

Numerical Analysis and Optimal Design of Composite Thermoforming Process

by

Shih-Wei Hsiao

Department of Mechanical Engineering and Applied Mechanics The University of Michigan March 25, 1997

Ph. D. Defense

Schematic of Thermoforming Process

Motivations of this research

Deep drawing (stamping) of woven-fabric thermoplastic composites is a mass production and precision shaping technology to produce composite components.

Objectives of this research

- Develop a FEM model to analyze this thermoforming process.
- Develop an optimization algorithm based on this FEM model to optimize this forming process.

Ph. D. Defense

Why Thermoplastic Composites?

From the manufacturing viewpoints

- Thermosetting Resins
 - Hand layed up into structural fiber preform and impregnation after shaping
 - Need chemical additives to cure after shaping and very long cure cycle time
 - Labor intense
- Thermoplastic Resins
 - Shaping only depends on heat transfer and force without chemistry
 - In a preimpregnated continuous tape form
 - High processing rate
 - Drawback: higher processing viscosity and forming temperature (320~400°C), and higher equipment cost

Advantages of the composite stamping process

- Deep drawing (stamping) of woven-fabric thermoplastic composites is a mass production technology to produce composite components.
- ◆ This stamping process is also a precision shaping process.
- Woven-fabric composites possess a balanced drawability, and can avoid the excessive thinning caused by the transverse intraply shearing.

Related work

Kinematic approach

Potter (1979) Robertson et al. (1981) Van West et al. (1990)

- Under the kinematic consideration, the draping behavior of woven fabrics over 3-D spherical, conical or arbitrary surfaces was simulated by solving the intersection equations numerically.
- This approach provides a preliminary prediction of fiber buckling and final fiber orientation.
- This approach can be used as a design tool fot selecting suitable draped configurations for specific surfaces.

FEM Analysis
O'Bradaigh and Pipes (1991)
O'Bradaigh et al. (1993)

- Diaphragm and blowing forming processes.
- Newtonian viscous flow formulation with the fiber inextensibility constraint
- Inplane prediction of macroscopic stress and strain.
- Isothermal forming processes.
- Unidirectional composite sheets.

Goals of this FEM Analysis

A 3-D numerical modeling of thermoforming process on woven-fabric thermoplastic composite laminates:

- Characterization of the processing rheology of woven-fabric thermoplastic composite materials by the homogenization method.
- Coupled viscous flow and heat transfer FEM analyses for forming.
 Predictions of global and local stress, temperature and fiber orientation distribution.
- Residual stress FEM analysis for cooling.
 - Predictions of macroscopic and microscopic residual stress and warpage after cooling.

- Impossible to solve these equations at each microcell to obtain obtain the global response.
- Homogenization method is used to overcome this difficulty.

Review

- Under the assumption of periodic microstructures which can be represented by unit cells.
- Using the asymptotic expansion of all variables and the average technique to determine the homogenized material properties and constitutive relations of composite materials.
- Capable of predicting microscopic fields of deformation mechanics through the localization process.

Viscous shell with thermal analysis

Viscous shell

- Plane stress asumption-- the incompressibility constraint can be achieved by adjusting the thickness of each shell element.
- Large deformation process divided into a series of small time step.
- Complicated geometry, friction and contact considerations.

Coupled thermal analysis

- Transient heat transfer FEM to solve temperature at each node. At *i*-th time step $\underline{v}^{(i)}$ fi $\overline{\epsilon}^{(i)}$ $\hat{U} \mu^{(i)}$ $\hat{U} T^{(i)}$ are solved.
- At each step, solve nodal temperature and velocity iteratively until convergence.

Fiber Orientation Model

Purposes:

- Update the fiber intersection angle of each global finite element by the global strain increment at every time step.
- Change material properties according to updated fiber orientation.

Assumptions:

- The fiber orientation of all the microstructures in one global finite element is identical.
- The warp yarn and weft yarn of woven-fabric composites can be represented by two unit fiber vectors.

Residual Stress Analysis

- Three levels of residual stresses are generated during cooling
 - -Microscopic stress: Due to CTE mismatch between matrix and fiber
 - -Macroscopic stress: Due to stacking sequence of laminates
 - -Global stress: Due to thermal history along laminate thickness
- Warpage due to the release of residual stresses after demoulding.
- In this study, homogenization method based on incremental elastic analysis with thermal history is adopted.
- Thermoelastic properties are dependent on temperature and crystallinity from the thermal history.

Conclusions

- The thermoforming process of woven-fabric thermoplastic composite laminates was analyzed by the 3-D thermo-viscous flow FEM.
- The constitutive and energy equations of the composites forming were formulated by the Homogenization Method.
- The global-local analysis of the Homogenization Method enables us to examine the macro and microscopic deformation mechanics.
- An optimization algorithm is developed to obtain uniform distribution by adjusting preheating temperature field.