Midterm Examination

ME501 February 24, 2000

Name Noboru Kikuchi

1. Consider a boundary value problem

$$
-\frac{d^{2} u}{d x^{2}}=f \quad \text { in }(0, L)
$$

with boundary condition

$$
u(0)=u(L)=0
$$

where L is the length of the interval where the differential equation is defined, and f is a given function that is also defined on the interval $(0, L)$.
(1) Find the eigenvalues and eigenfunctions (eigenmodes) of the differential operator $-\frac{d^{2}}{d x^{2}}$, that is, find λ and w satisfying the differential equation and the boundary condition:

$$
-\frac{d^{2} w}{d x^{2}}=\lambda w \quad \text { in }(0, L) \quad \& \quad w(0)=w(L)=0
$$

Here w is non-trivial, that is, it is not zero. Hint: w must be trigonometric functions.
Noting that the boundary condition at the both end points is homogeneous, we may assume the solution form $w_{k}(x)=\sin \left(k \pi \frac{x}{L}\right), k=1,2,3, \ldots$

Since $\frac{d^{2} w_{k}}{d x^{2}}=-\left(\frac{k \pi}{L}\right)^{2} \sin \left(\frac{k \pi}{L}\right)=-\left(\frac{k \pi}{L}\right)^{2} w_{k}$, we have
$-\frac{d^{2} w_{k}}{d x^{2}}=\left(\frac{k \pi}{L}\right)^{2} w_{k}=\lambda_{k} w_{k} \quad, \quad \lambda_{k}=\left(\frac{k \pi}{L}\right)^{2}$
that is, the eigenvalue and eigenfunction $\left(\lambda_{k}, w_{k}\right)$ are $\left(\left(\frac{k \pi}{L}\right)^{2}, \sin \left(\frac{k \pi}{L} x\right)\right)$.
(2) Noting that there are infinitely many solutions $\left(\lambda_{k}, w_{k}\right), k=1,2, \ldots$. in (1), expand the given
function $f(x)$ in terms of the eigenfunctions: $f(x)=\sum_{k=1}^{\infty} f_{k} w_{k}(x)$. That is, find the coefficient f_{k} when the function $f(x)$ is expanded by $f(x)=\sum_{k=1}^{\infty} f_{k} w_{k}(x)$.

Assuming the form $f(x)=\sum_{k=1}^{\infty} f_{k} w_{k}(x)$, we have

$$
\int_{0}^{L} w_{j}(x) f(x) d x=\int_{0}^{L} w_{j}(x) \sum_{k=1}^{\infty} f_{k} w_{k}(x) d x=\sum_{k=1}^{\infty} f_{k} \int_{0}^{L} w_{j} w_{k} d x
$$

Since

$$
\begin{aligned}
& \int_{0}^{L} w_{j} w_{k} d x=\int_{0}^{L} \sin \left(\frac{j \pi}{L} x\right) \sin \left(\frac{k \pi}{L} x\right) d x \\
& =-\frac{1}{2} \int_{0}^{L}\left\{\cos \left(\frac{j \pi}{L} x+\frac{k \pi}{L} x\right)-\cos \left(\frac{j \pi}{L} x-\frac{k \pi}{L} x\right)\right\} d x \\
& =\frac{1}{2}\left\{\left[\frac{L}{\pi(j+k)} \sin \left(\frac{j \pi}{L} x+\frac{k \pi}{L} x\right)\right]_{x=0}^{x=L}-\left[\frac{L}{\pi(j-k)} \sin \left(\frac{j \pi}{L} x-\frac{k \pi}{L} x\right)\right]_{x=0}^{x=L}\right\} \\
& =0 \quad \text { if } \quad j \neq k \\
& \int_{0}^{L} w_{j} w_{k} d x=\int_{0}^{L} \sin \left(\frac{j \pi}{L} x\right) \sin \left(\frac{k \pi}{L} x\right) d x \\
& =-\frac{1}{2} \int_{0}^{L}\left\{\cos \left(\frac{j \pi}{L} x+\frac{k \pi}{L} x\right)-1\right\} d x \\
& =\frac{1}{2}\left\{\left[\frac{L}{\pi(j+k)} \sin \left(\frac{j \pi}{L} x+\frac{k \pi}{L} x\right)\right]_{x=0}^{x=L}+\frac{L}{2}\right\} \\
& =\frac{L}{2} \text { if } \quad j=k
\end{aligned}
$$

we have

$$
\int_{0}^{L} w_{j}(x) f(x) d x=\sum_{k=1}^{\infty} f_{k} \int_{0}^{L} w_{j} w_{k} d x=\sum_{k=1}^{\infty} f_{k} \frac{L}{2} \delta_{k j}=f_{j} \frac{L}{2}
$$

that is

$$
f_{j}=\frac{2}{L} \int_{0}^{L} w_{j}(x) f(x) d x
$$

(3) Find the solution $u(x)$ of the original boundary value problem by assuming the form $u(x)=\sum_{k=1}^{\infty} u_{k} w_{k}(x)$.

