Review Problems for Midterm Examination

1. Formulate the following boundary value problem

$$
\begin{aligned}
& -\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+u(x) \frac{d u}{d x}+k(x) u=f(x) \quad, \quad x \in(0, L) \\
& u(0)=u_{0}
\end{aligned}
$$

by the weighted residual method.
2. Formulate the following boundary value problem

$$
\begin{aligned}
& -\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+k(x) u=f(x) \quad, \quad x \in(0, b) \cup(b, L) \\
& a\left(b_{-}\right) \frac{d u}{d x}\left(b_{-}\right)-a\left(b_{+}\right) \frac{d u}{d x}\left(b_{+}\right)=P \\
& u(0)=u_{0}
\end{aligned}
$$

by the weighted residual method and by applying the integration by parts rule, where $g\left(b_{-}\right)=\lim _{\varepsilon \rightarrow 0} g(b-\varepsilon), g\left(b_{+}\right)=\lim _{\varepsilon \rightarrow 0} g(b+\varepsilon), \mathrm{b}$ in a point inside of the interval $(0, L)$, and P is a given number. After obtaining the weighted residual formulation, approximate it by

$$
u(x)=\sum_{j=1}^{n} u_{j} \phi_{j}(x) \quad, \quad w(x)=\sum_{i=1}^{n} w_{i} \psi_{i}(x)
$$

where w is an arbitrary weighting function, and obtain a discrete problem

$$
\mathbf{K} \mathbf{u}=\mathbf{f}
$$

in terms of $a, k, f, P, \phi_{j}, \psi_{i}$, and L. That is, find the $i-j$ component of K and i component of f.
3. (Continuation of Problem 2) Assume $L=a(x)=k(x)=f(x)=1, b=\frac{1}{2}, P=1$ and $u_{0}=0$, and

$$
\phi_{1}(x)=\psi_{1}(x)=1-4\left(x-\frac{1}{2}\right)^{2} \quad, \quad \phi_{2}(x)=\psi_{2}(x)=2 x\left(x-\frac{1}{2}\right)
$$

(1) Obtain the 2-by-2 matrix K and 2 component vector f , where $n=m=2$ are assumed too.
(2) Find the eigenvalues λ of the matrix K together with the eigenvectors \boldsymbol{x}.
(3) Solve the matrix equation $\mathbf{K u}=\mathbf{f}$.
(4) Represent the solution u as a linear combination of the two eigenvectors of the 2-by-2 matrix K.
(5) Find which mode (i.e. eigenvector) is dominant.
4. Answer to the following questions:
(1) For a m-by- n matrix \mathbf{A}, state the definition of the singular value decomposition of \mathbf{A}.
(2) Using the result of the singular value decomposition, state what is the rank of \mathbf{A}, what is the range of \mathbf{A}, and what is the null space of \mathbf{A} ?
(3) State your idea why we are interested in knowing the range of \mathbf{A} and the null space of A .
(4) What is an orthogonal matrix Q ?
(5) When two vectors u and v are orthogonal ?
(6) Show that if a matrix \mathbf{Q} defined by $\mathbf{Q}=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots \ldots, \mathbf{q}_{n}\right]$ where \mathbf{q}_{i} are orthonormal, Q is an orthogonal matrix.
(7) Describe the Gram-Schmidt orthonormalization process for n number of linearly independent vectors.
(8) What is the definition of linearly independent vectors $\mathbf{v}_{i}, i=1, \ldots, n$?
(9) What is the Householder transformation \mathbf{P} defined by a vector v ? State the property of \mathbf{P}.
(10) What is the QR decomposition of a square matrix \mathbf{A} ?
(11) State QR algorithm to find the eigenvalues and eigenvectors of a symmetric square matrix \mathbf{A}.

