
Data-Driven Retrospective Cost Adaptive Flow Control

Jacob C. Vander Schaaf∗, Qizhi Lu†, Krzysztof J. Fidkowski‡, and Dennis S. Bernstein§

University of Michigan, Ann Arbor, Michigan, 48109

This paper focuses on active adaptive flow control. In particular, data-driven retrospective
cost adaptive control (DDRCAC) is applied to several 2D internal flow-control problems. Unlike
many data-driven control methods, DDRCAC requires no advance data collection and model
pretraining. Instead, DDRCAC uses online closed-loop system identification, and thus the
controller adapts from zero gains, that is, “cold-start” conditions. The user need only specify
hyperparameters for learning and adaptation, which includes the model and controller orders
as well as the hyperparameters for recursive least squares with variable-rate forgetting. These
hyperparameters are selected based on nominal simulations of the fluid dynamics. Four
flow-control scenarios are considered, namely, control of streamwise velocity within a laminar
boundary layer in a duct; axial cylinder boundary layer in a duct; turbulence suppression in a
duct with a backwards-facing step; and, finally, turbulence suppression in a duct with crossflow
jets.

I. Introduction
The ability to modify the natural motion of fluids is a scientifically challenging problem with application to a wide

range of engineered systems and flight vehicles [1–11]. Flow control can be divided into passive and active techniques.
Passive flow control consists of static or kinematic devices that modify the flow without requiring an energy source.
Examples include riblets and leading-edge rotating cylinders [4, 12]. Benefits of passive flow control include reliability
and energy efficiency.

In contrast to passive flow control, active flow control is based on devices that require an energy source, such as
blowing and suction [4]. Further in this direction are active flow control techniques that rely on sensors and actuators
[13]. Active feedback flow control requires a feedback control algorithm to determine the desired actuator action based
on the sensor data. Since active flow control requires sensors and actuators, energy sources, fluid-dynamics modeling,
and real-time computation, this approach is less reliable and less energy efficient than passive flow control techniques.
The advantage of this technology, however, is the ability to provide better performance over a wider range of flow
regimes.

Although the physics of fluid dynamics are well understood, the models used to design control laws may possess
errors that degrade closed-loop performance [14, 15]. These errors include not only those associated with imprecise
physical models and parameter values, but also discretization errors due to the choice of mesh resolution and time
step. Diverse controller-synthesis techniques have been applied to flow control, including optimal control [16, 17],
robust control [14], and machine-learning methods [10, 18]. The present paper focuses on adaptive control techniques,
where the controller learns and adapts during operation in response to actual, changing conditions with minimal prior
modeling information. In particular, the present paper focuses on retrospective cost adaptive control (DDRCAC).

RCAC was originally developed as a direct adaptive control technique for stabilization, command following, and
disturbance rejection, as described in [19] and applied to flow control in [20]. More recently, RCAC was extended to
include online closed-loop system identification in order to determine the essential model details needed to facilitate
adaptation [21]. For data-driven RCAC (DDRCAC), online closed-loop system identification is performed using
recursive least squares (RLS) with variable-rate forgetting [22–25]. Since DDRCAC includes online closed-loop
system identification, the controller adapts from zero gains, that is, “cold-start” conditions. The user need only specify
hyperparameters for learning and adaptation, which includes the model and controller orders as well as the RLS
forgetting hyperparameters.

In order to assess the performance of DDRCAC, we consider a sequence of increasingly difficult flow control
problems. In particular, we first by considering control of streamwise velocity within a laminar boundary layer in a duct,

∗Ph.D. Candidate, Department of Aerospace Engineering, jacobcvs@umich.edu.
†Master’s Student, Department of Aerospace Engineering, luqseven@umich.edu.
‡Professor, Department of Aerospace Engineering, kfid@umich.edu.
§Professor, Department of Aerospace Engineering, dsbaero@umich.edu.

1

followed by a more difficult axial cylinder boundary layer in a duct. Next, we consider turbulence suppression in a duct
with a backwards-facing step as well as turbulence suppression in a duct with crossflow jets.

