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Additional Note #1

Solvers of a System of Linear Equations
97W

   Introduction    

There are two kinds of finite element equation solvers : the direct and iteration methods.
The direct method is based on the Gaussian elimination method, and its original form was
modified by various ways to reduce the number of operations in computing, to improve the
matrix condition number for accuracy, and to reduce the storage space of the coefficient
matrix. Roughly speaking the total number of operations to finish up the Gaussian
elimination procedure to solve a system of linear equations with n number of equations, is
the order of n3 , that is, O(n3), while the required space to store the coefficient matrix is
O(n2) if all of the coefficients are stored. If a coefficient is stored in 32 bit form, then we
need 64n2 bits space. In other words, if we have 20MB space for the coefficient matrix,
then the largest n is about 790. This means that we can solve only 790 equations, and then
if a cubic hexagonal structure is modeled by 8 node slid brick elements, we can only
decompose it into 5x5x5 meshes. This is not acceptable setting in practice. If we have
20MB space for the coefficients, we would like to solve at least 10,000 equations. We can
find considerably many researches in the 1970s and 80s to reduce the storage space
required. Typical outcome from such heavy research in the area of the finite element
method and computational science, are, for example, the band method, skyline ( or profile )
method, wave front ( frontal ) method, and others. Especially, the wave front method that
was developed by B. Iron was the highest achievement of the finite element method in the
early 1970s. Because of this program to solve a system of linear equations that is specially
designed by using the nature of linear elasticity, the finite element method could attract wide
range people for its application, and we started solving “large scale” problems with
O(1000) equations using 128K main memory computers with magnetic tape drives which
provide leap frog type advancement in engineering analysis. He basically developed an
algorithm which only requires storage of non-zero coefficients. It is noted that the
coefficient matrix, that is the global stiffness matrix in the finite element analysis, contains
mostly zeros. In other words, there are considerably less number of non-zero terms than
zeros. Thus, as Iron developed, if we have an algorithm of the Gaussian elimination
method which requires only non-zero terms, we can reduce large amount of storage space
as well as computing time by skipping for zeros which do not make any influence. After
Iron’s work, there were many modifications and variations, and then the skyline ( profile )
method became popular among researchers and students because of its simplicity. A short
coming of the wave front method is its complexity of algorithm and programming,
although it was considerably simplified later, and it was applied by very specialists of the
finite element method. On the other hand, the skyline method published in the book by
Bathe was so simple that any engineering students could understand if they have
background of the Gaussian elimination method, and they could make their own computer
programs without much effort. The skyline method requires more space than the wave
front method, but it only requires storage of non-zero and zero terms bounded by the so-
called skyline that is the most outer limit of non-zeros in columns of the coefficient matrix.
It can be regarded as a variation of the band method that stores the non-zero terms in a
rectangular matrix.

    Direct Methods   
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The original Gaussian elimination method without pivoting can be explained as follows.
Let a discrete finite element equation ( which is a typical matrix equation, and represents a
system of linear equation with n number of unknowns and n number of equations ) :
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The first step is elimination of the terms a a an21 31 1, ,......,  of the first column using the first
row of the coefficient matrix A under the assumption that a11  is not equal to zero by using
the algorithm
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This operation leads the new matrix equation
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Here note that although we are using same characters aij  with the original matrix equation,
their values are different since we replaced the original ones by the algorithm described.
The next is to eliminate the terms a a an32 42 2, ,......,  of the second column by the similar
algorithm
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and obtain the new matrix equation
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Repeat this process until the upper triangular coefficient matrix is obtained :
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so that it can be solved from the last equation step by step :
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The process making the upper triangular coefficient matrix is called the forward
elimination, the process modifying the right hand side is called the reduction, and the last
step to solve the system linear equations with the upper triangular coefficient matrix is
called the back substitution. If we examine this process, and if the coefficient matrix has the
special structure such that all of non-zero terms are located within the band from the
diagonals :
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If we examine the algorithm of the Gaussian elimination, we can easily find that the zeros
outside the band will neither make any affect to the coefficient matrix nor be changed by the
algorithm. That is, we need not store them and we need not process them. This way we can
save the storage space for the coefficient matrix and also we can save computing time by
neglecting them. This is the idea of the band method. Most of systems of linear equations
obtained in the finite element method for linear elastic structure are this type.

As a variation of the Gaussian elimination algorithm, we can find the Crout method that
makes a LU decomposition of the coefficient matrix A by a lower triangular matrix L and
the upper triangular matrix U, or the Cholesski method that makes a LDU decomposition
of A into a lower triangular matrix L, diagonal matrix D, and upper triangular matrix U.
Suppose that a given matrix A is decomposed into a LU form :
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Then the original problem can be decomposed to two matrix equations :

Ly b Ux y= =and

which can be solved easily by the following algorithm :

l y b y
b

l

l y l y b y
b l y

l

11 1 1 1
1

11

21 1 22 2 2 2
2 21 1

22

= ⇒ =

+ = ⇒ = −



Computational Mechanics Laboratory
N. Kikuchi     5

.. . . . . . . . . . .

that is

y

b l y

l
k nk

k kj j
j

k

kk

=
−

==

−

∑
1

1

2 3, , ,....,

and similarly the second equation can solved as
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Thus the main issue is how to make a LU decomposition. Noting that
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For the first column vector, we have
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and then if we set up u11 1= , we can determine the first column of L. Similarly, the first
row becomes

a a a l u l u l un n11 12 1 11 11 11 12 11 1... ...{ } = { }
and then we can determine the first row of U. For the second column and row, we have
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a a a l u l u l u l u l un n n21 22 2 21 11 21 12 22 22 21 1 22 2... ...{ } = + +{ } .

