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In the first model problem, we have consider vibration of an elastic string:
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Here a distributed elastic foundation is assumed to be connected on the elastic string

spanned by a tensile force T, and u0 and v0 are the initial displacement and velocity at

the initial time t = 0. Applying the weighted residual method with the finite number of

trial functions and test functions ( ) ( ){ }xx ij ψφ , , a discrete problem
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We shall now consider a homogeneous problem that the right hand side, the applied

distributed force f is zero:
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and we shall consider a stationary problem with harmonic motion such that

( ) 1, −== iet ti xu ω

where ω is a frequency of the harmonic motion in time, and x  is independent of time t.

Substitution of the harmonic motion into the equation of motion, we have

2, ωλλ ==+− 0KxMx

that is

2, ωλλ == MxKx .

When m = n in the discrete problem, this is called a generalized eigenvalue problem,

where λ is an eigenvalue and x is an associated eigenvector of K  and M . If we can

decompose the mass matrix into the following form

TLLM =

where L is non-singular in the sense that its inverse L -1 exists, then

xLMxLxLKLLxLLMxKx TTTT λλλλ ==⇔== −−− 11

Putting

xLy T=

we can convert the generalized eigenvalue problem to the form of the standard

eigenvalue problem

( ) yAyyyLKL λλ ==−− ,11 T
.



In this case, if M  and K are symmetric, then A is also symmetric. That is, the

transformation xLy T=  of the eigenvector, yields a symmetric eigenvalue problem.

However, M -1K  need not be symmetric even for both symmetric M  and K , and then the

eigenvalue problem

xKxM λ=−1

must be solved only by a un-symmetric eigenvalue solver.

Suppose that we have n number of eigenvalues, λ1,....,λn, and n number of linearly

independent eigenvectors, x1,....,xn, of the generalized eigenvalue problem:

niiii ,.....,2,1, == MxKx λ .

Applying the Gram-Schmidt orthogonalization process with respect to a given matrix M

of n number of linearly independent vectors z1,.....,zn:
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n number of linearly independent eigenvectors x1,....,xn, can be orthonomalized with

respect to the matrix M  ( i.e. ( ) ), ijji δ=Mxx , and then they can span the n

dimensional space Rn, that is, any n component vector can be represented by a linear

combination of the eigenvectors. Here ( ) yzyz T=,  is the dot product of two n

component vectors.

Suppose that we assume the solution form of the discrete vibration problem:
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then we have
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Multiplying another eigenvector x i to these equations, and applying the orthogonality

condition
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we can derive n number of single ordinary differential equations from the discrete

problem:
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These single second order ordinary differential equations can be solved analytically by

using either MATLAB or MATHEMATICA, and then we can obtain the analytical

solution u of the discrete problem. It is, however, noted that if the number n becomes

large, finding all the eigenvalues and their associated eigenvectors becomes unrealistic.

In such a case, we shall approximate the solution u  by using few number of eigenvectos.

In general, if the eigenvalues are reordered from the small absolute values to larger

ones, then the dynamic motion is largely dominated by eigenvectors associated with

smaller eigenvalues.

Indeed, if an approximation of the solution u of the static problem:

fKu =

is considered, and its approximate solution um is defined by using the first m number of



eigenvectors associated with the m number of eigenvalues from the small side:
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then the norm of error of the is defined, and it is bounded by
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Example 1 : Static Equilibrium Problem As an example of approximation by using a

finite number of eigenvectors, we shall consider a similar differential equation with the

static equilibrium equation of an elastic string spanned on a distributed spring with a

tensile force:
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Decomposing the interval Ω=(0,L) into n number of equal size subinterval by

introducing the equally distributed nodes defined by

                                                  
1 Multiplying the eigenvector ix  to this equation, we have fx T
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we shall apply the central finite difference approximation:
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Knowing that the boundary condition yields

011 == +nuu

we can derive a matrix equation

fKu =

where
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In this example, let us assume
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and n = 10. Using the following MATLAB script program:

% finite difference method to solve

% -d( a du/dx )/dx +ku = f  in  (0,L)

% u(0) = u(L) = 0

% MEAM 501     1998 Fall

%

L=1;

n=10;

dx=L/n;

% set up nodal values of a, k, and f

a=[];

k=[];

f=[];

x=[];

for i=1:n+1

   xi=(i-1)*dx;

   x(i)=xi;

   a(i)=1+0.8*sin(2*pi*xi/L);

   k(i)=1+exp(-xi/L);

   f(i)=sin(pi*xi/L);

end

% set up the coefficient matrix K

A=[];

for i=2:n

   am=0.5*(a(i-1)+a(i))/dx^2;

   ap=0.5*(a(i)+a(i+1))/dx^2;



   ad=am+ap+k(i);

