Consider a functional F defined by

$$
\begin{aligned}
F(w)= & \frac{1}{2} \int_{\Omega} D\left\{\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)^{2}-2(1-v)\left(\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}-\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}\right)\right\} d y d x \\
& -P w\left(x_{0}, y_{0}\right)-\frac{1}{2} \int_{\Omega} N_{x}\left(\frac{\partial w}{\partial x}\right)^{2} d y d x
\end{aligned}
$$

where $\mathrm{D}=E h^{3} /\left(12\left(1-v^{2}\right)\right)$ is the bending rigidity, E is Young's modulus, h is the thickness of the plate, v is Poisson's ratio, P is an applied point force, N_{X} is applied compressive traction, and $\left(x_{0}, y_{0}\right)$ is a specified point in a quadrilateral domain Ω that is the one shown in the following figure.

Solve the minimization problem

$$
\min _{v \in V_{0}} F(v)
$$

where $V_{0}=\left\{v \in H^{2}(\Omega) \mid v=0 \quad\right.$ on $\left.\partial \Omega\right\}, H^{2}(\Omega)$ is the linear space of all functions whose upto second derivatives are square integrable on W in the generalized sense, using the Ritz-Galerkin method.

Verify your results by any finite element methods available in CAEN, for example, by using MSC/NASTRAN or ABAQUS, by setting up appropriate constants and geometrical dimensions.

thickness h
Figure 1 A Quadrilateral Plate Subjected to a Point Force P and Compressive In-plane Traction