II. Sampled-Data Adaptive-Control Architecture

𝐺c,𝑘𝐺c,𝑘 ZOH
[𝐺𝑢 (𝑠) 𝐺𝑤 (𝑠)]

𝑤(𝑡)
𝑇s

𝑢𝑘 𝑢(𝑡)

𝑣(𝑡)

𝐸

𝑦𝑧,𝑘

𝑦0 (𝑡) 𝑦(𝑡) 𝑦𝑘

−
𝑟𝑘

𝑧𝑘

Fig. 1 Command following and disturbance rejection under sampled-data adaptive control. The objective is to
follow commands 𝑟𝑘 to the performance variable 𝑦𝑧,𝑘 = 𝐸𝑦𝑘 . All sample-and-hold operations are synchronous.

RCAC is formulated for continuous-time linear systems under sampled-data control using a discrete-time, linear
time-varying controller. As shown in [21], RCAC can be applied to nonlinear systems with unmodeled nonlinearities.
Consider the adaptive control architecture shown in Figure 1, where a realization of 𝐺 (𝑠) △

= [𝐺𝑢 (𝑠) 𝐺𝑤 (𝑠)] is given by

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑤𝑤(𝑡), (1)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢𝑢(𝑡) + 𝑣(𝑡), (2)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝑢(𝑡) ∈ R𝑚 is the control, 𝑤(𝑡) ∈ R𝑙 is the disturbance, 𝑦(𝑡) ∈ R𝑝 is the noisy measurement
of the system output, 𝑣(𝑡) ∈ R𝑝 is the sensor noise, and 𝐴, 𝐵, 𝐵𝑤 , 𝐶, 𝐷𝑢, are real matrices. Define

𝐺𝑢 (𝑠)
△
= 𝐶 (𝑠𝐼𝑛 − 𝐴)−1𝐵 + 𝐷𝑢, (3)

𝐺𝑤 (𝑠)
△
= 𝐶 (𝑠𝐼𝑛 − 𝐴)−1𝐵𝑤 + 𝐷𝑢, (4)

where 𝐺𝑢 ∈ R(𝑠) 𝑝×𝑚prop and 𝐺𝑤 ∈ R(𝑠) 𝑝×𝑙prop are proper 𝑝 × 𝑚 and 𝑝 × 𝑙 transfer functions, respectively. The disturbance
𝑤(𝑡) is matched if there exists 𝑈 ∈ R𝑚×𝑚 such that 𝐵𝑤 = 𝐵𝑈; otherwise, the disturbance is unmatched. The system
output 𝑦0 (𝑡) ∈ R𝑝 is corrupted by sensor noise 𝑣(𝑡) and sampled to produce 𝑦𝑘 ∈ R𝑝. The sampling operation can
be realized as 𝑦𝑘

△
= 𝑦0 (𝑘𝑇s) + 𝑣𝑘 , where 𝑣𝑘

△
= 𝑣(𝑘𝑇s) ∈ R𝑝 is the sampled sensor noise and 𝑇s ∈ R is the sample

time. The performance variable is defined by 𝑦𝑧,𝑘
△
= 𝐸𝑦𝑘 ∈ R𝑞 , where 𝐸 ∈ R𝑞×𝑝 selects components or linear

combinations of components of 𝑦𝑘 that are required to follow the command 𝑟𝑘 ∈ R𝑞 . The command-following error is
thus 𝑧𝑘

△
= 𝑟𝑘 − 𝑦𝑧,𝑘 ∈ R𝑞 . For all of the examples in this paper, 𝑞 = 1, 𝐸 = 1, and thus 𝑦𝑧,𝑘 = 𝑦𝑘 and 𝑧𝑘 = 𝑟𝑘 − 𝑦𝑘 .

The inputs to the adaptive feedback controller 𝐺c,𝑘 are the measurement 𝑦𝑘 and the command-following error 𝑧𝑘 .
The adaptive feedback controller produces the discrete-time control 𝑢𝑘 ∈ R𝑚 at each step 𝑘. The continuous-time
control 𝑢(𝑡) is produced by applying a zero-order-hold operator to 𝑢𝑘 . Note that 𝑧𝑘 serves as the adaptation variable,
as denoted by the diagonal line in Figure 1 passing through 𝐺c,𝑘 . The objective is to minimize the magnitude of the
command-following error 𝑧𝑘 in the presence of the disturbance 𝑤(𝑡) and sensor noise 𝑣(𝑡).

