Final Examination, 1998 Fall

MEAM 501 Analytical Methods in Mechanics and Mechanical Engineering

Name Noboru Kikuchi

1. What is the Legendre polynomial in an interval ($-1,1$)? Give its definition and major properties.

The Legendre polynomials $L_{i}(x)$ are orthogonal polynomials obtained from the polynomial basis functions $1, x, x^{2}, x^{3} \ldots . . x^{n}, \ldots .$. with respect to the inner product

$$
(f, g)=\int_{-1}^{1} f(x) g(x) d x
$$

The polynomial $L_{i}(x)$ is the i degree polynomial and it possesses the i number of distinct roots in the interval $(-1,1)$.
2. For a set of given $n+1$ points $x_{1}<x_{2}<x_{3} \ldots .<x_{n}<x_{n+1}$ in the interval (a, b), define the Lagrange polynomials $L_{i}(x)$, and state their major properties. As a special cases, give the Lagrange polynomials (a) for $\mathrm{n}=1$, and $x_{1}=-1, x_{2}=+1$, and (b) for $\mathrm{n}=2$, and $x_{1}=-1, x_{2}=0, x_{3}=+1$, and compute $\sum_{i=1}^{n+1} L_{i}(x)$.

Lagrange polynomials are n degree polynomials defined by

$$
L_{i}(x)=\frac{\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n+1}\right)}{\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n+1}\right)}=\prod_{\substack{j=1 \\ j \neq i}}^{n+1} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

such that

$$
L_{i}\left(x_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array}\right.
$$

Therefore, they can be used for interpolation of a function. Furthermore, we have
(a)

$$
L_{1}(x)=\frac{x-x_{2}}{x_{1}-x_{2}}=\frac{1}{2}(1-x) \quad, \quad L_{2}(x)=\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{1}{2}(1+x)
$$

$$
L_{1}(x)+L_{2}(x)=\frac{x-x_{2}}{x_{1}-x_{2}}+\frac{x-x_{1}}{x_{2}-x_{1}}=1
$$

$$
L_{1}(x)=\frac{1}{2} x(x-1) \quad, \quad L_{2}(x)=1-x^{2} \quad, \quad L_{3}(x)=\frac{1}{2} x(x+1)
$$

$$
L_{1}(x)+L_{2}(x)+L_{3}(x)=\frac{1}{2} x(x-1)+1-x^{2}+\frac{1}{2} x(x+1)=1
$$

3. Suppose that a curve is defined by four data, $f(0), \frac{d f}{d x}(0), f(1)$, and $\frac{d f}{d x}(1)$, which are the values of the function and its first derivative at the two end points of the interval $(0,1)$. Obtain a cubic polynomial $f(s)$ that is determined by these four data. It is noted that such a cubic polynomial is called the Hermite cubic polynomial.

$$
\begin{aligned}
& f(s)=\left\{\begin{array}{llll}
1 & s & s^{2} & s^{3}
\end{array}\right\}\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right\} \quad, \quad f^{\prime}(s)=\left\{\begin{array}{llll}
0 & 1 & 2 s & 3 s^{2}
\end{array}\right\}\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right\} \\
& \left\{\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
f(1) \\
f^{\prime}(1)
\end{array}\right\}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]\left\{\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right\}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]^{-1}\left\{\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
f(1) \\
f^{\prime}(1)
\end{array}\right\}
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
f(s)=\left\{\begin{array}{llll}
1 & s & s^{2} & s^{3}
\end{array}\right\}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right]^{-1}\left\{\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
f(1) \\
f^{\prime}(1)
\end{array}\right\} \\
=\left\{\begin{array}{lll}
1-3 s^{2}+2 s^{3} & s-2 s^{2} s^{3} & 3 s^{2}-2 s^{3}
\end{array}-s^{2}+s^{3}\right.
\end{array}\right\}\left\{\begin{array}{c}
f(0) \\
f^{\prime}(0) \\
f(1) \\
f^{\prime}(1)
\end{array}\right\}, ~ \$\right\}
$$

4. Define the Bezier spline with $n+1$ control points $x_{1}, x_{2}, \ldots, x_{n+1}$.

$$
x=\sum_{i=1}^{n+1} x_{i} B_{i}^{n}(x) \quad, \quad B_{i}^{n}(x)=\frac{1}{(i-1)!(n-i+1)!} x^{i-1}(1-x)^{n-i+1}
$$

