Midterm Examination : November 8, 1995 MEAM 501 Analytical Methods in Mechanics

1995 Fall

name	SS#
name	

1. (SVD: 35%) Let a matrix A be a *m*-by-*n* real rectangular matrix, and let b be a m-component real vector.

(1) State the singular value decomposition theorem.

(2) Obtain the pseudo-inverse (generalized inverse) A^+ by using the singular value decomposition.

(3) Show that $x = A^+ b$ is a solution of the least squares problem of

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|^2$$

where $\|\boldsymbol{g}\|$ is the natural norm of a vector \boldsymbol{g} defined by $\|\boldsymbol{g}\| = \sqrt{\boldsymbol{g}^T \boldsymbol{g}}$.

2. (Householder : 35%) Answer to each question related to the Householder transformation.

(1) Define the Householder transformation P.

(2) Show that it is orthogonal.

(3) Obtain its inverse.

(4) Suppose that we have a 4-by-4 matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix}.$$

Using the Householder transformation, describe a method to form a new matrix that has the form

$$\overline{A} = \begin{bmatrix} X & X & X & X \\ X & X & X & X \\ X & 0 & X & X \\ X & 0 & X & X \end{bmatrix},$$

that is, the (3,2) and (4,2) components are enforced to be zero. Here "X" means possibly non-zero.

(5) (Take Home Part) Check whether the algorithm stated in (4) is correct or not by using MATLAB.

- 3. (Eigenvalues : 30%) Let *A* be a *n*-by-*n* real square symmetric matrix.
- (1) Show that its eigenvalues must be real.

(2) (Take Home Part) Show that all the eigenvectors are linearly independent if all the eigenvalues are distinctive, i.e., $\lambda_1 \neq \lambda_2 \neq \dots \neq \lambda_n$.

(3) (Take Home Part) Obtain the eigenvalues and eigenvectors of a matrix

$$A = \begin{bmatrix} 5 & 2 & -1 & 0 & -1 \\ 2 & 4 & 3 & 1 & 0 \\ -1 & 3 & 5 & 2 & -1 \\ 0 & 1 & 2 & 4 & 3 \\ -1 & 0 & -1 & 3 & 5 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \end{bmatrix}$$

by applying the QR algorithm using MATLAB.

(4) (Take Home Part) Obtain the eigenvalues of the matrix A defined in (3) by solving the characteristic equation $det(A - \lambda I) = 0$ by using MATLAB. Compare with the QR algorithm, and describe advantage or disadvantage of this approach.

(5) How to check whether the column vectors a_1 , a_3 , and a_5 are linearly independent?