Figure 2 shows an equivalent representation of Figure 1, where 𝑤(𝑡) and 𝑦𝑤,𝑘 are related by the operator

𝑦𝑤,𝑘
△
= G[𝑤(𝑡)] = 𝐶

∫ 𝑘𝑇s

(𝑘−1)𝑇s

𝑒𝐴(𝑘𝑇s−𝜏)𝐵𝑤𝑤(𝜏) d𝜏. (5)

Note that Figure 2 shows two transfer functions in feedback, namely, 𝐺d (q) and 𝐸𝐺d (q), which are the transfer functions
from 𝑢𝑘 to 𝑦𝑘 and 𝑢𝑘 to 𝑦𝑧,𝑘 , respectively. Furthermore, 𝐺d ∈ R(q) 𝑝×𝑚prop , where q is the forward-shift operator, is the
exact discretization of 𝐺𝑢 (𝑠) using zero-order-hold and sampling operations. Consequently,

𝑦𝑘 = G[𝑤(𝑡)] + 𝐺d (q)𝑢𝑘 + 𝑣𝑘 , (6)
𝑧𝑘 = 𝑟𝑘 − 𝐸𝑦𝑘 . (7)

2

𝐺c,𝑘𝐺c,𝑘 𝐺d (q)

G
𝑤(𝑡) 𝑦𝑤,𝑘

𝑢𝑘 𝑦𝑢,𝑘

𝑣𝑘

𝐸

𝑦𝑧,𝑘

𝑦0,𝑘 𝑦𝑘−
𝑟𝑘 𝑧𝑘

Fig. 2 Equivalent representation of Figure 1. The exact discretization 𝐺d (q) of 𝐺𝑢 (𝑠) operates on 𝑢𝑘 to generate
𝑦𝑢,𝑘 .

Note that the argument q of 𝐺d in (6) reflects the fact that (6) is a time-domain equation whose solution depends on
the initial conditions of the input-output system. Using the Z-transform variable z in place of the forward-shift operator
q would account for the forced response of (6) but would implicitly assume zero initial conditions and thus would omit
the free response. The distinction between z and q in accounting for initial conditions and the resulting free response is
discussed in [26, 27].

III. Retrospective Cost Adaptive Control (RCAC)
This section summarizes retrospective cost adaptive control (RCAC). RCAC adapts by updating a strictly proper,

discrete-time dynamic compensator of the form

𝑢𝑘 =

𝑛c∑︁
𝑖=1

𝑃𝑖,𝑘𝑢𝑘−𝑖 +
𝑛c∑︁
𝑖=1

𝑄𝑖,𝑘 �̃�𝑘−𝑖 , (8)

where 𝑘 ≥ 0, 𝑢𝑘 ∈ R𝑚 is the requested control, 𝑛c is the controller window length, �̃�𝑘 ∈ R𝑙𝑦 , and𝑄1,𝑘 , . . . , 𝑄𝑛c ,𝑘 ∈ R𝑚×𝑙𝑦

and 𝑃1,𝑘 , . . . , 𝑃𝑛c ,𝑘 ∈ R𝑚×𝑚 are the numerator and denominator controller coefficient matrices, respectively. To avoid
the need to invoke additional modeling information, “cold start” is assumed, where 𝑄1,0, . . . , 𝑄𝑛c ,0, 𝑃1,0, . . . , 𝑃𝑛c ,0,
𝑢−𝑛c , . . . , 𝑢−1, and �̃�−𝑛c , . . . , �̃�−1 are zero, and thus 𝑢0 = 0. The controller (8) can be written as

𝑢𝑘 = 𝜙c,𝑘\c,𝑘 , (9)

where

𝜙c,𝑘
△
=

𝑢𝑘−1
...

𝑢𝑘−𝑛c

�̃�𝑘−1
...