   A(i,i-1)=-am;

   A(i,i)=ad;

   A(i,i+1)=-ap;

end

% set up the boundary condition

A(2,1)=0;

A(n,n+1)=0;

A(1,1)=1;

A(n+1,n+1)=1;

f(1)=0;

f(n+1)=0;

A

f

% solution of this problem

u=f/A

plot(x,u)

% eigenvalues and eigenvectors of the coefficient matrix A

[X,L]=eig(A)

% reordering the eigenvalues and eigenvectors

for i=1:n

   for j=i+1:n+1

      lami=L(i,i);

      lamj=L(j,j);

      if lami>lamj

         qi=X(:,i);

         qj=X(:,j);

         L(i,i)=lamj;

         L(j,j)=lami;

         X(:,i)=qj;

         X(:,j)=qi;

      end

   end

end

L

for i=1:n+1



   L(i,i)

   plot(x,X(:,i))

   xlabel('x')

   ylabel('eigenvector')

   title('Eigenvector of the Coefficient Matrix')

   pause

end

% amount of domination by the eigenvectors

ua=zeros(n+1,1);

for i=3:n+1

   ui=u*X(:,i)

   ua=ua+ui*X(:,i);

   plot(x,ua,x,u)

   xlabel('x')

   ylabel('u & um')

   title('Stepwise Eigenvector Approximation')

   pause

end

we shall solve the boundary value problem by the central finite difference

approximation. For n = 10, the solution profile is obtained as follows:
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Now, using the nine eigenvectors of the coefficient matrix K except the ones related to



the boundary condition:
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we shall approximate the solution by using the first m number of eigenvectors from

small side:
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It is clear that the first three eigenvectors are sufficient to approximate the solution.

Indeed, if we compute the dot product of the solution and the eigenvectors, we have

Number of Eigenvectors Dot Product ixu •
1 0.2152
2 0.0074
3 0.0041
4 6.5542 x 10-4

5 3.5516 x 10-4

6 -4.2776 x 10-4

7 1.1575 x 10-4

8 -1.7537 x 10-5

9 -2.3127 x 10-6

Even one eigenvector can represent the solution very well. It is noted that the right

hand side f is given, and it is not related to the mechanical system of the elastic string

spanned on the spring in the sense that it can be changed. The eigenvalues and

eigenvectors are directly related to the mechanical system, not to the input data. In this

sense, knowing the eigenvalues and eigenvectors is essential to grasp the

characterization of the mechanical system.

Exercise 1 Compute the dot product of the right hand side f and the eigenvectors.

From these numbers, you may observe that the first few eigenvectors are sufficient to

represent the right hand side.



Example 2 : Vibration of an Elastic String The free vibration problem of
an elastic string ( or rope ), that is tensioned by the force T, can be defined by
the following initial-boundary value problem
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where ρ is the mass density of the string per unit volume, A is the cross sectional area, T

is the tension force applied, w is the vertical deflection of the string, L is the length of

the string, x is the coordinate along the string, and t is the time.

T T
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This initial-boundary value problem can be approximated by the finite element method,

and can be replaced by the system of ordinary differential equations
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and

where M  is the global mass matrix, K  is the global stiffness matrix, u  is the generalized

displacement defined by the nodal deflection of the string, u0 is the discretized initial

deflection specified, and v0 is the initial nodal velocity specified.  If the equal size two

node linear elements are applied, the mass and stiffness matrices are computed by



M =
ρAL

6 NE

2 1 0 0 0 .....

1 4 1 0 0 ..... 0

0 1 4 1 0 ..... 0

0 0 1 4 1 ..... 0

0 0 0 1 4 ..... 0

: : : : : :
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( if the consistent mass matrix is computed )

ˆ M =
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2 NE

1 0 0 0 0 .....
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0 0 2 0 0 ..... 0
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( if the lumped mass matrix is computed )

K =
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where NE is the total number of elements, and TNEk0/L is the spring constant that

represents the fixed support.  That is, the boundary condition w = 0 at x = 0 and L, is

approximated by the penalty method, i.e., the support is replaced by the very stiff

spring.  It should be very large number.  Using the lumped mass matrix, the above

problem can be represented by
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and



For the following example, we shall assume  NE = 10, L = 1, T/ρA = 1, and k
0
=10^5.