5. The position vector of an arbitrary point P of a curve C on a two dimensional plane is given by a parametric form $\mathbf{r}(\xi)=\left\{\begin{array}{l}x(\xi) \\ y(\xi)\end{array}\right\}$, where ξ is a parametric coordinate in $(0,1)$. Suppose that a coordinate s is defined along the curve, and let s be zero at the point defined by $\xi=0$, while its value is set as the total length L of the curve at the other end of the curve defined by $\xi=1$. (a) Establish the relation between s and ξ. (b) How to compute the total length of the curve? (c) How to define the unit tangent vector \boldsymbol{t} ? (d) What is the unit normal vector \mathbf{n} ? (e) State a way to calculate the curvature?
(a) Noting that $d s=\sqrt{d \mathbf{r} \bullet d \mathbf{r}}=\sqrt{\left(\frac{d x}{d \xi}\right)^{2}+\left(\frac{d y}{d \xi}\right)^{2}} d \xi$, we have the relation

$$
s=\int_{0}^{\xi} d s=\int_{0}^{\xi} \sqrt{\left(\frac{d x}{d \xi}\right)^{2}+\left(\frac{d y}{d \xi}\right)^{2}} d x
$$

(b) $L=\int_{0}^{1} d s=\int_{0}^{1} \sqrt{\left(\frac{d x}{d \xi}\right)^{2}+\left(\frac{d y}{d \xi}\right)^{2}} d x$
(c) A unit tangent vector is given by
$\mathbf{t}=\frac{d \mathbf{r}}{d s}=\frac{d \xi}{d s} \frac{d \mathbf{r}}{d \xi}=\frac{\frac{d x}{d \xi} \mathbf{e}_{x}+\frac{d y}{d \xi} \mathbf{e}_{y}}{\sqrt{\left(\frac{d x}{d \xi}\right)^{2}+\left(\frac{d y}{d \xi}\right)^{2}}}, \mathbf{e}_{x}, \mathbf{e}_{y}$ are the unit vectors along the x and y axes.
(d) Noting that the tangent vector \mathbf{t} is unit, we have

$$
\mathbf{t} \bullet \mathbf{t}=1 \Rightarrow \frac{d \mathbf{t}}{d s} \bullet \mathbf{t}=0 \Rightarrow \frac{d \mathbf{t}}{d s} \perp \mathbf{t} \quad \Rightarrow \mathbf{n}=\frac{\frac{d \mathbf{t}}{d s}}{\left\|\frac{d \mathbf{t}}{d s}\right\|}=\frac{\frac{d \mathbf{t}}{d s}}{\sqrt{\frac{d \mathbf{t}}{d s} \bullet \frac{d \mathbf{t}}{d s}}}
$$

(e) Curvature is defined by

$$
\frac{d \mathbf{t}}{d s} \perp \mathbf{t} \quad \Rightarrow \quad \frac{d \mathbf{t}}{d s}=\kappa \mathbf{n} \quad \Rightarrow \kappa=\left\|\frac{d \mathbf{t}}{d s}\right\|=\sqrt{\frac{d \mathbf{t}}{d s} \cdot \frac{d \mathbf{t}}{d s}}
$$

6. State the Gauss-Legendre quadarature.

Integration of a function f defined on the interval $(-1,+1)$ is approximated by the summation of a linear combination of the weights w_{i} and the values of the function at the quadrature points x_{i} which are the roots of the n degree Legendre polynomial $L_{n}(x)$ defined on the interval ($-1,+1$):

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

This quadrature can integrate $2 n-1$ degree polynomials exactly.
7. What is the necessary condition of the following minimization problem:

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbf{R}^{n}} \frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{x}^{T} \mathbf{b} \quad, \quad \mathbf{A} \in \mathbf{R}^{n \times n}, \mathbf{b} \in \mathbf{R}^{n} . \\
& \delta F(\mathbf{x})(\mathbf{y})=\lim _{\alpha \rightarrow 0} \frac{\partial}{\partial \alpha} F(\mathbf{x}+\alpha \mathbf{y})=\lim _{\alpha \rightarrow 0} \frac{\partial}{\partial \alpha}\left\{\frac{1}{2}(\mathbf{x}+\alpha \mathbf{y})^{T} \mathbf{A}(\mathbf{x}+\alpha \mathbf{y})-(\mathbf{x}+\alpha \mathbf{y})^{T} \mathbf{b}\right\} \\
& =\frac{1}{2} \mathbf{y}^{T} \mathbf{A} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{y}-\mathbf{y}^{T} \mathbf{b}=\mathbf{y}^{T}\left\{\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x}-\mathbf{b}\right\}=0 \quad, \quad \forall \mathbf{y}
\end{aligned}
$$

therefore, the necessary condition becomes the matrix equation

$$
\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right) \mathbf{x}=\mathbf{b}
$$

8. Define the Lagrangian L to the following constrained minimization problem

$$
\min _{\substack{\mathbf{x} \in \mathbf{R}^{2} \\
x_{1}+2 x_{2} \leq 1}} \frac{1}{2} \mathbf{x}^{T} \mathbf{A x}-\mathbf{x}^{T} \mathbf{b} \quad, \quad \mathbf{x}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}, \mathbf{A}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right], \mathbf{b}=\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}
$$

