Note on the Tangent and Normal of a Curve

Let a curve C is defined in space, and let s be the coordinate along the curve. The position vector of an arbitrary point P of the curve C is given by

$$
\mathbf{r}=x \mathbf{e}_{x}+y \mathbf{e}_{y}+z \mathbf{e}_{z}
$$

where $\left\{\begin{array}{lll}\mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z}\end{array}\right\}$ are the unit vectors along the x, y, and z axes, respectively. Definition of the derivative yields a tangent vector to the curve C :

$$
\frac{d \mathbf{r}}{d s}=\lim _{\Delta s \rightarrow 0} \frac{\left.\mathbf{r}\right|_{s+\Delta s}-\left.\mathbf{r}\right|_{s}}{\Delta s}=\frac{d x}{d s} \mathbf{e}_{x}+\frac{d y}{d s} \mathbf{e}_{x}+\frac{d z}{d s} \mathbf{e}_{x}
$$

while the differential $d s$ along the curve C is given by

$$
d s=\sqrt{d x^{2}+d y^{2}+d z^{2}}
$$

Thus the length of the curve C may be computed by

$$
L=\int_{C} d s=\int_{\left\{\begin{array}{lll}
x_{0} & y_{0} & z_{0}
\end{array}\right\}}^{ \begin{cases}x\end{cases} } \sqrt{d x^{2}+d y^{2}+d z^{2}}
$$

Furthermore, if t is the unit tangent vector to the curve C, it satisfies the relation

$$
\mathbf{t} \bullet \mathbf{t}=1 \Rightarrow 2 \mathbf{t} \cdot \frac{d \mathbf{t}}{d s}=0 \Rightarrow \mathbf{t} \perp \frac{d \mathbf{t}}{d s}
$$

that is, the vector $\frac{d \mathbf{t}}{d s}$ is normal to the tangent vector \mathbf{t}. Thus, the normal vector to the curve C can be defined by the first derivative of the unit tangent vector \mathbf{t} of the curve C .

Example A function f is defined by $y=f(x)=x-x^{2}$. In this case, since

$$
d s=\sqrt{d x^{2}+d y^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

the length of the curve formed by the function f is defined by

$$
L=\int_{C} d s=\int_{x_{0}}^{x} \sqrt{1+\left(\frac{d f}{d x}\right)^{2}} d x
$$

while the unit tangent vector of the curve C is nothing but

$$
\mathbf{t}=\frac{d x}{d s} \mathbf{e}_{x}+\frac{d y}{d s} \mathbf{e}_{y}=\frac{d x}{d s} \mathbf{e}_{x}+\frac{d x}{d s} \frac{d y}{d x} \mathbf{e}_{y}=\frac{\mathbf{e}_{x}+\frac{d f}{d x} \mathbf{e}_{y}}{\sqrt{1+\left(\frac{d f}{d x}\right)^{2}}}
$$

Using the following MATHEMATICA script program
$\mathrm{f}=\mathrm{x}-\mathrm{x}^{\wedge} 2$;
$\mathrm{df}=\mathrm{D}[\mathrm{f}, \mathrm{x}]$;
$\mathrm{tv}=\{1, \mathrm{df}\} / \operatorname{Sqrt}[1+\mathrm{df} \wedge 2]$
$\mathrm{dtv}=\mathrm{D}[\mathrm{tv}, \mathrm{x}]$;
nv=Simplify[dtv/Sqrt[dtv.dtv]]
Simplify[tv.nv]
<<Graphics`PlotField`
tvlist=Table[\{\{x,f\},tv\},\{x,-1,1,0.2\}];
$\mathrm{g} 1=$ ListPlotVectorField[tvlist,AspectRatio-> 1]
g2=Plot[f,\{x,-1,1\},AspectRatio->1]
Show[g1,g2]
nvlist=Table[\{\{x,f\},nv\},\{x,-1,1,0.2\}];
g3=ListPlotVectorField[nvlist,AspectRatio->1]
Show[g2,g3]

We can find the unit tangent and normal vectors.

Tangent Vector

Normal Vector

