a) Find maximum stress and deflection at the load point for simply supported end conditions

b) Find maximum stress and deflection at the load point for fixed end conditions

c) For the simply supported case with requirements

\[k \geq 100 \text{N/mm} \]

\[P_{\text{yield}} \geq 2000 \text{N} \]

Determine the required thickness; consider only yielding behavior. Which requirement dominates? (i.e. which requires the greater thickness)

Motor Compartment Rail

Exercise 1.2a

a) Determine the deflection of the tip of the beam and maximum direct stress and location for a 2000N load
Motor Compartment Rail Exercise 1.2b,c

Load application point moved to corner of section

b) Determine the deflection of the tip of the beam and maximum direct stress and location for a 2000N load

Section rotated 15°.

Load application point through centroid of section

c) Determine the deflection of the tip of the beam and maximum direct stress and location for a 2000N load

Frame Cross Member Exercise 1.3

Section Size: 40wide x 70high x 2 mm

The rear powertrain mount is at the center of a cross member. The maximum vertical load is 1000N. The end condition for the cross member at the frame rails is simply supported. Calculate the deflection at the load point, and maximum direct stress and its location for:

a) closed rectangular cross section with load applied at centroid
b) rear facing C section with load applied at the web with warping unconstrained

c) Same as b) but with warping constrained-use $G_c = b h^3 (2 h + 3 b)$ where h height b flange length

(c) Donald E. Malen
Exercises - Beams and Buckling

Exercise 1.4

Steering column mount

- 100mm equilateral triangle, 1.5 mm

1. Determine deflection at point of load application under 1KN load with closed section.
2. Determine deflection at point of load application under 1KN load with section with narrow slit (unrestrained warping).

Exercise 1.5

Steering column mount

C section

1. Determine stiffness for the above conditions.
2. Determine stiffness for the above conditions with

- Warping not constrained
- Warping fully constrained

T = 100 Nm at center

C_w = 4.3837 x 10^7 mm^6
Geometrical Analysis of Sections
GAS

Exercise 1.6

a) By scaling the drawings, calculate the nominal section properties for Neon. Use the vertical and horizontal orientation in the drawing for the axis system.

Rocker
A Pillar
Roof Rail
B Pillar -Lower
Hinge Pillar
C Pillar -Upper

b) Calculate the Effective section properties for the Neon at a uniform compressive load at yield

c) Compare the Effective to Nominal Moments of inertia about the horizontal axis by taking the ratio \(\frac{I_{\text{eff}}}{I_{\text{nom}}} \) for each section

Vision Obscuration Versus A Pillar Size
Exercise 1.7

Plot A Pillar \(I_{xx} \) vs. vision angle for Neon. Hold rear vision line and increase section along windshield curvature. Maintain weld flange length. Use your judgement otherwise. Go from base section -2\(^\circ\) to 2\(^\circ\). Results should look similar to the sketch at right.
Exercise 1.8

Step Over Height versus Rocker Size

Rear View

Plot rocker I_{xx} vs. step over height for Neon. Hold bottom flange and increase section at top. Maintain weld flange length. Use your judgement otherwise. Go from base section -20mm to +20mm. Results should look similar to the sketch at right.

Section Detail

Ground Clearance

Exercise 1.9

General Buckling Width-to-Thickness Ratio

a) At what b/t ratio will σ_{yield} and σ_{cr} be equal?

b) For mild steel $\sigma_{\text{yield}}=30000\text{psi}$, what is the numerical b/t ratio at which this occurs?

c) A typical Aluminum alloy has $\sigma_{\text{yield}}=50000\text{psi}$ and $E=10\times10^6\text{psi}$ what is b/t ratio where σ_{yield} and σ_{cr} are equal?
Exercise 1.10

A) Show that when
\[w = A_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) \]
the edge constraints are \(M_x = 0 \), \(M_y = 0 \), and \(M_{xy} = 0 \).

B) Show that when \(w \) is given as above, the plate equation yields
\[f_{cr} = \frac{D\pi^2}{t b^2} \left[m \left(\frac{b}{a}\right) + n^2 \left(\frac{a}{b}\right) \right]^2 \]

C) Plot the result of B) as \([\text{term in brackets above}] \) vs \(b/a \) for \(n=1, m=1,2,3 \) and for \(n=2, m=1,2,3 \) and show that the term in brackets has a lower limit of 4 for these \(n \) and \(m \) values.

Exercise 1.11

Consider the top of the Neon rocker a long, horizontal flat plate. Treat the edge conditions as simply supported.

A) Compute the stress at which it will buckle using hand calculations.

B) At what bending moment does a) occur?
Consider the top flange of the Neon rocker. Treat each flange as an independent long, flat plate (ignore spot welds). Treat the edge conditions as shown.

a) Compute the stress at which it will buckle using hand calculations.

b) At what bending moment does a) occur?

Rear Rail with Bumper Loading

a) At what bumper load will the plate elements in the rear rail buckle?

b) The flat sides of the section are replaced with curved elements of R=200 mm. Compute the new bumper load where the plate elements buckle.
Exercise 1.14 General Buckling Effective Width

\[P = \int_0^b \sigma \, dx \]
\[\sigma_{\text{crit}} = \frac{w}{2} \left(\frac{\sigma_{\text{crit}}}{\sigma_s} + 1 \right) \]

a) Assume the stress is distributed in a cosine function with the maximum stress \(\sigma_s \) and minimum stress \(\sigma_{\text{crit}} \) as shown above. Determine the effective width assuming the maximum stress acts uniformly over the effective width \(w \) and both elements react the same force \(P \).

b) Plot the effective width \(w \) versus the maximum stress-to-critical stress ratio.

c) For a flat plate with simply supported edges where \(b=100\text{mm} \) and \(t=.86\text{mm} \), plot the effective width versus applied compressive stress.

Exercise 1.15 Effective Width

Using hand calculations,

a) At what bending moment, \(M_{\text{crit}} \), will top cap just buckle?

b) What is the effective width of the top cap at 1.1 \(\sigma_{\text{crit}} \), 1.5 \(\sigma_{\text{crit}} \), 2.0 \(\sigma_{\text{crit}} \)?

c) What is the effective \(I_x \) at 2.0 \(\sigma_{\text{crit}} \)?

d) What is the moment at which the effective section is at yield?
Determine the moment-tip deflection curve for the beam shown. The result should look similar to the graph below. Consider only plate buckling behavior of the upper cap of the section. Plot the range $0 < M < 5 M_{\text{crit}}$.

\[M_{\text{crit}} \]

\[\delta \]