Substitution of $u(x)=\sum_{k=1}^{\infty} u_{k} w_{k}(x)$ into the differential equation becomes

$$
\begin{aligned}
& -\frac{d^{2}}{d x^{2}} \sum_{k=1}^{\infty} u_{k} w_{k}(x)=-\sum_{k=1}^{\infty} u_{k} \frac{d^{2} w_{k}}{d x^{2}}(x)=\sum_{k=1}^{\infty} u_{k}\left(\frac{k \pi}{L}\right)^{2} w_{k}(x) \\
& =f=\sum_{k=1}^{\infty} f_{k} w_{k}(x) \text { in }(0, L)
\end{aligned}
$$

that is

$$
\begin{gathered}
u_{k}=\left(\frac{L}{k \pi}\right)^{2} f_{k} \quad, \quad k=1,2, \ldots . \text { Therefore, the solution becomes } \\
u(x)=\sum_{k=1}^{\infty}\left(\frac{L}{k \pi}\right)^{2} f_{k} w_{k}(x), \quad f_{k}=\frac{2}{L} \int_{0}^{L} f w_{k} d x
\end{gathered}
$$

It is noted that if k becomes large, contribution of w_{k} becomes small.
2. A data set $\left\{f_{i}\right\}=\left\{\begin{array}{c}1 \\ 1 / \sqrt{2} \\ 0\end{array}\right\}$ is given at sampling points $\left\{x_{i}\right\}=\left\{\begin{array}{c}0 \\ \pi / 4 \\ \pi / 2\end{array}\right\}$. Assuming the function form $f(x)=\sum_{k=1}^{2} c_{k} \phi_{k}(x)=c_{1}+c_{2} x$, find the coefficients c_{1} and c_{2} by the least squares method.

Noting that the least squares method with $(n+1)$ sampling points, can be defined by

$$
\min _{c_{k}} \frac{1}{2} \sum_{i=1}^{n+1}\left(f_{i}-\sum_{k=1}^{m+1} c_{k} \phi_{k}\left(x_{i}\right)\right)
$$

using $(m+1)$ independent basis functions $\phi_{k}(x)$, we have the minimization problem

$$
\min _{c_{1}, c_{2}} F\left(c_{1}, c_{2}\right)
$$

where

$$
F\left(c_{1}, c_{2}\right)=\frac{1}{2}\left(1-\left(c_{1}+c_{2} 0\right)\right)^{2}+\frac{1}{2}\left(\frac{1}{\sqrt{2}}-\left(c_{1}+c_{2} \frac{\pi}{4}\right)\right)^{2}+\frac{1}{2}\left(0-\left(c_{1}+c_{2} \frac{\pi}{2}\right)\right)^{2}
$$

The necessary condition becomes

$$
\begin{aligned}
& \frac{\partial F}{\partial c_{1}}=\left(c_{1}-1\right)+\left(c_{1}+c_{2} \frac{\pi}{4}-\frac{1}{\sqrt{2}}\right)+\left(c_{1}+c_{2} \frac{\pi}{2}\right)=0 \\
& \frac{\partial F}{\partial c_{2}}=\frac{\pi}{4}\left(c_{1}+c_{2} \frac{\pi}{4}-\frac{1}{\sqrt{2}}\right)+\frac{\pi}{2}\left(c_{1}+c_{2} \frac{\pi}{2}\right)=0
\end{aligned}
$$

that is

$$
\left[\begin{array}{cc}
3 & \frac{3 \pi}{4} \\
\frac{3 \pi}{4} & \frac{5 \pi^{2}}{16}
\end{array}\right]\left\{\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right\}=\left\{\begin{array}{c}
1+\frac{1}{\sqrt{2}} \\
\frac{\pi}{4 \sqrt{2}}
\end{array}\right\}
$$

Solving this yields

$$
\left\{\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right\}=\left[\begin{array}{cc}
3 & \frac{3 \pi}{4} \\
\frac{3 \pi}{4} & \frac{5 \pi^{2}}{16}
\end{array}\right]^{-1}\left\{\begin{array}{c}
1+\frac{1}{\sqrt{2}} \\
\frac{\pi}{4 \sqrt{2}}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{5}{6} & -\frac{2}{\pi} \\
-\frac{2}{\pi} & \frac{8}{\pi^{2}}
\end{array}\right]\left\{\begin{array}{c}
1+\frac{1}{\sqrt{2}} \\
\frac{\pi}{4 \sqrt{2}}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{5+\sqrt{2}}{6} \\
-\frac{2}{\pi}
\end{array}\right\}
$$

