Review Problems for the Midterm Examination

February 14, 2000

1. Define an inner product of a linear space V that is a set of all continuous functions defined on an interval $(0,1)$, and show that it satisfies the required properties of the inner product. Orthogonalize three functions $\phi_{1}(x)=1, \phi_{2}(x)=x$, and $\phi_{3}(x)=x^{2}$ with respect the inner product you have defined
2. State the required properties of a norm $\|$.$\| in a linear space V$. What is the natural norm? Show that the following two norms satisfy the required properties of a norm:

$$
\begin{aligned}
& \text { (1) }\|f\|=\max _{x \in[0,1]}|f(x)| \\
& \text { (2) }\|f\|=\sqrt{\int_{0}^{1}|f(x)|^{2} d x}
\end{aligned}
$$

where V is a set of all continuous functions defined on $[0,1]$. Show that the inequality

$$
\sqrt{\int_{0}^{1}|f(x)|^{2} d x} \leq \max _{x \in[0,1]}|f(x)| .
$$

State your idea whether or not a positive constant $\alpha>0$ exists that satisfies the inequality

$$
\alpha \max _{x \in[0,1]}|f(x)| \leq \sqrt{\int_{0}^{1}|f(x)|^{2} d x}
$$

3. Suppose that a data set $\left\{f_{i}\right\}, i=1, \ldots, n+1$ is given at a set of sampling points $\left\{x_{i}\right\}, i=1, \ldots, n+1$. Define the least squares method to approximate a function $f(x)$ by using a set of linearly independent functions $\left\{\phi_{k}(x)\right\}, k=1, \ldots, m+1$. Also find the necessary condition of the least squares method. For the data $\left\{\begin{array}{c}0 \\ 1 / \sqrt{2} \\ 1\end{array}\right\}$ at the sampling points $\left\{\begin{array}{c}0 \\ \pi / 4 \\ \pi / 2\end{array}\right\}$, find the least squares solution using $\left\{\begin{array}{l}\phi_{1}(x) \\ \phi_{2}(x)\end{array}\right\}=\left\{\begin{array}{l}1 \\ x\end{array}\right\}$.
4. Define the Lagrange polynomials $L_{i}^{n}(x)$ defined on the $(n+1)$ number of sampling points $x_{i}, i=1, \ldots, n+1$.
5. Define the Legendre polynomials defined on the interval $(-1,1)$. Find the roots of the Legendre
polynomials whose degree of polynomial is 1,2 , and 3 .
6. Find the least squares approximation of a function $f(x)=\exp \left(-x^{2}\right)$ by using $\left\{\begin{array}{l}\phi_{1}(x) \\ \phi_{2}(x)\end{array}\right\}=\left\{\begin{array}{c}1 \\ x^{2}\end{array}\right\}$ and an inner product (.,.) defined by

$$
(f, g)=\int_{-1}^{1}\left\{f(x) g(x)+f^{\prime}(x) g^{\prime}(x)\right\} d x
$$

7. Describe what is the moving least squares method.

Furthermore, review last two homework sets, especially the second one.