By setting u22 1= , we can determine the second column of L and second row of U.
Continuing this process step by step, yields the LU decomposition. If we examine this
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procedure, it can be found that zeros outside the profile limit ( that is called the skyline)
shown in the figure, would not make any contribution to the Crout algorithm, that is, they
need not be stored and can be skipped for their operation.
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This method has more advantage than the band method, since we need not keep some of
zeros within the band of the coefficient matrix. Based on this algorithm, many skyline ( or
profile ) methods have been developed for finite element analysis.

Both the band and skyline methods require to form the global stiffness matrix of the whole
structure by assembling all of element stiffness matrices, and then after forming the
coefficient matrix completely, the Gaussian elimination algorithm is applied. Therefore, we
cannot reduce storage space too much because of the size of the global stiffness matrix
which is roughly speaking, mn, where m is the band width and n is the size of the stiffness
matrix, respectively. The wave front method is the one which utilizes the special structure
of the finite element approximation, and is the one which may not require complete
formation of the global stiffness matrix ( that is, the coefficient matrix ). It eliminates the
terms ( components of the coefficient matrix ) whenever they can be eliminated before
assembling the rest of finite element stiffness matrices, but at the moment they are
assembled. In other words, it eliminates the terms “detached” from the rest of the structure
while assembling. For example, node 1 is only used by element <1>, and then the terms
related to node 1 can be eliminated at the time of “assembling” of element <1>, since the
components of the global stiffness matrix related to node 1 are the same with the completely
assembled global stiffness matrix. Similarly, node 2 is sheared with element 1 and element
2, and then at the stage of assembling the element stiffness matrices up to element 2, the
terms related to node can be eliminated. Repeating this elimination procedure while
assembling, the front line of the elimination is moving like waves. It seems that the naming
of the wave front, or frontal method reflects this nature. Since we do not form the global
stiffness matrix in complete form before the Gaussian elimination procedure, it does not
require the space for the global stiffness matrix. It only requires the sufficiently large space
that can store the assembled stiffness matrix related to the elements on the wave front.
Using this nature of the method, Iron could solve fairly large scale problems with relatively
small core memory in computers. At the time Iron introduced his beautiful engineering idea
to solve a system of linear equations, the success of the finite element method became quite
sound. It is strongly recommended that Iron’s monumental work should be thoroughly
studied to understand the role of the finite element method in computer technology.
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   Iteration Methods   

Another way to eliminate the completely assembled global stiffness matrix to reduce the
core memory and storage disk space, is application of iteration methods which requires
only multiplication of the element stiffness matrices and the associated degrees of freedom.
Noting that the global stiffness matrix is formed by assembling of the element stiffness
matrices, we have the following relation

Ku K u=
=

∑ e e

e

Ne

1

where K is the global stiffness matrix, u is the global generalized displacement vector, Ke
is the element stiffness matrix, ue  is the element generalized displacement vector, and Ne
is the total number of elements. If a system of linear equations

Ku f=

is considered, it is equivalent to the following :
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where P is an arbitrary invertible matrix, and is called the pre-conditioning matrix. Using
this relation, we can expect the iteration scheme
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for an initial guess u 0( ) . If this algorithm can lead convergence by iteration, we can find the
solution of the system of linear equations. It is clear that this does not require the formation
of the global stiffness matrix. Because of this nature, required core memory can be very
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small, and then it was very popular in the early 1960s. However, since it is iterated, its
convergence was not necessarily guaranteed. Furthermore, estimation of the required
iteration number was difficult. Because of such uncertainties in iteration methods, they are
gradually replaced by the direct methods, especially by the wave front method in the finite
element community in the 1970s.

They were, however, revived at the time of introduction of supercomputers in the 1980s
which are specially design with vector and parallel processing. In order to take advantage
of these specially designed computer architecture, we once again found that the iteration
method is the best fit to these new type of computers, and computer scientists started
showing capability to solve more than a million equations. At this moment, the most
promising iteration method is regarded as the preconditioned conjugate gradient method (
PCG method ), convergence of which can theoretically be proven, and required number of
iterations can also be reduced significantly by introduction of an appropriate pre-
conditioning matrix. It is believed that the iteration method would be dominant for solving
large scale problems involving more that a million equations. At this moment ( 1996 ),
researchers are challenging to solve 10 to 20 million equations.

Figure X   Application of a PCG method to FEA by S. Holister ( Voxelcon Inc. ) using
about 150,000 Solid Elements ( Approximately 450,000 degrees of freedom )
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