Entropy-Based Mesh Refinement, I: The Entropy Adjoint Approach

2009 AIAA CFD Conference

Krzysztof J. Fidkowski and Philip L. Roe

Department of Aerospace Engineering
University of Michigan

June 23, 2009
Outline

1. Introduction
2. Output-Based Error Estimation
3. The Entropy Adjoint Connection
4. Implementation and Results
5. Conclusions
Increasing interest in solution-based adaptive methods in CFD

- Complex problems often exhibit a wide range of length scales whose distribution is not known \textit{a priori}.
- Questions of robustness and solution accuracy persist even “routine” calculations.

Variety of adaptive indicators available

- **Heuristic**: generally cheap but not robust.
- **Rigorous**: robust but often expensive.

We propose an **entropy adjoint** indicator that is somewhat of a compromise between heuristics and theory.
Output Error Estimation

Output error: difference between an output computed with the discrete system solution and that computed with the exact solution

\[\delta J = J_H(u_H) - J(u) \]

- \(u_H \in \mathcal{V}_H = \) approximate solution,
- \(u \in \mathcal{V} = \) exact solution

Adjoints-based output error estimation techniques

- Account for propagation effects inherent to hyperbolic problems
- Identify all areas of the domain that are important for the accurate prediction of an output
- Require solution of an adjoint equation

Fidkowski and Roe (UM)
The Continuous Adjoint

Primal equation

\[r(u) = 0, \text{ on } \Omega \]

The continuous adjoint, \(\psi \), is a Lagrange multiplier for

\[L = J(u) - \int_{\Omega} \psi^T r(u) d\Omega \]

Requiring a stationary Lagrangian for permissible state variations, \(\delta u \in V_{\text{perm}} \), yields (in weak form) the

\[J'[u](\delta u) - \int_{\Omega} \psi^T r'[u](\delta u) d\Omega = 0, \quad \forall \delta u \in V_{\text{perm}} \]
Example: First-Order Conservation Laws

Consider a system of conservation laws in quasi-linear form,

\[r(u) = A_i \partial_i u = 0 \]

The adjoint equation is, after an integration by parts,

\[J'[u](\delta u) + \int_\Omega \partial_i \psi^T A_i \delta u d\Omega - \int_{\partial \Omega} \psi^T A_i \delta u n_i ds = 0, \quad \forall \delta u \in V_{\text{perm}} \]

If \(J(u) \) is an integral on \(\partial \Omega \), \(\psi \) must satisfy

\[A_i^T \partial_i \psi = 0, \quad \text{in } \Omega, \]

subject to the boundary conditions

\[J'[u](\delta u) - \int_{\partial \Omega} \psi^T A_i \delta u n_i ds = 0, \quad \forall \delta u \in V_{\text{perm}} \]
Output Error Estimation with Adjoints

1. \(u_H \in \mathcal{V}_H \) will generally not satisfy the analytical PDE: \(r(u_H) \neq 0 \)

2. If \(\delta u \equiv u_H - u \) is small, we can write

\[
 r(u_H) = r(u + \delta u) \approx r'[u](\delta u)
\]

3. Using the adjoint equation we have

\[
\delta J \approx J'[u](\delta u) = \int_{\Omega} \psi^T r'[u](\delta u) \approx \int_{\Omega} \psi^T r(u_H)
\]

The output error is given by an adjoint-weighted residual

- Above is only an estimate when the output or equations are nonlinear and the perturbations are finite
- The estimate can be localized to yield an adaptive indicator
Two disadvantages of adjoint-based output error estimation

1. Adjoint solution is required for each output
2. Only requested outputs are targeted

We seek a general purpose adaptive indicator that
- does not require solution of an adjoint problem
- produces an “overall good” solution

One promising approach makes use of the entropy variables

Starting point (first-order conservation laws):

\[
\begin{align*}
\mathbf{r}(\mathbf{u}) &= \mathbf{A}_i \partial_i \mathbf{u} = 0, \\
\partial_i F_i &= 0
\end{align*}
\]

- Primal equation
- Entropy conservation

\(F_i(\mathbf{u})\) is the entropy flux associated with an entropy function \(U(\mathbf{u})\)
The entropy pair \((U(u), F_i(u))\) must satisfy \(U_u A_i = (F_i)u\)

- **The entropy variables** are defined by

\[
v \equiv U^T_u
\]

The entropy variables symmetrize the equations in the sense that

1. \(u_v\) is symmetric, positive definite
2. \(A_i u_v\) is symmetric

Using these symmetry properties, we have

\[
0 = A_i \partial_i u = A_i u_v \partial_i v = u_v A_i^T \partial_i v \implies A_i^T \partial_i v = 0
\]

The entropy variables satisfy the adjoint equation! (BCs too)
We examine the adjoint-weighted residual to deduce the output:

\[\delta J = \int_{\Omega} \mathbf{v}^T \delta \mathbf{r} \, d\Omega = \int_{\Omega} \mathbf{v}^T \mathbf{A}_i \partial_i \delta \mathbf{u} \, d\Omega = -\int_{\Omega} \partial_i \mathbf{v}^T \mathbf{A}_i \delta \mathbf{u} \, d\Omega + \int_{\partial \Omega} \mathbf{v}^T \mathbf{A}_i \delta \mathbf{u} \, n_i ds \]

\[= \int_{\partial \Omega} (F_i) u \delta \mathbf{u} \, n_i ds = \delta \left[\int_{\partial \Omega} F_i n_i ds \right] \]

\[J \text{ measures the net entropy flow out of the domain} \]
Second-Order Conservation Laws