Therefore, the least squares approximation becomes

$$
f(x)=\frac{5+\sqrt{2}}{6}-\frac{2}{\pi} x
$$

3. Let a set of sampling points $\{-1,0,+1\}$ be given to interpolate a function $f(x)=\cos \left(\frac{\pi}{2} x\right)$ by the Lagrange polynomials. Obtain the Lagrange polynomials at the sampling points, and express the interpolation of $f(x)$ in terms of $f(x) \approx \sum_{i=1}^{3} f\left(x_{i}\right) L_{i}(x)$ where x_{i} are the sampling points and $L_{i}(x)$ are the Lagrange polynomials. What is the value of $\sum_{i=1}^{3} L_{i}(x)$?

Lagrange polynomials are given by

$$
\begin{aligned}
& L_{1}(x)=\frac{x(x-1)}{(-1-0)(-1-1)}=\frac{1}{2} x(x-1) \\
& L_{2}(x)=\frac{(x+1)(x-1)}{(0+1)(0-1)}=1-x^{2} \\
& L_{3}(x)=\frac{(x+1) x}{(1+1)(1-0)}=\frac{1}{2} x(x+1)
\end{aligned}
$$

Thus, the Lagrange interpolation becomes

$$
f(x) \approx f(-1) L_{1}(x)+f(0) L_{2}(x)+f(1) L_{3}(x)=1-x^{2}
$$

4. A data set $\left\{f_{i}\right\}=\left\{\begin{array}{c}1 \\ 1 / \sqrt{2} \\ 0\end{array}\right\}$ is given at sampling points $\left\{x_{i}\right\}=\left\{\begin{array}{c}0 \\ \pi / 4 \\ \pi / 2\end{array}\right\}$. Assuming the "bell" shape weighting functions $w_{i}(x)$ by

$$
\begin{aligned}
& w_{1}(x)= \begin{cases}1-\frac{4}{\pi} x, & x \in\left(0, \frac{\pi}{4}\right) \\
0 & \text { otherwise }\end{cases} \\
& w_{2}(x)= \begin{cases}\frac{4}{\pi} x, & x \in\left(0, \frac{\pi}{4}\right) \\
2-\frac{4}{\pi} x, & x \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)\end{cases} \\
& w_{3}(x)= \begin{cases}\frac{4}{\pi} x-1, & x \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right), \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

state the moving least squares method to make curve fit of the given data. Find the solution $a(x)$ in terms of the data $\left\{f_{i}\right\}$ and $\left\{w_{i}\right\}$, and express in the form $a(x)=\sum_{i=1}^{3} f_{i} \phi_{i}(x)$. That is, find $\phi_{i}(x), i=1,2,3$ in terms of $w_{1}(x), w_{2}(x)$, and $w_{3}(x)$.

Noting that the definition of the moving least squares method is

$$
\min _{a(x)} \frac{1}{2} \sum_{i=1}^{n+1} w_{i}(x)\left(f_{i}-a(x)\right)
$$

for $(n+1)$ sampling points. The necessary condition of this minimization problem is given by

$$
\frac{\partial}{\partial a}\left\{\frac{1}{2} \sum_{i=1}^{n+1} w_{i}\left(f_{i}-a\right)^{2}\right\}=\left(\sum_{i=1}^{n+1} w_{i}\right) a-\sum_{i=1}^{n+1} w_{i} f_{i}=0
$$

that is

$$
a(x)=\frac{\sum_{i=1}^{n+1} w_{i} f_{i}}{\sum_{i=1}^{n+1} w_{i}}=\sum_{i=1}^{n+1} f_{i} \phi_{i}(x), \quad \phi_{i}(x)=\frac{w_{i}}{\sum_{j=1}^{n+1} w_{j}}
$$

Since

$$
\sum_{i=1}^{3} w_{i}(x)=1 \text { in }\left(0, \frac{\pi}{2}\right)
$$

we have

$$
\begin{aligned}
& a(x)=\sum_{i=1}^{n+1} f_{i} w_{i}(x)=1 w_{1}(x)+\frac{1}{\sqrt{2}} w_{2}(x)+0 w_{3}(x) \\
& =w_{1}(x)+\frac{1}{\sqrt{2}} w_{2}(x) \\
& = \begin{cases}1-\frac{4}{\pi}\left(1-\frac{1}{\sqrt{2}}\right) x, & x \in\left(0, \frac{\pi}{4}\right) \\
\frac{1}{\sqrt{2}}\left(2-\frac{4}{\pi} x\right), & x \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)\end{cases}
\end{aligned}
$$

That is, the result is noting but the piecewise linear interpolation.