�̃�𝑘−𝑛c

T

⊗ 𝐼𝑚 ∈ R𝑚×𝑙\c (10)

is the controller regressor, 𝑙\c
△
= 𝑛c𝑚(𝑚 + 𝑙𝑦), and the controller coefficient vector is defined by

\c,𝑘
△
= vec

[
𝑃1,𝑘 · · · 𝑃𝑛c ,𝑘 𝑄1,𝑘 · · · 𝑄𝑛c ,𝑘

]
∈ R𝑙\c . (11)

In terms of q, the controller (8) can be expressed as

𝑢𝑘 = 𝐺c,𝑘 (q) �̃�𝑘 , (12)

where

𝑁c,𝑘 (q)
△
= 𝑄1,𝑘q𝑛c−1 + · · · +𝑄𝑛c ,𝑘 , (13)

𝐷c,𝑘 (q)
△
= 𝐼𝑚q𝑛c − 𝑃1,𝑘q𝑛c−1 − · · · − 𝑃𝑛c ,𝑘 , (14)

𝐺c,𝑘 (q)
△
= 𝐷−1

c,𝑘 (q)𝑁c,𝑘 (q). (15)

3

The signal �̃�𝑘 is constructed from 𝑧𝑘 , 𝑦𝑘 , and 𝑟𝑘 . In the simplest case, �̃�𝑘 = 𝑧𝑘 , whereas, when additional measurements
are available, �̃�𝑘 = [𝑧T

𝑘
𝑦T
𝑘
]T. Alternatively, command feedforward can be included by setting �̃�𝑘 = [𝑧T

𝑘
𝑟T
𝑘
]T. More

generally, the components of �̃�𝑘 can be arbitrary, fixed linear combinations of the components of 𝑧𝑘 , 𝑦𝑘 , and 𝑟𝑘 .

Next, define the filtered signals

𝑢f,𝑘
△
= 𝐺f (q)𝑢𝑘 , (16)

𝜙f,𝑘
△
= 𝐺f (q)𝜙c,𝑘 , (17)

where, for startup, 𝑢f,𝑘 and 𝜙f,𝑘 are initialized at zero and thus are computed as the forced responses of (53) and (54),
respectively. The 𝑞 × 𝑚 filter 𝐺f (q) has the form

𝐺f (q)
△
= 𝐷f (q)−1𝑁f (q), (18)

where

𝑁f (q)
△
= 𝑁f,0q𝑛f + 𝑁f,1q𝑛f−1 + · · · + 𝑁f,𝑛f , (19)

𝐷f (q)
△
= 𝐼𝑞q𝑛f + 𝐷f,1q𝑛f−1 + · · · + 𝐷f,𝑛f , (20)

𝑛f is the filter window length, and 𝑁f,0, . . . , 𝑁f,𝑛f ∈ R𝑞×𝑚 and 𝐷f,1, . . . , 𝐷f,𝑛f ∈ R𝑞×𝑞 are the numerator and denominator
coefficients of 𝐺f (q), respectively. The construction of 𝐺f (q) is described below.

Equivalently, (16) and (17) can be written as

𝑢f,𝑘 = −𝐷𝑈f,𝑘 + 𝑁𝑈𝑘 , (21)
𝜙f,𝑘 = −𝐷Φf,𝑘 + 𝑁Φc,𝑘 , (22)

where

𝑈f,𝑘
△
=

[𝑢f,𝑘−1
...

𝑢f,𝑘−𝑛f

]
∈ R𝑛f𝑞 , 𝑈𝑘

△
=

[𝑢𝑘
...

𝑢𝑘−𝑛f

]
∈ R(𝑛f+1)𝑚, (23)

Φf,𝑘
△
=

𝜙f,𝑘−1

...
𝜙f,𝑘−𝑛f

 ∈ R𝑛f𝑞×𝑙\c , Φc,𝑘
△
=

𝜙c,𝑘
...

𝜙c,𝑘−𝑛f

 ∈ R(𝑛f+1)𝑚×𝑙\c , (24)

𝑁
△
=

[
𝑁f,0 · · · 𝑁f,𝑛f

]
∈ R𝑞×𝑚(𝑛f+1) , 𝐷

△
=

[
𝐷f,1 · · · 𝐷f,𝑛f

]
∈ R𝑞×𝑞𝑛f . (25)

Next, to update the controller coefficient vector (11), we define the retrospective performance variable

