map. This is
equivalent to f being conjugate to z 7! z±d. In the case where f has degree
2, the following statement was obtained in [4].

Theorem 1.3. If f is quadratic then the possibilities for Deck(fk) (up to
isomorphism) are Z2n for some n � 1, the Klein Vierergruppe V4 or the
dihedral group D8 of order 8. Furthermore, if f is not a power map then
|Deck(fk)|  8.

The main goal of the present note is to study the possibilities for Deck(fk)
where f is a bicritical rational map. We give a complete description of which
groups (up to isomorphism) may be realized as Deck(fk) for some bicritical
rational map f .

Firstly, we will improve the result of Theorem 1.2 by showing that for
odd degree bicritical maps, Deck(fk) ⇠= Zd, except if f is a power map, in
which case Deck(fk) ⇠= Zdk .

Theorem A. Let f be a bicritical map of odd degree d. Then f is a power
map if and only if there exists k such that Deck(fk) is a cyclic group of order
greater than d. In particular, if f is not a power map then Deck(fk) ⇠= Zd

for all k � 1.

Our main theorem is the following, which generalizes Theorem 1.3 to
even degree bicritical maps. Some of the methods generalize or make use
of techniques first introduced in [4]. For completeness we include proofs in
this article.

Theorem B. Let f be a bicritical map of even degree d. The possibilities
for Deck(fk) (up to isomorphism) are Zdn for some n � 1, D2d or D4d. In
particular, if f is not a power map then |Deck(fk)|  4d.

In Proposition 5.5, we give examples showing that the groupsD2d andD4d

may indeed be realized (up to isomorphism) as Deck(fk) for some bicritical
rational map f and some k � 1.

Acknowledgments. S. Koch was partially supported by NSF grant #2104649.
K. Lindsey was partially supported by NSF grant #1901247.
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2. Preliminaries on Möbius transformations and the Deck

groups of rational maps

In this section we outline some standard results on Möbius transforma-
tions and deck groups of rational maps. This will allow us to analyze the
deck groups of bicritical rational maps and outline the proof of Theorem 1.2.
We hope that the statements in the present section may also in the future
lend themselves to studying the deck groups of iterates of general rational
maps.

2.1. Deck groups and Möbius transformations. A non-identity Möbius
transformation � : Ĉ ! Ĉ of finite order has exactly two fixed points; we
denote by Fix(�) the set of fixed point of �. In [5], Milnor showed that a
degree d bicritical map had order d rotational symmetry about its critical
points, so that Deck(f) ⇠= Zd. Furthermore, it is not hard to see that for
any rational map, the group Deck(fk) is a finite subgroup of Möb. Thus
Deck(fk) must be cyclic, dihedral, or isomorphic to one of the polyhedral
groups A4, A5 or S4. We collect these observations, and other standard facts
about deck groups, into a Lemma. We denote by degz(f) the local degree
of f at the point z 2 Ĉ.

Lemma 2.1. Let f be a rational map of degree d � 1.

(1) The group Deck(f) is finite, and so must be cyclic, dihedral, or iso-
morphic to one of the polyhedral groups A4, A5 or S4. Furthermore
|Deck(f)|  d.

(2) Any non-identity element of Deck(f) has exactly two fixed points.
(3) If z 2 Ĉ and � 2 Deck(f), then degf (z) = degf (�(z)).

(4) For all k � 1, Deck(fk) ✓ Deck(fk+1).
(5) If f is bicritical of degree d, then Deck(f) is cyclic of order d. Fur-

thermore, each non-identity � 2 Deck(f) has Fix(�) = Cf .

We will often make use of the following classical result (see e.g. [1],
Theorem 4.3.6) which characterizes exactly when two non-identity Möbius
transformations commute.

Lemma 2.2. Let � and µ be non-identity Möbius transformations with fixed
point sets Fix(�) and Fix(µ) respectively. Then the following are equivalent.

(1) � � µ = µ � �
(2) �(Fix(µ)) = Fix(µ) and µ(Fix(�)) = Fix(�).
(3) Either Fix(µ) = Fix(�) or �, µ and ��µ are involutions and Fix(�)\

Fix(µ) = ?.