,and find the necessary condition of the mini-max problem associated to the Lagrangian L defined.

$$
\begin{aligned}
& L(\mathbf{x}, \lambda)=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{x}^{T} \mathbf{b}-\lambda\left(\left[\begin{array}{ll}
1 & 2
\end{array}\right] \mathbf{x}-1\right) \\
& \left.=\frac{1}{2}\left\{\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right\}\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}-\left\{\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right\}\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}-\lambda\left(\left[\begin{array}{ll}
1 & 2
\end{array}\right]\right\}\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}-1\right)
\end{aligned}
$$

From $L(\mathbf{x}, \lambda) \leq L(\delta \mathbf{x}, \lambda), \forall \delta \mathbf{x}$ we have

$$
\delta \mathbf{x}^{T}\left\{\mathbf{A x}-\mathbf{b}-\lambda\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}\right\}=0 \quad, \quad \forall \delta \mathbf{x} \quad \Rightarrow \quad \mathbf{A x}-\lambda\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}=\mathbf{b}
$$

From $L(\mathbf{x}, \delta \lambda) \leq L(\mathbf{x}, \lambda), \forall \delta \lambda \leq 0$, we have

$$
(\delta \lambda-\lambda)\left(\left[\begin{array}{ll}
1 & 2
\end{array}\right] \mathbf{x}-1\right) \geq 0 \quad, \quad \forall \delta \lambda \leq 0
$$

Combining these two, we have the necessary condition of the mini-max problem for the Lagrangian:

$$
\begin{aligned}
& \mathbf{A} \mathbf{x}-\lambda\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}=\mathbf{b} \\
& (\delta \lambda-\lambda)\left(\left[\begin{array}{ll}
1 & 2
\end{array}\right] \mathbf{x}-1\right) \geq 0 \quad, \quad \forall \delta \lambda \leq 0
\end{aligned}
$$

9. Find the first variation of the functional F defined by

$$
F(v)=\frac{1}{2} \int_{0}^{L}\left\{E A\left(\frac{d v}{d x}\right)^{2}+k v^{2}-2 f v\right\} d x+\frac{1}{2} k_{0}\left\{v\left(\frac{L}{2}\right)\right\}^{2}-P_{L} v(L)
$$

for given functions $E A, k$, and f, and constants k_{0}, P_{L}, and L.

$$
\begin{aligned}
& \delta F(u)(v)=\lim _{\alpha \rightarrow 0} \frac{\partial}{\partial \alpha} F(u+\alpha v) \\
& =\lim _{\alpha \rightarrow 0} \frac{\partial}{\partial \alpha}\left[\begin{array}{l}
\left.\frac{1}{2} \int_{0}^{L}\left\{E A\left(\frac{d u}{d x}+\alpha \frac{d v}{d x}\right)^{2}+k(u+\alpha v)^{2}-2 f(u+\alpha v)\right\} d x\right] \\
+\frac{1}{2} k_{0}\left\{u\left(\frac{L}{2}\right)+\alpha v\left(\frac{L}{2}\right)\right\}^{2}-P_{L}\{u(L)+\alpha v(L)\}
\end{array}\right] \\
& =\int_{0}^{L}\left\{E A \frac{d u}{d x} \frac{d v}{d x}+k u v-2 f v\right\} d x+k_{0} u\left(\frac{L}{2}\right) v\left(\frac{L}{2}\right)-P_{L} v(L)
\end{aligned}
$$

10. If a minimization problem

$$
\min _{v \in K} F(v) \quad, \quad K=\{v \in V \mid \quad v(0)=1\}
$$

where V is a linear space of all piecewise continuously differentiable functions defined on the interval ($0, L$), is considered for the functional F defined in Problem 9, find the necessary condition.

$$
\begin{aligned}
& \delta F(u)(v-u)=\int_{0}^{L}\left\{E A \frac{d u}{d x} \frac{d(v-u)}{d x}+k u(v-u)-2 f(v-u)\right\} d x \\
& +k_{0} u\left(\frac{L}{2}\right)\left(v\left(\frac{L}{2}\right)-u\left(\frac{L}{2}\right)\right)-P_{L}(v(L)-u(L)) \geq 0, \quad \forall v \in K
\end{aligned}
$$

Noting that

$$
v=u \pm \delta u \quad, \quad \forall \delta u \quad \text { s.t. } \delta u(0)=0
$$

we have

$$
\begin{array}{r}
\delta F(u)(\delta u)=\int_{0}^{L}\left\{E A \frac{d u}{d x} \frac{d \delta u}{d x}+k u \delta u-2 f \delta u\right\} d x+k_{0} u\left(\frac{L}{2}\right) \delta u\left(\frac{L}{2}\right)-P_{L} \delta u(L)=0 \\
, \quad \forall \delta u \text { s.t. } \delta u(0)=0
\end{array}
$$