𝑧𝑘 (\c)
△
= 𝑧𝑘 − (𝑢f,𝑘 − 𝜙f,𝑘\c), (26)

where 𝑧𝑘 is given by (7) and \c is a generic variable for optimization. Note that 𝑢f,𝑘 depends on 𝑢𝑘 and thus on the
current controller coefficient vector \c,𝑘 . The retrospective performance variable 𝑧𝑘 (\c) is used to determine the updated
controller coefficient vector \c,𝑘+1 by minimizing a function of 𝑧𝑘 (\c). The optimized value of 𝑧𝑘 is thus given by

𝑧𝑘 (\c,𝑘+1) = 𝑧𝑘 − (𝑢f,𝑘 − 𝜙f,𝑘\c,𝑘+1), (27)

which shows that the updated controller coefficient vector \c,𝑘+1 is applied retrospectively with the filtered controller
regressor 𝜙f,𝑘 . Note that 𝐺f (q) is used to obtain 𝜙f,𝑘 from 𝜙𝑘 by means of (17) but ignores past changes in the controller
coefficient vector, as can be seen by the product 𝜙f,𝑘\c,𝑘+1 in (27). Consequently, the filtering used to construct (27)
ignores changes in the controller coefficient vector over the window [𝑘 − 𝑛f , 𝑘] . The effect of the actual time-dependence
of \c,𝑘 is analyzed in [21]. Using (21) and (22), 𝑧𝑘 (\c) can be expressed as

𝑧𝑘 (\c) = 𝑧𝑘 + 𝐷 (𝑈f,𝑘 −Φf,𝑘\c) − 𝑁 (𝑈𝑘 −Φc,𝑘\c). (28)

In the case where 𝐺f (q) is a finite-impulse-response (FIR) transfer function, and thus 𝐷 = 0, it follows from (28) that

𝑧𝑘 (\c) = 𝑧𝑘 − 𝑁𝑈𝑘 + 𝑁Φc,𝑘\c. (29)

4

In order to account for the control effort, define

𝑧c,𝑘 (\c)
△
=

[
𝐸𝑧𝑧𝑘 (\c)
𝐸𝑢𝜙c,𝑘\c

]
∈ R𝑞+𝑟1 , (30)

where the performance weighting 𝐸𝑧 ∈ R𝑞×𝑞 is nonsingular, and 𝐸𝑢 ∈ R𝑟1×𝑚 is the control weighting. If 𝐸𝑢 = 0, then
all expressions involving 𝐸𝑢 in (30), as well as in all subsequent expressions, are omitted, and 𝑟1 = 0. Using (26), it
follows that (30) can be expressed as

𝑧c,𝑘 (\c) = 𝑦c,𝑘 − 𝜙fc,𝑘\c, (31)

where

𝑦c,𝑘
△
=

[
𝐸𝑧𝑧𝑘 − 𝐸𝑧𝑢f,𝑘

0𝑟×1

]
∈ R𝑞+𝑟1 , 𝜙fc,𝑘

△
=

[−𝐸𝑧𝜙f,𝑘

−𝐸𝑢𝜙c,𝑘

]
∈ R(𝑞+𝑟1)×𝑙\c . (32)

Using (30), define the retrospective cost

𝐽𝑘 (\c)
△
=

𝑘∑︁
𝑖=0

𝑧c,𝑖 (\c)T𝑧c,𝑖 (\c) + (\c − \c,0)T𝑃−1
c,0 (\c − \c,0), (33)

and note that

𝑧c,𝑘 (\c)T𝑧c,𝑘 (\c) = 𝑧𝑘 (\c)T𝑅𝑧𝑧𝑘 (\c) + \T
c 𝜙

T
c,𝑘𝑅𝑢𝜙c,𝑘\c, (34)

where 𝑅𝑧
△
= 𝐸T

𝑧 𝐸𝑧 ∈ R𝑞×𝑞 is positive definite and 𝑅𝑢
△
= 𝐸T

𝑢𝐸𝑢 ∈ R𝑚×𝑚 is positive semidefinite. For all 𝑘 ≥ 0, the
minimizer \c,𝑘+1 of (33) is given by the recursive least squares (RLS) solution [28]

𝑃c,𝑘+1 = 𝑃c,𝑘 − 𝑃c,𝑘𝜙
T
fc,𝑘 (𝐼𝑞+𝑟1 + 𝜙fc,𝑘𝑃c,𝑘𝜙

T
fc,𝑘)

−1𝜙fc,𝑘𝑃c,𝑘 , (35)