2.2. Sketch Proof of Theorem 1.2. In this section, we provide an outline
of the proof of Theorem 1.2 that was given in [4]. The following is the key
observation.
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Proposition 2.3. Let f be a bicritical rational map of degree d, and let p
be a prime number that does not divide d. Then for all natural numbers k,
the group Deck(fk) has no element of order p.

(Sketch). If some element ⌧ 2 Deck(fk) were to have order p, then each
element in Ĉ would have orbit of length 1 or p under the action of h⌧i. In
particular the fiber f�k(w) over an regular value w contains dk points, and
since p does not divide dk, the element ⌧ must fix at least one element in
such a fiber. But then as there are infinitely many regular points for fk, we
see that ⌧ must be the identity, a contradiction. ⇤

The proof of Theorem 1.2 now follows easily from Proposition 2.3.

Sketch proof of Theorem 1.2. The polyhedral groups A4, A5 and S4 all con-
tain elements of order 2 and elements of order 3. Thus if Deck(fk) were
polyhedral we would havedeg(f) = d � 6 by Proposition 2.3. But then by
Lemma 2.1, then group Deck(f) would contain an element of order d � 6.
But none of the polyhedral groups contain an element of order � 6, so this
is a contradiction.

Now suppose the degree of d is odd. In that case, 2 does not divide d
and so by Proposition 2.3, Deck(fk) cannot contain any element of order 2.
Thus Deck(fk) is not dihedral. ⇤

2.3. Deck groups and bicritical rational maps. We now turn our at-
tention to deck groups of iterates of bicritical rational maps. The following
relatively simple observation has major ramifications which we will use in
the rest of the paper. It generalizes an argument used in [4], and a similar
result was given in [6].

Lemma 2.4. Let f be a bicritical rational map with critical point set Cf .
Then if � is a Möbius transformation such that �(Cf ) = Cf , then there exists
a unique Möbius transformation µ such that µ � f = f � �. Furthermore
µ(Vf ) = Vf .

Proof. Once we prove existence, the uniqueness will follow from the surjec-
tivity of f . We first prove the existence result for g(z) = zd. In this case, �
is a Möbius transformation such that �(Cg) = Cg if and only if �(z) = az±1

for some a 2 C \ {0}. But then g � � = adz±d, and so taking µ = adz
completes the proof for g(z) = zd.

Now suppose that f is bicritical of degree d. Then there exist Möbius
transformations ↵ and � such that f = ↵ � g � �, where g(z) = zd. In
particular �(Cg) = Cf . Thus if � fixes Cf as a set then �0 = ��1

� � � � fixes
Cg as a set, and by the above there exists µ0 such that µ0

� g = g ��0. Hence
taking µ = ↵ � µ0

� ↵�1, a simple calculation yields µ � f = f � �. The fact
that µ(VF ) = VF is clear. ⇤

In particular, when the map � in Lemma 2.4 belongs to Deck(fk), we get
the following.
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Lemma 2.5. Let f be a bicritical rational map and � 2 Deck(fk) for some
k. If �(Cf ) = Cf , then there exists a unique �k�1 2 Deck(fk�1) such that
f � �k = �k�1 � f . Moreover �k�1(Vf ) = Vf .

Proof. Following Lemma 2.4, we only need to show that �k�1 2 Deck(fk�1).
To see this, consider the following diagram.

Ĉ Ĉ Ĉ

Ĉ Ĉ Ĉ

f

�k �k�1

fk�1

id

f fk�1

The large outermost rectangle commutes since �k 2 Deck(fk). There-
fore, the square on the right commutes as well. As a consequence, �k�1 2

Deck(fk�1). ⇤

In the next section, we will show that if f is a bicritical rational map, and
� 2 Deck(fk), then �(Cf ) = Cf . This will allow us to drop this hypothesis
in Lemma 2.5 and strengthen it in Proposition 4.1. However, we will find
the result of Lemma 2.5 useful when dealing with quadratic rational maps.

3. Elements of Deck(fk) preserve the set of critical points of f

In this section we prove the following, which will be a key result in proving
our two main theorems.

Theorem 3.1. Let f be a bicritical rational map and � 2 Deck(fk) for
some k. Then �(Cf ) = Cf .

The proof in the case for deg(f) � 3 is relatively simple. However, the
quadratic case requires some more care.

3.1. Quadratic rational maps. The di�culty of proving Theorem 3.1 in
the quadratic case comes from the complications arising when Deck(fk) is
dihedral. Accordingly, we start with some standard facts about dihedral
groups. To fix our ideas, we use the following presentation of D2n, the
dihedral group of order 2n.