Primal equation:

\[r(u) = A_i \partial_i u - \partial_i (K_{ij} \partial_j u) = 0 \]

- Viscous dissipation is a source term in the adjoint equation for \(v \)

The entropy variables serve as an “adjoint” solution for

\[
J = \int_{\partial \Omega} F_i n_i ds + \int_{\Omega} \partial_i v^T \tilde{K}_{ij} \partial_j v d\Omega - \int_{\partial \Omega} v^T \tilde{K}_{ij} \partial_j v n_i ds
\]

where \(\tilde{K}_{ij} \equiv K_{ij} u_v \) is symmetrized in the sense that \(\tilde{K}_{ij} = \tilde{K}_{ji}^T \)

- The expression for \(J \) is an entropy balance statement: \(J(u) = 0 \)
- The terms in \(J \) do not necessarily balance for \(u_H \)
Using the Entropy Variables

The entropy variables are readily computable from \mathbf{u},

$$\mathbf{v} = U^{T}_{\mathbf{u}} = \left[\frac{\gamma - S}{\gamma - 1} - \frac{1}{2} \frac{\rho V^2}{p}, \frac{\rho u_i}{p}, -\frac{\rho}{p} \right]^T,$$

where the entropy function U is

$$U = -\frac{\rho S}{(\gamma - 1)}, \quad S = \ln p - \gamma \ln \rho,$$

Approach

Use \mathbf{v} as an adjoint solution in output error estimation

- Targeted areas are those where *entropy generation* or *entropy transport* is not predicted well
- Similar to adapting on residual of entropy transport equation
- Separate adjoint solve is not required
Implementation

- Discontinuous Galerkin (DG) finite element discretization
- Discrete adjoint solution
- Error estimation performed on order $p + 1$ space (same mesh)
- Fixed-fraction, isotropic, hanging-node adaptation
- Curved, body-fitted quadrilateral and hexahedral meshes
Verification of the Entropy Adjoint Connection

Compare the entropy variables, v_h, to the discrete adjoint, ψ_h, for

$$J_h = \int_{\partial \Omega} F_i(u_h^b) n_i ds$$

Linear variation of S

Compute: \((\text{Entropy variable adjoint error})^2 = \int_{\Omega} ||\psi_h - v_h||^2 d\Omega \)
Verification of the Entropy Adjoint Connection (ctd.)

Behavior of entropy variable adjoint error under uniform refinement

- Error decreases at $O(h^{p+1})$
- The entropy variables are indeed adjoint solutions

Fidkowski and Roe (UM)
NACA 0012, $M = 0.4$, $\alpha = 5^o$

- Hanging-node adaptation
- fixed fraction: 10%
- $q = 5$ geometry representation
- Quadrilateral meshes
- $p = 2$ solution interpolation
- Measured lift and drag

Indicators

1. Drag adjoint
2. Lift adjoint
3. Moment adjoint
4. Entropy adjoint
5. Residual

Initial mesh

Mach contours
Degree of freedom (DOF) versus output error for $p = 2$

Entropy adjoint performance is comparable to output adjoints
NACA 0012, $M = 0.4$, $\alpha = 5^\circ$, Final Meshes

Drag Adjoint

Entropy Adjoint

Lift Adjoint

Residual
NACA 0012, $M = 0.5, \alpha = 2^\circ, Re = 5k$

- Hanging-node adaptation
- fixed fraction: 10%
- $q = 3$ geometry representation
- Quadrilateral meshes
- $p = 2$ solution interpolation
- Measured lift and drag

Indicators

1. Drag adjoint
2. Lift adjoint
3. Entropy adjoint
4. Residual
5. Entropy

Initial mesh

Mach contours

Fidkowski and Roe (UM) The Entropy Adjoint Approach June 23, 2009 19 / 25
Degree of freedom (DOF) versus output error for $p = 2$
Entropy adjoint performance is comparable to output adjoints
NACA 0012, $M = 0.8, \alpha = 1.25^\circ$

- Hanging-node adaptation
- fixed fraction: 10%
- $q = 3$ geometry representation
- Element-constant artificial viscosity
- $p = 2$ solution interpolation
- Measured lift and drag

Indicators

1. Drag adjoint
2. Lift adjoint
3. Entropy adjoint
4. Residual

Initial mesh

Mach contours
Degree of freedom (DOF) versus output error for $p = 2$

More noise in results – entropy adjoint still performs well
NACA 0012, $M = 0.8$, $\alpha = 1.25^\circ$, Final Meshes

Drag Adjoint (2990)

Entropy Adjoint (2814)

Lift Adjoint (2997)

Residual (2372)
Conclusions

- Output error estimation based on adjoint solutions is a rigorous, but somewhat expensive, approach for targeting select output quantities of interest.

- The entropy variables satisfy an adjoint equation; the resulting “entropy adjoint” indicator is cheap to compute and targets errors in entropy generation and transport.

- Performance of the entropy adjoint indicator is comparable to standard output adjoints for the flows tested.

Ongoing work

- Extension to unsteady flows (entropy adjoint connection holds)
- Application to other conservation laws with an entropy extension
- Relationship to engineering output quantities
Acknowledgements

- **P.L. Roe** acknowledges hospitality at the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK, and the financial support of a William Penney Fellowship from the UK Ministry of Defence.

- **K.J. Fidkowski** acknowledges the support of the University of Michigan, Ann Arbor.