\c,𝑘+1 = \c,𝑘 + 𝑃c,𝑘+1𝜙
T
fc,𝑘 (𝑦c,𝑘 − 𝜙fc,𝑘\c,𝑘). (36)

Using the updated controller coefficient vector given by (36), the requested control at step 𝑘 + 1 is given by

𝑢𝑘+1 = 𝜙c,𝑘+1\c,𝑘+1. (37)

Although \c,0 can be chosen arbitrarily, \c,0 = 0 is chosen in all examples in order to reflect the absence of additional
modeling information. Finally, 𝑃c,0 = 𝑝c,0𝐼𝑙\c , where 𝑝c,0 ∈ (0,∞) is a tuning parameter.

IV. RLS-Based Identification (RLSID)
This section summarizes RLSID, which uses RLS for online, closed-loop identification. The goal is to estimate

key features of the open-loop transfer function −𝐸𝐺d (q) from 𝑢𝑘 to 𝑧𝑘 needed to construct 𝐺f (q), which, as shown in
Section III, serves as the target model for 𝐺𝑧�̃�,𝑘 (q). The transfer function 𝐸𝐺d (q) from 𝑢𝑘 to 𝑦𝑧,𝑘 is given by

𝐸𝐺d (q) = (𝐼𝑞q𝑛 + 𝐹1q𝑛−1 + · · · + 𝐹𝑛)−1 (𝐺0q𝑛 + 𝐺1q𝑛−1 + · · · + 𝐺𝑛), (38)

where 𝐺0, . . . , 𝐺𝑛 ∈ R𝑞×𝑚 and 𝐹1, . . . , 𝐹𝑛 ∈ R𝑞×𝑞 are the numerator and denominator coefficients of the transfer
function, respectively.

Consider the sampled-data identification architecture shown in Figure 3, which is based on Figure 2. Since 𝐸 is
known, 𝑦𝑧,𝑘 = 𝐸𝑦𝑘 can be computed internally by RLSID. Furthermore, at each step 𝑘, the requested control input 𝑢𝑘
and the measurement 𝑦𝑘 are assumed to be available. In order to identify 𝐸𝐺d (q), a model of the form

𝑦𝑧,𝑘 = −
[∑︁
𝑖=1

𝐹𝑖,𝑘𝑦𝑧,𝑘−𝑖 +
[∑︁
𝑖=0

𝐺𝑖,𝑘𝑢𝑘−𝑖 (39)

is fit to data, where [is the RLSID window length, and 𝐺0,𝑘 , . . . , 𝐺[,𝑘 ∈ R𝑞×𝑚 and 𝐹1,𝑘 , . . . , 𝐹[,𝑘 ∈ R𝑞×𝑞 are
numerator and denominator coefficient matrices that are to be estimated.

5

𝐺d (q)

G
𝑤(𝑡) 𝑦𝑤,𝑘

𝑢𝑘 𝑦𝑢,𝑘

𝑣𝑘

𝑦0,𝑘

RLSID

𝑦𝑘

Fig. 3 Online identification using RLSID.

Next, note that (39) can be written as

𝑦𝑧,𝑘 = 𝜙m,𝑘\m,𝑘 , (40)

where

𝜙m,𝑘
△
=

−𝑦𝑧,𝑘−1
...

−𝑦𝑧,𝑘−[
𝑢𝑘
...

𝑢𝑘−[

T

⊗ 𝐼𝑞 ∈ R𝑞×𝑙\m , (41)

is the model regressor, 𝑙\m = [𝑞2 + ([+ 1)𝑞𝑚, and

\m,𝑘
△
= vec

[
𝐹1,𝑘 · · · 𝐹[,𝑘 𝐺0,𝑘 · · · 𝐺[,𝑘

]
∈ R𝑙\m (42)

is the model coefficient vector. The model-output error is defined by
𝑧m,𝑘 (\m)

△
= 𝑦𝑧,𝑘 − 𝜙m,𝑘\m, (43)

where \m is an argument for optimization of the form

\m
△
= vec

[
𝐹1 · · · 𝐹[𝐺0 · · · 𝐺[

]
∈ R𝑙\m . (44)

