Review Problems for the Final Examination
 MEAM 501 Analytical Methods in Mechanical Engineering

1. State the following definitions, properties, and/or concept :
(1) What is the Lagrange interpolation of a function f defined on an interval (a, b).
(2) What is the Legendre polynomilas defined on the interval $(-1,1)$?
(3) What is the Chebyshev polynomilas defined on the interval $(-1,1)$?
(4) What is the Hermite polynomilas defined on the interval $(-\infty, \infty)$?
(5) What is the Lagerre polynomilas defined on the interval $(0, \infty)$?
(6) Obtain the 2 point Gauss-Legendre quadrature to integrate a function defined on the interval $(-1,1)$, that is, obtain the quadrature points and the associate weights.
(7) Obtain the 3 point Gauss-Lagerre quadrature to integrate a function defined on the interval $(0, \infty)$, that is, find the 3 point quadrature points and associated weights.
(8) Integrate by using a numerical method to integrate

$$
\int_{-\infty}^{+\infty} \frac{\exp \left(-x^{2}\right) \sin x}{1+x^{2}} d x
$$

with the accuracy of 10^{-6}.
(9) What is the cubic Hermite interpolation of a function f defined on the interval $(0,1)$?
(10) What is the Bezier spline approximation of a curve ?
(11) What is the B-spline approximation of a curve?
(12) What is the minimum principle?
(13) What is the trapezoidal rule?
(14) What is the Simpson rule ?
(15) What is the exponential transformation for quadrature ?
2. Obtain the first variation of the following functionals, the necessary conditions, and Euler's equations on the admissible set K :
(1) $J(v)=\frac{1}{2} \int_{0}^{1}\left\{\left(v^{\prime}\right)^{2}+x v^{2}\right\} d x-\int_{0}^{1} f v d x$
$K=\{v \in V: v(0)=v(1)=0\}$
$V=\{v:$ piecewise continuously differentiable functions on $(0,1)\}$

$$
\begin{equation*}
J(v)=\frac{1}{2} \int_{0}^{1}\left\{\left(v^{\prime}\right)^{2}+x v^{2}\right\} d x+\frac{1}{2} k_{0} v(0)^{2}-\int_{0}^{1} f v d x-P v(0) \tag{2}
\end{equation*}
$$

$$
K=V
$$

$$
\begin{align*}
& \begin{aligned}
& J(v)= \frac{1}{2} \int_{0}^{1}\left\{\left(E I(x) v^{\prime \prime}\right)^{2}-P\left(v^{\prime}\right)^{2}+k(x) v^{2}\right\} d x+\frac{1}{2} k_{0} v(0)^{2}+\frac{1}{2} k_{1} v^{\prime}(0)^{2} \\
& \quad-\int_{0}^{1} f v d x-F v(0)-T v^{\prime}(0) \\
& K=V
\end{aligned} \tag{3}\\
& V=\{v: \text { piecewise } \text { twice continuously differentiable functions on }(0,1)\}
\end{align*}
$$

3 Solve the minimization problem by the Ritz method:

$$
\min _{\substack{v \\ \text { suchthat } \\ \text { vi(0)=0 }}} J(v)
$$

where

$$
J(v)=\frac{1}{2} \int_{0}^{1}\left\{\left(v^{\prime}\right)^{2}+x v^{2}\right\} d x-\int_{0}^{1} 2 v d x .
$$

4. Consider a curve defined by

$$
\left\{\begin{array}{l}
x=\cos \left(\theta+\theta^{2}\right) \\
y=\sin (\theta)+\sin \left(\theta^{2}\right) \\
z=\theta / 2 \pi
\end{array}\right.
$$

using a parameter θ such that $\theta \in(0,2 \pi)$.
(1) Obtain the expression of the tangent vector \boldsymbol{t}.
(2) Obtain the normal and bi-normal vectors \boldsymbol{n} and \boldsymbol{b}, respectively.
(3) What is the total length of this curve ?