D2n = hR,F | Rn = F 2 = (RF )2 = idi. (1)

We include in this definition the case where n = 2, so that the Klein Vier-
ergruppe V4 is considered to be dihedral. We remark that if � = hri is a
cyclic subgroup of D2n such that |�| � 3 then � is the unique such sub-
group. Furthermore, there must exist ` such that R` = r. The following
simple group theoretic fact will be also useful.

Lemma 3.2. Let n be even and suppose ↵ 2 D2n has order 2. Then there
exists a subgroup � of D2n such that ↵ 2 � and � ⇠= V4.
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Proof. The result is clearly true for the group V4, so assume n > 2. Using the
presentation (1), the center Z(D2n) is isomorphic to Z2, and is generated
by µ = Rn/2. Thus if ↵ is any other element of order 2 in D2n, then
� = {id, µ,↵, µ↵} forms a subgroup of D2n isomorphic to V4. ⇤

Recall that by Lemma 2.1, then if f is bicritical of degree d then Deck(f) ⇠=
Zd. Furthermore, since Deck(f) ✓ Deck(fk) for all k, all the Deck(fk)
contain a copy of Zd as a subgroup. If Deck(fk) is itself cyclic, then all
non-identity elements of Deck(fk) have the same pair of fixed points, which
are necessarily the critical points of f . On the other hand, if d � 3, then by
the discussion preceding Lemma 3.2, it follows that if Deck(fk) is dihedral
then Deck(f) is the unique cyclic subgroup of order d in Deck(fk), and
the generator of Deck(f) is an iterate of an element of maximal order in
Deck(fk). However, in the quadratic case we need to be more careful, since
if Deck(fk) is dihedral, it does not immediately follow that any order 2
subgroup of Deck(fk) must be the group Deck(f).

Using terminology from [4], we say a bicritical rational map with critical
values v1 and v2 is critically coalescing if f(v1) = f(v2). Note that in
this case, we must have Cf \ Vf = ?. For if v were both a critical point
and a critical value of a degree d bicritical rational map which is critically
coalescing, the image f(v) would have at least d + 1 preimages (counting
multiplicity), which is impossible. Thus f(v1) = f(v2) is equivalent to the
condition that fk(c1) = fk(c2) for all k � 2 (where c1 and c2 as usual denote
the critical points of f). The next lemma is a slight generalization of a result
from [4].

Lemma 3.3. Let f be a bicritical rational map of even degree d. Then if
Deck(fk) is dihedral for some k, then f is critically coalescing.

Proof. Write Deck(f) = h⌧i and suppose µ = ⌧d/2 is the unique element of
order 2 in Deck(f). Suppose k > 1 is minimal such that Deck(fk) is dihedral.
By Lemma 3.2, there exists �, a subgroup of Deck(fk) such that � ⇠= V4 and
µ 2 �. Write � = {id, µ,↵,�}. Since � is abelian and Fix(µ) = Cf , then by
Lemma 2.2 we have ↵(Cf ) = �(Cf ) = Cf . Thus, by Lemma 2.5, there exists
⌫ 2 Deck(fk�1) such that ⌫�f = f �↵. Furthermore, ⌫(Vf ) = Vf = {v1, v2},
and since ↵ is an order 2 element distinct from µ, it is not an element of
Deck(f). Thus we have ⌫ 6= id . By the assumption on the minimality
of k, Deck(fk�1) must be cyclic, and so for any non-identity elements � 2

Deck(fk�1) we have Fix(�) = Fix(µ) = Cf . Thus Fix(⌫) = Cf .
If ⌫ fixes the elements of Vf pointwise, then we have Cf = Vf , and so f

is a power map. But this is impossible, since Deck(fk) is always cyclic for
power maps. So ⌫ must be an involution which exchanges the elements of
Vf . But since Deck(fk�1) is cyclic, it contains a unique involution, namely
µ, and so ⌫ = µ. Thus µ 2 Deck(f) interchanges the elements of Vf , and so
f(v1) = f(v2). ⇤
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We remark that the converse of the above statement is true in degree 2
(see [4]). However, in higher degrees the converse does not hold.

