

The Need of Advanced Techniques for Manufacturing

Piezocomposite and Piezoelectric Actuator Design

Emilio Silva and Noboru Kikuchi

Materials Opportunities in Layered Manufacturing Techniques Cosener's House, Abby Close, Abingdon, Oxfordshire 22-24 June 1998

Major Collaborators

Professor Emilio C.N. Silva Mechanical Engineering University of Sao Paulo, Brazil
Professor John Halloran, A.T. Crumm, G.A. Brady Material Science and Engineering The University of Michigan
Professor F. Montero de Espinosa Instituto de Acustica, Madrid, Spain

Homogenization Design Method

 Shape and Topology Design of Structures is transferred to Material Distribution Design (Bendsoe and Kikuchi, 1986)

HDM: 3D Shaping

Truly Three-dimensional shaping of a structure for optimum

Requirement of emerging manufacturing methods

Extension of HDM

- Structural Design
 - Static and Dynamic Stiffness Design
 - Control Eigen-Frequencies
 - Design Impact Loading
 - Elastic-Plastic Design
- Material Microstructure Design
 - Young's and Shear Moduli, Poisson's Ratios
 - Thermal Expansion Coefficients
- Flexible Body Design

New Extension of HDM

Piezocomposite and Piezoelectric Actuator Design

Applications

Pressure sensors accelerometers actuators, acoustic wave generation ultrasonic transducers, sonar, hydrophones etc...

$$\begin{cases} T_{ij} = c_{ijkl}^{E} S_{kl} - e_{kij} E_{k} \\ D_{i} = e_{ik}^{S} E_{k} + e_{ikl} S_{kl} \end{cases}$$

Elasticity equation

Electrostatic equation

- T_{ij} stress
- S_{kl} strain
- E_k electric field
- D_i electric displacement

- c^{E}_{ijkl} stiffness property
- e_{ikl} piezoelectric strain property
- e_{ik}^{S} dielectric property

Introduction - Piezocomposites

Combination of a piezoelectric material with other non-piezoelectric materials (ex.: holes)

Advantages: high energy conversion, low acoustic impedance, etc...

Mathematician Changes Design Practice

Using Parametric Analysis:

- Influence of volume fraction, Poisson's ratio, etc...: Smith (1993), Avellaneda and Swart (1994)
- Use of negative Poisson's ratio material: Smith (1991), Avellaneda and Swart (1994)
- Porosity in the matrix polymer: Avellaneda and Swart (1994)

- Periodic microstructures, scale of microstructure very small compared to the size of the part
- Acoustic wavelength larger than unit cell dimensions

Optimization Problem

Maximize: F(**x**), where $\mathbf{x} = [x_1, x_2, ..., x_n, ..., x_{NDV}]$ **x** subject to: $c_{ijkl}^E \ge c_{low}$, i, j, k, l are specified values $0 < x_{low} \le x_n \le 1$ $W = \sum_{n=1}^{\infty} x_n^p V_n > W_{low}$ symmetry conditions

> F(**x**) - function of d_h , $d_h g_h$, k_h , or k_t **x** - design variables W - constraint to reduce intermediate densities (V_n - volume of each element)

Computational Mechanics Laboratory

Computational Mechanics Laboratory

Crumm and Halloran (1997)

Computational Mechanics Laboratory

Summary

We have shown that Layered Manufacturing Method open up possibility of topology design of piezoceramic composites and piezoelectric actuators for large scale performance improvement by the homogenization design method