MATHEMATICA Script Program for Transient Analysis

(* L      = length of the string                   *)

(* ne     = number of finite elements              *)

(* he     = element size                           *)

(* spring = spring constant to replace the support *)

L=1;

ne=10;

nx=ne+1;

he=L/ne;

spring=10^5/he^2;

(* A = Inverse[M].K       *)

(* M = lumped mass matrix *)

(* K = stiffness matrix   *)

A=Table[0,{i,1,nx},{j,1,nx}];

Block[{i},

  Do[If[i>1,A[[i-1,i]]=-1/he^2,];

     If[i<nx,A[[i+1,i]]=-1/he^2,];

     A[[i,i]]=2/he^2,

     {i,1,nx}]

  ]

A[[1,1]]=(1/he^2+spring)*2;

A[[nx,nx]]=(1/he^2+spring)*2;

(* R = eigenvalues                *)

(* X = eigenvectors {x1,x2,.....} *)

R=Eigenvalues[N[A]]

X=Eigenvectors[N[A]];

(* Plot the Eigenvectors *)

Block[{i},

  Do[xi=Table[X[[i,j]],{j,1,nx}];

     ListPlot[xi,PlotJoined->True],

     {i,1,nx}]

  ]

(* Define the initial displacement x0 *)



x0=N[Table[(he*(i-1))^2 Sin[Pi he*(i-1)],{i,1,nx}]]

(* Define the initial velocity y0     *)

y0=N[Table[0,{i,1,nx}]]

ListPlot[x0,PlotJoined->True]

ListPlot[y0,PlotJoined->True]

x0i=N[X.x0]

y0i=N[X.y0]

xt=Table[0,{i,1,nx},{j,1,nx}];

(* Plot the Dynamical Response                  *)

(* set up the time increment and the final time *)

dt=0.01;

Tmax=0.3;

imax=Round[Tmax/dt]+1;

kmax=5;

Block[{i,j,k},

  Do[

  Do[xt[[j,k]]=Sum[(Cos[R[[i]] t] x0i[[i]] +

            Sin[R[[i]] t] y0i[[i]]/R[[i]]) X[[i,j]],

                 {i,nx-k+1,nx}],

     {j,1,nx}];

  xtp=Table[xt[[j,k]]/.{t->dt*(i-1)},

            {j,1,nx},{i,1,imax}];

  ListPlot3D[xtp,PlotRange->All],

  {k,1,kmax}]

 ]

OUTPUT from the above MATHEMATICA program

Computed Eigenvalues ( Reverse Ordering )

           7            7

{2.00002 10 , 2.00002 10 , 390.211, 361.803, 317.557,

  

  261.803, 200., 138.196, 82.4428, 38.1965, 9.78868}

Associated Eigenvectors ( Free Vibration Modes )



  





Initial nodal displacement ( specified )

{0, 0.00309017, 0.0235114, 0.0728115, 0.152169, 0.25,

  

  0.34238, 0.396418, 0.376183, 0.250304, 0}

Initial nodal velocity ( specified )

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

Profile of the initial displacement



Influence coefficients corresponding to the eigenvalues

           -8            -6

{1.54503 10  , 1.25151 10  , 0.00118029, -0.00262202,

  

  0.00472119, -0.0082775, 0.0152783, 0.0318841, 0.0847209,

  

  -0.402622, 0.632001}

{0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}

Profiles of the transient response ( displacement )

Only by the 11th Mode 11th + 12th Modes



11th + 10th + 9th Modes 11th + 10th + 9th + 8th Modes

All Modes

It is clear that the first few modes can provide almost exact transient response.  In

other words, we need not compute all of the eigenvalues and eigenvectors to see

transient response of a given dynamic problem.  It is also noted that accuracy of the

finite element approximation must be taken into account when eigenvalues and

eigenvectors are involved.  Indeed, in the above example, only 10 finite elements are

used to make a finite element model of an elastic string.  In this case, if we compare the

FEA result with the exact ( analytical ) solution, we can find the error (%)

           6            6

{1.67465 10 , 2.02634 10 , -51.1893, -42.7213, -34.3362,

  

  -26.3161, -18.9431, -12.4861, -7.18662, -3.24705,  -0.819959}

That is, the first eigenvalue is computed only with 0.82% error, while the error is

increased for the higher eigenvalues.  The second one has 3.2% error, the third one has



7.2% error, and so on.  If the number of finite elements is increased, then the error

should be reduced.  Only two eigenvalues are estimated within 5% error.  If 20 finite

elements are applied, then the error becomes

           6            6

{1.83794 10 , 2.02634 10 , -55.3695, -51.1893, -46.9622,

  

  -42.7213, -38.501, -34.3362, -30.2627, -26.3161,

  

  -22.5314, -18.9431, -15.5842, -12.486, -9.6779,

  

  -7.18655, -5.03596, -3.24697, -1.837, -0.819863,  -0.205547}

In this case, four eigenvalues are estimated within 5% error.  It is important to note

that in order to obtain accurate eigenvalues and eigenvectors, we must develop very

refined models.