Example 3.4. Let f(z) = z4�1
z4+i . Then Vf = {1, i} and f(1) = f(i) = 0, and so

f is critically coalescing. One can readily check that Deck(f2) = Deck(f) ⇠=
Z4, and we will see later (Lemma 4.4) that this implies Deck(fk) ⇠= Z4 for
all k.

Lemma 3.5. Let F be a rational map and suppose Deck(F ) contains an
element of order k. Then there exists z 2 Ĉ such that degz(F ) � k.

Proof. Let � 2 Deck(F ) have order k and let z 2 Fix(�). Suppose that V is
a simply connected neighborhood of F (z) such that V \ VF ✓ {F (z)}, and
let U be the component of F�1(V ) which contains z. By restricting V if
necessary, we may assume that F�1(F (z)) \ U = {z}. Then given w 2 V ,
there exists u0 2 U such that F (u0) = w. Since F = F � �j and �j(z) = z
for all 0  j  k � 1, we see that the component of (F � �j)�1(V ) which
contains z is the set U . Thus for each j, uj = �j(u0) is in U . Hence F is
(at least) k-to-1 on the set U , and the only critical point in U is z. Thus
degz(F ) � k, by the Riemann-Hurwitz theorem. ⇤

We are particularly interested in applying the previous result to the case
where F = fk is an iterate of a quadratic rational map f and Deck(fk) is
dihedral.

Lemma 3.6. Let f be a quadratic rational map and suppose Deck(fk) is
dihedral. If fk has a critical point with local degree greater than 2, then one
of the critical points c1 of f is periodic of some period p. Furthermore:

• the second critical point c2 satisfies fp(c2) = c1 and
• for either critical point c, fn(c) = c1 if and only if n = ap for some
a � 0.

Proof. By Lemma 3.3, f must be critically coalescing. Let the critical points
of f be c1 and c2. Since f is critically coalescing, the image under f of a
critical point of f cannot also be a critical point of f .

A point z maps forward with local degree greater than 1 under fk if and
only if z is a preimage f�j(ci) for some 0  j < k and i = 1, 2. Furthermore,
if z maps forward by local degree strictly greater than 2 under fk, then the
forward orbit

Ok(z) = (z, f(z), f2(z), . . . , fk�1(z))

must contain (at least) two critical points of f . If the same critical point ci
appears twice, we are done, since then that critical point would be periodic.
So assume without loss of generality that there exist 0  n < m < k with
fn(z) = c2 and fm(z) = c1. Then we have fm�n(c2) = c1. But since f is
critically coalescing, f `(c1) = f `(c2) for all ` � 2, whence fm�n(c1) = c1
and so c1 is a periodic critical point under f .
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Now observe that if p is the period of c1, so that p > 0 is minimal such
that fp(c1) = c1. Since f is critically coalescing, we also have fp(c2) = c1,
and if there were 0 < j < p such that f j(c2) = c1, then this would imply
f j(c1) = c1, which is a contradiction. ⇤
Proposition 3.7. Let f be a quadratic rational map and suppose that for
some k the group Deck(fk) is dihedral. Then if � 2 Deck(fk) then �(Cf ) =
Cf .

Proof. If Deck(fk) is isomorphic to V4, then Deck(fk) is abelian. Thus
every element of Deck(fk) commutes with µ, the unique order 2 element of
Deck(f). Hence by Lemma 2.2, since Fix(µ) = Cf we have �(Cf ) = Cf for
all � 2 Deck(fk).

We now assume that Deck(fk) is dihedral and contains an element of
order greater than 2. By Lemma 3.5, there must exist z 2 Ĉ such that
degfk(z) = k > 2 and so by Lemma 3.6, f has a periodic critical point, c1,
and the other critical point c2 eventually maps onto c1, but is not in the
forward orbit of c1. We will show that the orbit orbDeck(fk)(c1) under the

action of Deck(fk) is equal to Cf = {c1, c2}. To see that c2 2 orbDeck(fk)(c1),

let � be a subgroup of Deck(fk) which is isomorphic to V4 and which contains
µ (such a subgroup exists by Lemma 3.2). By Lemma 2.2, every non-identity
element � 2 � must have �(Cf ) = Cf . In particular, if � 6= µ, then since µ
and � are distinct and both have order 2, we see that � must transpose the
elements of Cf , and so �(c1) = c2, meaning Cf ✓ orbDeck(fk)(c1).

