
Partial Solutions of Review Problems 2, 1998 Fall

MEAM 501   Analytical Methods in Mechanics and Mechanical Engineering

1. Define the Legendre polynomials in an interval (-1,1), and approximate a data by the

least squares method for appropriate number of terms of the basis functions.

Legendre polynomials are defined as the polynomials obtained by the othogonalization

of the polynomial basis functions { }......1 3 nxxxx 2  with respect to an inner

product (.,.) defined on a given interval, say, (-1,1) or (0,1):
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In general, they are also normalized by its natural norm ( )fff ,= .

n=6

pbasis=Table[x^(i-1),{i,1,n+1}]

LP=pbasis;

LP[[1]]=pbasis[[1]]/Sqrt[NIntegrate[pbasis[[1]]^2,{x,-1,1}]];

Do[xi=pbasis[[i]];



Do[cj=NIntegrate[LP[[j]]*xi,{x,-1,1}];

xi=xi-cj*LP[[j]],{j,1,i-1}];

LP[[i]]=Expand[xi/Sqrt[NIntegrate[xi^2,{x,-1,1}]]],

{i,2,n+1}]

LP

Plot[Release[LP],{x,-1,1},PlotRange->All,Frame->True]

Polynomial Basis Functions

Legendre Polynomial Computed

Let a function f be approximated by
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using the least squares method, that is, the coefficients ci are determined by solving

rectangular equations with the pseudo-inverse, i.e., the singular value decomposition :
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where xm are the coordinates at which the function f is sampled.

.

n=10;

A=N[Table[LegendreP[i-1,x]/.{x->data[[j,1]]},{j,1,21},{i,1,n}]];

coef=PseudoInverse[A].Transpose[data][[2]];

fn=Sum[coef[[i]]*LegendreP[i-1,x],{i,1,n}]

g2=Plot[fn,{x,-1,1},PlotRange->All, Frame->True, GridLines->Automatic]

Show[{g1,g2}]

fnj=Table[N[fn/.{x->data[[j,1]]}],{j,1,21}];

errornorm=Sqrt[(fnj-Transpose[data][[2]]).(fnj-Transpose[data][[2]])]

Approximated Function fn(x)



Error for n = 10 :

For n = 3, we have large error, say 0.35259.

2. Interpolate the above data by using the Lagrange Polynomials by using 3, 5, 11, and

21 basis functions.



Using n+1 points, 121 .....,,, +nxxx , the n degree Lagrange polynomial is defined by
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Lagrange Polynomials ( n = 5 )

Interpolation/Approximation ( n = 3 )



Interpolation/Approximation ( n = 5 )

Interpolation/Approximation ( n = 11 )

Interpolation/Approximation ( n = 21 )

3. Decomposing the above data into two sets for (-1,0) and (0,+1) for t, approximate the

above data by using the Hermite cubic polynomials, Bezier polynomilas, and also B-

spline for k=5.



For the case of the cubic Hermite Polynomial:

HP={1-3*t^2+2*t^3,t*(1-t)^2,3*t^2-2*t^3,(-1+t)*t^2};

n=4;

A1=N[Table[HP[[i]]/.{t->data[[j,1]]+1},{j,1,11},{i,1,n}]];

d1=Table[data[[j,2]],{j,1,11}];

A2=N[Table[HP[[i]]/.{t->data[[10+j,1]]},{j,1,11},{i,1,n}]];

d2=Table[data[[10+j,2]],{j,1,11}];

coef1=PseudoInverse[A1].d1;

coef2=PseudoInverse[A2].d2;

fn1=Sum[coef1[[i]]*(HP[[i]]/.{t->1+x}),{i,1,n}]

fn2=Sum[coef2[[i]]*(HP[[i]]/.{t->x}),{i,1,n}]

g21=Plot[fn1,{x,-1,0},PlotRange->All, Frame->True, GridLines->Automatic]

g22=Plot[fn2,{x,0,1},PlotRange->All, Frame->True, GridLines->Automatic]

Show[{g1,g21,g22}]

Subdomain ( -1, 0 )

Subdomain ( 0, +1 )



For Bezier and B-splines, please work out by yourself. However, you should review what

is the property of the Bezier and B-splines. Their special characteristics must be well

reviewed.

