Final Examination

ME 5012000 Winter Term
Due Date April 17, 5pm

1. Apply the weighted residual method to the following boundary value problem

$$
\begin{aligned}
& -\frac{d}{d x}\left(a(x) \frac{d u}{d x}\right)+k(x) u=f(x) \quad, \quad x \in(0, b) \cup(b, L) \\
& a\left(b_{-}\right) \frac{d u}{d x}\left(b_{-}\right)-a\left(b_{+}\right) \frac{d u}{d x}\left(b_{+}\right)=P \\
& u(0)=u_{0}
\end{aligned}
$$

, where $g\left(b_{-}\right)=\lim _{\varepsilon \rightarrow 0} g(b-\varepsilon), g\left(b_{+}\right)=\lim _{\varepsilon \rightarrow 0} g(b+\varepsilon), b$ in a point inside of the interval $(0, L)$, and P is a given number. Using this the weighted residual formulation, approximate it by

$$
u(x)=\sum_{j=1}^{n} u_{j} \phi_{j}(x) \quad, \quad w(x)=\sum_{i=1}^{n} w_{i} \psi_{i}(x)
$$

where w is an arbitrary weighting function, and obtain a discrete problem

$$
\mathbf{K u}=\mathbf{f}
$$

in terms of $a, k, f, P, \phi_{\mathrm{j}}, \Psi_{\mathrm{i}}$, and L. That is, find the $i-j$ component of \mathbf{K} and i component of \mathbf{f}.
2. (Continuation of Problem 1) Assume $L=a(x)=k(x)=f(x)=1, b=\frac{1}{2}, P=1$ and $u_{0}=0$, and

$$
\phi_{1}(x)=\psi_{1}(x)=\sin \pi x, \phi_{2}(x)=\psi_{2}(x)=\sin 4 \pi x
$$

(1) Obtain the 2-by-2 matrix \mathbf{K} and 2 component vector \mathbf{f}, where $n=m=2$ are assumed too.
(2) Find the eigenvalues λ of the matrix \mathbf{K} together with the eigenvectors \boldsymbol{x}.
(3) Solve the matrix equation $\mathbf{K u}=\mathbf{f}$.
(4) Represent the solution \mathbf{u} as a linear combination of the two eigenvectors of the 2-by-2 matrix \mathbf{K}.
(5) Find which mode (i.e. eigenvector) is dominant.
3. Answer to the following questions:
(1) For a m-by- n matrix \mathbf{A}, state the definition of the singular value decomposition of \mathbf{A}. Find the singular value of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & i \\
i & 1 & -i
\end{array}\right] \quad, \quad i=\sqrt{-1}
$$

Compute the eigenvalues of $\mathbf{A}^{*} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{*}$, and discuss whether these eigenvalues are related to the singular values obtained.
(2) Using the result of the singular value decomposition, state what is the rank of \mathbf{A}, what is the range of \mathbf{A}, and what is the null space of \mathbf{A} ? Find the range and null space of

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

(3) What is an orthogonal matrix \mathbf{Q} ?
(4) When two vectors \mathbf{u} and \mathbf{v} are orthogonal?
(5) Show that if a matrix \mathbf{Q} defined by $\mathbf{Q}=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}\right]$ where \mathbf{q}_{i} are orthonormal, \mathbf{Q} is an orthogonal matrix.
(6) Describe the Gram-Schmidt orthonormalization process for n number of linearly independent vectors. Orthonormalize the column vectors of the matrix \mathbf{A} in (2).
(7) What is the definition of linearly independent vectors $\mathbf{v}_{i}, i=1, \ldots, n$. ?
(8) What is the Householder transformation \mathbf{P} defined by a vector \mathbf{v} ? State the property of \mathbf{P}. Using the Householder transformation, obtain the QR decomposition of the matrix A in Problem (2).
(9) What is the QR algorithm of a matrix \mathbf{A} to find the eigenvalues? Apply the QR algorithm to find the eigenvalues and eigenvectors of the matrix \mathbf{A} defined in (2). Further, apply the QR algorithm to find the eigenvalues of

$$
\mathbf{B}=\left[\begin{array}{ccc}
0 & i & 1 \\
-i & 1 & 0 \\
-1 & 0 & 2
\end{array}\right]
$$

(10)What is the inverse iteration method? What is the power iteration method? Applying these, find the maximum eigenvalue of \mathbf{A} in (2).
4. The position vector of an arbitrary point P of a curve C on a two dimensional plane is given by a parametric form $\mathbf{r}(\xi)=\left\{\begin{array}{l}x(\xi) \\ y(\xi)\end{array}\right\}$, where ξ is a parametric coordinate in (0,1). Suppose that a coordinate s is defined along the curve, and let s be zero at the point defined by $\xi=0$, while its value is set as the total length L of the curve at the other end of the curve defined by $\xi=1$. (a) Establish the relation between s and ξ. (b) How to compute the total length of the curve? (c) How to define the unit tangent vector \mathbf{t} ? (d) What is the unit normal vector \mathbf{n} ? (e) State a way to calculate the curvature?