Now suppose a 2 orbDeck(fk)(c1), so that there exists � 2 Deck(fk) such
that �(c1) = a. We claim that a must eventually map onto c1. Let p � 2
be the period of c1. By Lemma 2.1, for all j � 0 and 1  m  p such that
jp+m � k we have

degfjp+m(a) = degfjp+m(c1) = 2j+1. (2)

Since (degfn(a))1n=1 is an unbounded increasing sequence, it follows that
the forward orbit of a must contain infinitely many terms which are critical
points. But since the only periodic critical point of f is c1, we see that a
must eventually map onto c1.

We now show that a 2 Cf . Let j be minimal such that jp+ 1 � k. Then
by (2), we have degfjp+m(a) = 2j+1 and so the orbit

Ojp(a) = (a, f(a), f2(a), . . . , f jp(a))

must contain j+1 critical points. Let the first appearance of a critical point
be f q(a) for q > 0. Then by Lemma 3.6, there would be at most j critical
points in the orbit Ojp(a). Thus a must itself be a critical point and so
orbDeck(fk)(c1) ✓ Cf . We conclude that orbDeck(fk)(c1) = Cf . It follows that

�(Cf ) = Cf for all � 2 Deck(fk). ⇤
Proof of Theorem 3.1. The result is trivial for � = id, so suppose � 6= id.
If Deck(fk) is cyclic, then every non-identity element of Deck(fk) has the
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same set of fixed points, which must be equal to the set Cf . Hence in this
case �(Cf ) = Cf .

On the other hand, suppose Deck(fk) is dihedral. Then we know that the
degree of f is even. If f is quadratic then the result holds by Proposition 3.7.
Now suppose f has degree d > 2. If � 2 Deck(fk) is a power of some element
of order greater than 2 then � fixes the set Cf pointwise. The only other
possibility is that � has order 2. But then if ⇢ 2 Deck(fk) is an element of
maximal order in Deck(fk), by (1) we must have

⇢ � � = � � ⇢�1. (3)

Now suppose c is a critical point of f . Since ⇢�1(c) = c, applying (3) to c
gives

⇢(�(c)) = �(⇢�1(c)) = �(c)

from which it follows that �(c) is a fixed point of ⇢, and so �(c) must be a
critical point of f . Thus �(c) 2 Cf . ⇤

4. Consequences of Theorem 3.1

Theorem 3.1 has a number of useful consequences. We first state a
strengthened version of Lemma 2.5.

Proposition 4.1. Let f be a bicritical rational map and �k 2 Deck(fk) for
some k. Then there exists a unique �k�1 2 Deck(fk�1) such that f � �k =
�k�1 � f . Moreover �k�1(Vf ) = Vf .

Proof. The proof is the same as Lemma 2.5, with the hypothesis that �k(Cf ) =
Cf removed by Theorem 3.1. ⇤

We now use Proposition 4.1 to prove a number of preliminary results
which we will use to prove the main theorems. Observe that by Proposi-
tion 4.1, if for some k > 1 we have �k 2 Deck(fk), then we can recursively
define a sequence

(�k,�k�1, . . . ,�1,�0 = id)

where for each j, �j 2 Deck(f j) and f � �j = �j�1 � f . Each �j is uniquely
determined by the initial choice of �k, and we must have fk�j

��k = �j�fk�j .
This gives the following commutative diagram.

Ĉ Ĉ . . . Ĉ Ĉ

Ĉ Ĉ . . . Ĉ Ĉ

f

�k

f

�k�1

f f

�1 id

f f f f

In particular, if j = 1 we obtain the following result.

Proposition 4.2. Let f be a bicritical rational map. Let k > 1 and suppose
�k 2 Deck(fk). Then there exists a unique �1 2 Deck(f) such that the
following diagram commutes.
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Ĉ Ĉ Ĉ

Ĉ Ĉ Ĉ

fk�1

�k

f

�1 id

fk�1 f

Furthermore

(1) �1 is the identity if and only if �k 2 Deck(fk�1).
(2) �1(Vf ) = Vf .