Problem 4, 5, and 6 will be solved by using the Legendre polynomials obtained in

Problem1. And the following MATHEMATICA program:

n=7;

A=N[Table[LegendreP[i-1,x]/.{x->data[[j,1]]},{j,1,21},{i,1,n}]];

coef=PseudoInverse[A].Transpose[data][[2]];

fn=Sum[coef[[i]]*LegendreP[i-1,x],{i,1,n}]

g2=Plot[fn,{x,-1,1},PlotRange->All, Frame->True, GridLines->Automatic]

Show[{g1,g2}]

fnj=Table[N[fn/.{x->data[[j,1]]}],{j,1,21}];

errornorm=Sqrt[(fnj-Transpose[data][[2]]).(fnj-Transpose[data][[2]])]

dfn=D[fn,x];

Lcurve=NIntegrate[Sqrt[1+dfn^2],{x,-1,1}]

fp={x,fn};

dfp=D[fp,x];

tv=dfp/Sqrt[dfp.dfp];

ftv=Table[N[{fp,tv}/.{x->-1+2*(i-1)/10}],{i,1,11}];

g21=ListPlotVectorField[ftv]

dtv=D[tv,x];

nv=dtv/Sqrt[dtv.dtv];

fnv=Table[N[{fp,nv}/.{x->-1+2*(i-1)/10}],{i,1,11}];

g22=ListPlotVectorField[fnv]

Show[{g2,g21,g22}]

kappa=Sqrt[dtv.dtv]/Sqrt[dfp.dfp];

Plot[kappa,{x,-1,1},PlotRange->All,Frame->True,GridLines->Automatic]

4. Compute the total length of the curve defined by the above data.

Let a function ( )xfy =  be formed from the given data by one of appropriate



polynomial form using Lagrange polynomials, Bezier splines, and others. Assuming

that the coordinate s is set up along the curve, and let the left end point be zero, while

the right end point be set up the total length of the curve L. Then, it can be computed by
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5. Define, compute, and plot the unit tangent and normal vectors of the curve defined by

the above data.

The position vector r of an arbitrary point P of the curve is defined by the two-

dimensional coordinate ( )( )xfx, , and it can be also defined by the coordinate along the

curve s. Then, the tangent vector t is defined by
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Since the tangent vector t is a unit vector, we also have
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where κ is the curvature of the curve, and n  is the unit normal vector to the curve. To

compute κ, we use
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6. Compute the curvature of the curve defined by the above data.

The curvature κ is defined in the previous question.

7. What is the Gauss-Legendre quadrature ( numerical integration ) ?

In order to integrate a function ( )sf  defined on an interval ( -1, +1 ), we apply the

quadrature using the n number of quadrature points nisi ,...,1, = , and the n number

of weights niwi ,...,1, = :
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where the quadrature points is  are the roots of the n degree Legendre polynomial

( ) ( )1,1,0 −∈= iin ssL  that is a n degree polynomial. The weights iw  are obtained so as
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Using this quadrature, we can integrate exactly up to 12 −n  degree polynomials.

8. Obtain the first variation of the following functionals at u in the direction v :
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bvvε    and D  is 6-by-6

symmetric matrix.
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9. Find the necessary condition of the constrained minimization problem
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Suppose that u is a minimizer of the functional F on K. Then we have
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10. Define the Haar Wavelet.

Based on the "mother wavelet" function
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we form the mutually orthogonal wavelet functions:
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that is, they are orthogonal. Furthermore, ( )xj
k

1+ψ  has twice more resolution, that is a



half interval of ( )xj
kψ .
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11. Define the multi-resolution analysis.

As basis functions for approximation of a boundary value problem, we shall apply the

special form defined by
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so that the approximation in term of the index j+1 involves the twice more terms than

that of the case j, that is, twice more resolution is introduced in the approximation by an

increase of the range of the index j. Thus, by increasing the range of the index j, we have



multiple resolution in the approximation, and it is called the multi-resolution analysis.

This may be represented by the following form:
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The approximation ( )xu J 1+  contains 12 +J  terms more basis functions than ( )xu J , and

it has twice more resolution than ( )xu J .

You should also review the problems which were suggested in 1997 Fall term.


