Midterm Examination : 1998 Fall

MEAM 501 Analytical Methods in Mechanics and Mechanical Engineering

1. (15 Points) Formulate the following boundary value problem

$$
\begin{aligned}
& -\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+h(x) \frac{d u}{d x}+k(x) u=f(x) \quad, \quad x \in(0, b) \cup(b, L) \\
& a\left(b_{-}\right) \frac{d u}{d x}\left(b_{-}\right)-a\left(b_{+}\right) \frac{d u}{d x}\left(b_{+}\right)=P \\
& u(0)=u_{0} \quad, \quad a(L) \frac{d u}{d x}(L)=v_{0}
\end{aligned}
$$

by the weighted residual method and by applying the integration by parts rule, where $g\left(b_{-}\right)=\lim _{\varepsilon \rightarrow 0} g(b-\varepsilon), g\left(b_{+}\right)=\lim _{\varepsilon \rightarrow 0} g(b+\varepsilon)$, b in a point inside of the interval $(0, L)$, and P is a given number.

$$
\begin{aligned}
& \int_{0}^{b} w\left\{-\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+h(x) \frac{d u}{d x}+k(x) u\right\} d x+\int_{b}^{L} w\left\{-\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+h(x) \frac{d u}{d x}+k(x) u\right\} d x \\
& =\int_{0}^{b} w f(x) d x+\int_{b}^{L} w f(x) d x=\int_{0}^{L} w f(x) d x \\
& -\left[w a(x) \frac{d u}{d x}\right]_{0}^{b}+\int_{0}^{b}\left\{a(x) \frac{d w}{d x} \frac{d u}{d x}+h(x) w \frac{d u}{d x}+k(x) w u\right\} d x \\
& -\left[w a(x) \frac{d u}{d x}\right]_{b}^{L}+\int_{b}^{L}\left\{a(x) \frac{d w}{d x} \frac{d u}{d x}+h(x) w \frac{d u}{d x}+k(x) w u\right\} d x=\int_{0}^{L} w f(x) d x \\
& -w\left(b_{-}\right) a\left(b_{-}\right) \frac{d u}{d x}\left(b_{-}\right)+w(0) a(0) \frac{d u}{d x}(0)-w(L) a(L) \frac{d u}{d x}(L)+w\left(b_{+}\right) a\left(b_{+}\right) \frac{d u}{d x}\left(b_{+}\right) \\
& +\int_{0}^{L}\left\{a(x) \frac{d w}{d x} \frac{d u}{d x}+h(x) w \frac{d u}{d x}+k(x) w u\right\} d x=\int_{0}^{L} w f(x) d x \\
& \int_{0}^{L}\left\{a(x) \frac{d w}{d x} \frac{d u}{d x}+h(x) w \frac{d u}{d x}+k(x) w u\right\} d x=\int_{0}^{L} w f(x) d x+w(b) P+w(L) v_{0} \quad, \quad \forall w \text { s.t. } w(0)=0
\end{aligned}
$$

Here we assume that an arbitrary weighting function is continuous on the domain (0,L).
2. (25 Points) Consider the matrix equation

$$
\left[\begin{array}{ll}
1.5 & 0.5 \\
0.5 & 1.5
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
2.5 \\
3.5
\end{array}\right\} \text { that is } \quad \mathbf{A x}=\mathbf{b}
$$

(1) Find the eigenvalues λ of the matrix \mathbf{A} together with the eigenvectors y.

$$
\operatorname{det}\left[\begin{array}{cc}
1.5-\lambda & 0.5 \\
0.5 & 1.5-\lambda
\end{array}\right]=(1.5-\lambda)^{2}-0.5^{2}=(2-\lambda)(1-\lambda)=0 \Rightarrow \lambda=1 \text { and } \lambda=2
$$

For $\lambda=1$
$\left[\begin{array}{ll}0.5 & 0.5 \\ 0.5 & 0.5\end{array}\right]\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\} \Rightarrow\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\frac{1}{\sqrt{2}}\left\{\begin{array}{c}1 \\ -1\end{array}\right\}$

For $\lambda=2$
$\left[\begin{array}{cc}-0.5 & 0.5 \\ 0.5 & -0.5\end{array}\right]\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\} \Rightarrow\left\{\begin{array}{l}y_{1} \\ y_{2}\end{array}\right\}=\frac{1}{\sqrt{2}}\left\{\begin{array}{l}1 \\ 1\end{array}\right\}$
(2) Solve the matrix equation $\mathbf{A x}=\mathbf{b}$.

$$
\mathbf{x}=\left[\begin{array}{ll}
1.5 & 0.5 \\
0.5 & 1.5
\end{array}\right]^{-1}\left\{\begin{array}{l}
2.5 \\
3.5
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}
$$

(3) Represent the solution x as a linear combination of the two eigenvectors of the 2-by-2 matrix A.

$$
\mathbf{x}=\left(\mathbf{x}, \mathbf{y}_{1}\right) \mathbf{y}_{1}+\left(\mathbf{x}, \mathbf{y}_{2}\right) \mathbf{y}_{2}=-\frac{1}{\sqrt{2}} \mathbf{y}_{1}+\frac{3}{\sqrt{2}} \mathbf{y}_{3}
$$

(4) Find which mode (i.e. eigenvector) is dominant.

Second eigenvector is dominant.

1. (60 Points) Answer to the following questions:
(1) For a m-by- n matrix \mathbf{A}, state the definition of the singular value decomposition of
A. For the matrix A defined by
$\mathrm{A}=$

3	2	1	-3
4	1	2	4
2	1	3	-1

the singular value decomposition is made by MATLAB :

```
EDU t [U,S,V]=svd(A)
U =
\begin{tabular}{rrr}
0.4232 & -0.7303 & -0.5362 \\
0.7753 & 0.5981 & -0.2027 \\
0.4688 & -0.3299 & 0.8194
\end{tabular}
S =
\begin{tabular}{rrrr}
6.7701 & 0 & 0 & 0 \\
0 & 5.1038 & 0 & 0 \\
0 & 0 & 1.7656 & 0
\end{tabular}
\(\mathrm{V}=\quad\)\begin{tabular}{rrrr} 
& & & \\
& 0.7841 & -0.0898 & -0.4421 \\
& -0.4262 \\
& 0.3088 & -0.2336 & -0.2581 \\
& 0.4993 & -0.1026 & 0.8589 \\
& 0.2013 & 0.9627 & -0.0123
\end{tabular}
```

Using the above result of the singular value decomposition, what is the rank of A, what is the range of \mathbf{A}, and what is the null space of \mathbf{A} ?
(2) When are two vectors $\mathbf{u}=\left\{\begin{array}{l}1 \\ 2\end{array}\right\}$ and $\mathbf{v}=\left\{\begin{array}{c}-1 \\ 1\end{array}\right\}$ orthogonal and unit (that is, orthonormal) ? If not, orthonormalize them by the Gram-Schmidt process.
(3) What is an orthogonal matrix \mathbf{Q} ? Show that if a matrix \mathbf{Q} defined by $\mathbf{Q}=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots \ldots, \mathbf{q}_{n}\right]$ where \mathbf{q}_{i} are orthonormal, \mathbf{Q} is an orthogonal matrix.
(4) What is the Householder transformation \mathbf{P} defined by a vector $\mathbf{v}=\left\{\begin{array}{l}1 \\ 2\end{array}\right\}$? State the property of \mathbf{P}.
(5) What is the QR decomposition of a square matrix A ? State QR algorithm to find the eigenvalues and eigenvectors of a symmetric square matrix \mathbf{A}.