Proof. By Proposition 4.1 and the discussion preceding the statement of the
proposition, we know that there exists a unique �1 2 Deck(f) such that
fk�1

� �k = �1 � fk�1. This proves the diagram commutes. Now suppose
that �k 2 Deck(fk�1). Then we see that we must have �1 = id. On the
other hand, if �1 = id, then the diagram shows that fk�1

� �k = fk�1, and
so �k 2 Deck(fk�1). The assertion that �1(Vf ) = Vf again follows from
Proposition 4.1. ⇤

It should be noted that in general, an element � 2 Deck(f) need not
map Vf to itself. For example, if f(z) = 1

z2�1 , then the unique non-identity
element of Deck(f) is �(z) = �z, which fixes the critical points 0 and 1 of
f . However, Vf = {0,�1}, which is clearly not preserved by �.

The following can be thought of as a partial converse to Proposition 4.1.

Lemma 4.3. Let f be a bicritical rational map of degree d and suppose µ is
a Möbius transformation such that µ(Vf ) = Vf . Then there exists a Möbius
transformation � such that f � � = µ � f and �(Cf ) = Cf . In particular, if
µ 2 Deck(fk) for some k � 1 then � 2 Deck(fk+1).

Proof. The proof proceeds like that of Lemma 2.4, but note in this case
there is no uniqueness. First, suppose g(z) = zd. Then if µ(Vg) = Vg, we
have µ(z) = az±1. Thus taking �(z) = adz±1, we get g � � = µ � g and
�(Cg) = Cg as required.

For the general case, we again note that if f is a bicritical rational map
of degree d, then there exist Möbius transformations ↵ and � such that
f = ↵ � g � � for g(z) = zd. Thus if µ(Vf ) = Vf , then µ0 = ↵�1

� µ � ↵
must satisfy µ0(Vg) = Vg. Hence there exists �0 such that g � �0 = µ0

� g
and �0(Cg) = Cg. Thus taking � = ��1

� �0
� � we get f � � = µ � f and

�(Cf ) = Cf , as required.
Finally, if µ 2 Deck(fk) then since f � � = µ � f , composing on the left

by fk gives

fk+1
� � = fk

� (f � �) = fk
� (µ � f) = (fk

� µ) � f = fk
� f = fk+1

and so � 2 Deck(fk+1). ⇤

Lemma 4.4. Suppose f is a rational map. Suppose for some k that Deck(fk) =
Deck(fk+1). Then Deck(fk+2) = Deck(fk+1) = Deck(fk).
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Proof. Let � 2 Deck(fk+2). By Proposition 4.1, there exists µ 2 Deck(fk+1)
such that

f � � = µ � f. (4)

Since Deck(fk+1) = Deck(fk), we see that µ 2 Deck(fk). But then post-
composing (4) by fk yields

fk+1
� � = fk

� (µ � f) = (fk
� µ) � f = fk+1

and so � 2 Deck(fk+1). ⇤

Lemma 4.4 ensures that the function of Example 3.4 has Deck(fk) ⇠= Z4

for all k � 1.
We will use the notation Deck⇤(fk) = Deck(fk) \ Deck(fk�1), with the

convention that Deck(f0) = Deck⇤(f0) = {id}.

Lemma 4.5. Let f be a bicritical rational map and k � 0. Then Deck⇤(fk+1) 6=
? if and only if there exists µ 2 Deck⇤(fk) such that µ(Vf ) = Vf .

Proof. Suppose � 2 Deck⇤(fk+1). By Proposition 4.1, there exists µ 2

Deck(fk) such that

µ � f = f � � (5)

and µ(Vf ) = Vf . If µ is not an element of Deck⇤(fk), then µ 2 Deck(fk�1).
Thus fk�1

� µ = fk�1, and so composing fk�1 on the left of (5) we get

fk = fk�1
� µ � f = fk

� �

and so � 2 Deck(fk). But this contradicts � 2 Deck⇤(fk+1), and so we
conclude that µ 2 Deck⇤(fk).

Conversely, suppose that there exists µ 2 Deck⇤(fk) such that µ(Vf ) =
Vf . It follows from Lemma 4.3 that there exists � 2 Deck(fk+1) such that
µ � f = f � �. Suppose that � 2 Deck(fk). Then Proposition 4.1 asserts
that there is a unique µ0

2 Deck(fk�1) such that µ0
� f = f � �. But then

µ = µ0, and so this contradicts µ 2 Deck⇤(fk). Hence � 2 Deck⇤(fk+1) and
so Deck⇤(fk+1) 6= ?. ⇤

Lemma 4.6. Let f be a bicritical rational map. Then

|Deck(fk)|

|Deck(fk�1)|
 d. (6)

Furthermore, if f is not a power map, then the quotient is at most 2.

Proof. Suppose � 2 Deck⇤(fk). Then by Proposition 4.2, there exists a
unique non-identity element µ 2 Deck(f) such that fk�1

� � = µ � fk�1.
Define h : Deck(fk) ! Deck(f) by h(�) = µ, where µ is defined as the

map from the above paragraph. We claim that h is a homomorphism. To
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see this, note that if fk�1
� �1 = µ1 � fk�1 and fk�1

� �2 = µ2 � fk�1, then

fk�1
� �1 � �2 = µ1 � f

k�1
� �2

= µ1 � µ2 � f
k�1

= µ1 � µ2 � f
k�1

It follows that h(�1 ��2) = h(�1)�h(�2). Again by Proposition 4.2, we have
kerh = Deck(fk�1). Since each coset of kerh in Deck(fk) has cardinality
equal to |Deck(fk�1)|, and since there are at most |Deck(f)| = d cosets, we
conclude the first statement is true.

Now suppose f is not a power map. Then there is at most one non-
identity element µ1 of Deck(f) such that µ1(Vf ) = Vf . Thus the image of h
is a subgroup of {id, µ1}, and so the quotient (6) is at most 2. ⇤

5. Proof of the Main Theorems

5.1. Möbius transformations preserving the sets of critical points
and critical values values of a bicritical rational map. As can be as-
certained from Proposition 4.1 and Lemma 4.5, the Möbius transformations
µ such that µ(Cf ) = Cf and µ(Vf ) = Vf are of particular importance when
it comes to analyzing the groups Deck(fk). In fact, when f is not a power
map these two conditions on µ are very restrictive.

Lemma 5.1. Let f be a bicritical rational map of degree d such that |Cf [

Vf | = 3. Then the only Möbius transformation µ satisfying µ(Cf ) = Cf and
µ(Vf ) = Vf is the identity. Furthermore, Deck(fk) ⇠= Zd for all k � 1

Proof. Since |Cf \ Vf | = 3, there exists a unique w 2 Cf \ Vf . But then any
Möbius transformation µ such that µ(Cf ) = Cf and µ(Vf ) = Vf must fix
w. Therefore, µ would have to act as the identity on the three element set
Cf \ Vf , and so µ = id. The final claim then follows from Lemmas 4.4 and
4.5. ⇤
Lemma 5.2. Let f be a bicritical rational map such that |Cf[Vf | = 4. Then
there exist at most four Möbius transformations µ such that µ(Cf ) = Cf and
µ(Vf ) = Vf . Any such µ which is not the identity must be an involution.
Furthermore, these maps form a group under composition, and if they all
exist, this group is isomorphic to V4.

Proof. Since a Möbius transformation is uniquely characterised by its action
on three points, we see there are the following possibilities for µ.

(1) µ fixes the elements of Cf and Vf pointwise, so that µ = id.
(2) µ1 such that Fix(µ1) = Cf and µ1 swaps the elements of Vf .
(3) µ2 such that Fix(µ2) = Vf and µ2 swaps the elements of Cf .
(4) µ3 such that µ3 swaps the elements of Cf and the elements of Vf .

Furthermore, if µ is not the identity, then µ is an involution. To complete
the proof, we need to show that these four Möbius transformations form a
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group. But by Lemma 2.2, µ1 and µ2 commute. Furthermore, µ1 �µ2 = µ3,
from which it follows that hµ1, µ2i

⇠= V4. ⇤

We will continue to use the notation µi, i = 1, 2, 3 to denote the trans-
formations obtained from the above lemma. Since any element of Deck(f)
fixes Cf pointwise, we have µ2, µ3 /2 Deck(f).

Lemma 5.3. Let f be a bicritical rational map of degree d, and suppose f
is not a power map. If Deck⇤(f2) 6= ? then Deck(f2) ⇠= D2d.

Proof. By Lemma 4.6 we have |Deck(f2)| = 2|Deck(f)| = 2d, and so by
Theorem 1.2 we must have Deck(f2) ⇠= Z2d or Deck(f2) ⇠= D2d. Since
Deck(f2) 6= Deck(f), we know from Lemma 4.5 that there exists a non-
identity µ1 2 Deck(f) such that µ1(Vf ) = Vf . Since µ1 must fix the elements
of Cf pointwise, we see that µmust swap the elements of Vf = {v1, v2}. Thus
f(v1) = f(v2) and f is critically coalescing.

Now suppose that Deck(f2) ⇠= Z2d. By Lemma 3.5, there exists c such
that degc(f

2) � 2d. But then degc(f
2) = d2 and so c 2 Cf \ Vf . Therefore

by Lemma 5.1, we have Deck(f2) ⇠= Zd, which is a contradiction. ⇤

Proposition 5.4. Let f be a bicritical rational map which is not a power
map. Then Deck(fk) = Deck(f3) for all k � 3.

Proof. Using the notation of Lemma 5.2, denote by � = id, µ1, µ2, µ3} the
group of Möbius transformations such that µ(Cf ) = Cf and µ(Vf ) = Vf (note
that some of the µi may not exist, but those that do must form a group).
By Lemma 4.4, we may assume that Deck(f) ( Deck(f2) ( Deck(f3), since
otherwise the statement of the proposition holds.

Since Deck(f) ( Deck(f2), it follows from Lemma 4.5 that µ1 2 Deck⇤(f).
Similarly, since Deck(f3) 6= Deck(f2), one of µ2 or µ3 is an element of
Deck⇤(f2). But since µ3 = µ1 � µ2, we see that both µ2 and µ3 must
belong to the group Deck(f2). However, this means that � ✓ Deck(f2) and
so Deck⇤(f3) \ � = ?. But by Lemma 4.5 this means that Deck(f4) =
Deck(f3), and so by Lemma 4.4 we have Deck(fk) = Deck(f3) for all k �

3. ⇤

5.2. Proof of Theorem A.

Proof of Theorem A. It is clear that if f is a power map then Deck(fk) ⇠=
Zdk . Now suppose f is not a power map, so that |Cf[Vf | > 2. If |Cf[Vf | = 3,
then Lemma 5.1 asserts that Deck(fk) ⇠= Zd for all k. If |Cf[Vf | = 4 then we
note that since d is odd, Deck(f) ⇠= Zd cannot contain an element of order
2. But this means none of the elements µi, i = 1, 2, 3 from Lemma 5.2 can
belong to Deck(f), and so by Lemma 4.5 we have Deck(f2) = Deck(f) ⇠= Zd.
Thus by Lemma 4.4, we have Deck(fk) = Deck(f) ⇠= Zd for all k � 1. ⇤

5.3. Proof of Theorem B.
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Proof of Theorem B. It is clear that if f is a power map, then Deck(fk) ⇠=
Zdk for all k. If f is not a power map, then by Lemmas 4.4 and 5.3, then
either Deck(f2) ⇠= D2d or Deck(fk) ⇠= Zd for all k � 1.

If Deck(f2) ⇠= D2d, then by Lemma 4.6, the only options for Deck(f3) up
to isomorphism, areD4d orD2d. But by Proposition 5.4, the group Deck(fk)
cannot be larger than Deck(f3), and this completes the proof. ⇤

We conclude by showing that D2d and D4d are realized as Deck(fk) for
some rational map f .

Proposition 5.5. Let d be even.

(1) If f(z) = zd�a
zd+a

for some a 6= 0 then Deck(f2) ⇠= D2d.

(2) If g(z) = zd�1
zd+1

then Deck(g3) ⇠= D4d.

Proof. We note that since Cf = Cg = {0,1}, the involution µ(z) = �z
belongs to Deck(f) and Deck(g).

(1) It is clear that Vf = {�1, 1}, and since µ(Vf ) = Vf , it follows from
Lemmas 4.5 and 5.3 that Deck(f2) ⇠= D2d.

(2) Let �(z) = 1
z . Then a simple calculation yields

g � �(z) = �
zd � 1

zd + 1
= µ � g(z).

Since from the first part we know µ 2 Deck(f), we see that by
Lemma 4.3 we must have � 2 Deck(g2). Furthermore, it is clear
that �(Vg) = Vg and so Deck⇤(g3) 6= ? by Lemma 4.5. But then
|Deck(g3)| = 2|Deck(g2)| by Lemma 4.6 and so Deck(g3) ⇠= D4d. ⇤
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