V. Data-Driven Retrospective Cost Adaptive Control (DDRCAC)
This section summarizes DDRCAC [21], which combines RCAC with RLSID. The online identification uses RLS

to fit an infinite-impulse-response (IIR) model based on data 𝑦𝑧,𝑘 and 𝑢𝑘 collected during closed-loop operation. At
each step, the identified IIR model is used to construct a time-dependent target model 𝐺f,𝑘 (q). In particular, 𝐺f,𝑘 (q) is
constructed as an FIR filter whose numerator is chosen to be the numerator of the latest identified IIR model. This
approach avoids the need to compute NMP zeros during online operation and can be used in the MIMO case, where the
numerator of the RLSID model is a 𝑞 × 𝑚 polynomial matrix. This target model is then used by RCAC to update the
coefficients of an IIR controller. For DDRCAC, both RLS implementations use variable-rate forgetting (VRF), as given
in [29].

Proposition 1 For all 𝑘 ≥ 0, let �̄�𝑘 ∈ R𝑙�̄� , 𝜙𝑘 ∈ R𝑙�̄�×𝑙\̄ , _𝑘 ∈ (0, 1], and define 𝜌𝑘
△
=
∏𝑘

𝑗=0 _ 𝑗 . Let \̄0 ∈ R𝑙\̄ , and
let �̄�0 ∈ R𝑙\̄×𝑙\̄ be positive definite. Furthermore, for all 𝑘 ≥ 0, denote the minimizer of

𝐽𝑘 (\̄)
△
=

𝑘∑︁
𝑖=0

𝜌𝑘

𝜌𝑖
(�̄�𝑖 − 𝜙𝑖 \̄)T (�̄�𝑖 − 𝜙𝑖 \̄) + 𝜌𝑘 (\̄ − \̄0)T�̄�−1

0 (\̄ − \̄0). (45)

where \̄ ∈ R𝑙\̄ , by \̄𝑘+1
△
= argmin

\̄ ∈ R𝑙\̄
𝐽𝑘 (\̄). Then, for all 𝑘 ≥ 0, \̄𝑘+1 is given by

�̄�𝑘+1 = 1
_𝑘
�̄�𝑘 − 1

_𝑘
�̄�𝑘𝜙

T
𝑘 (_𝑘 𝐼𝑙�̄� + 𝜙𝑘 �̄�𝑘𝜙

T
𝑘)

−1𝜙𝑘 �̄�𝑘 , (46)

\̄𝑘+1 = \̄𝑘 + �̄�𝑘+1𝜙
T
𝑘 (�̄�𝑘 − 𝜙𝑘 \̄𝑘). (47)

For RLSID and RCAC, a technique for specifying _𝑘 is given later in this section.

6

A. RLSID
In order to identify 𝐸𝐺d (q), an IIR model of the form (39) is fit to data. Since 𝐸 is known, 𝑦𝑧,𝑘 = 𝐸𝑦𝑘 can

be computed internally by RLSID. Using Proposition 1, for all 𝑘 ≥ 0 the model coefficient vector \m,𝑘 is updated
recursively using

𝑃m,𝑘+1 = 1
_m,𝑘

𝑃m,𝑘 − 1
_m,𝑘

𝑃m,𝑘𝜙
T
m,𝑘 (_m,𝑘 𝐼𝑞 + 𝜙m,𝑘𝑃m,𝑘𝜙

T
m,𝑘)

−1𝜙m,𝑘𝑃m,𝑘 , (48)

\m,𝑘+1 = \m,𝑘 + 𝑃m,𝑘+1𝜙
T
m,𝑘 (𝑦𝑧,𝑘 − 𝜙m,𝑘\m,𝑘), (49)

where 𝜙m,𝑘 and \m,𝑘 are given by (41) and (42), respectively, and 𝑃m,0 ∈ R𝑙\m ×𝑙\m is positive definite. The RLSID
model at step 𝑘 is given by

𝐸𝐺d,𝑘 (q) = (𝐼𝑞q[+ 𝐹1,𝑘q[−1 + · · · + 𝐹[,𝑘)−1 (𝐺0,𝑘q[+ · · · + 𝐺[,𝑘). (50)

B. RCAC
Define the strictly proper dynamic compensator

𝑢𝑘
△
= sat�̄� (𝜙c,𝑘\c,𝑘), (51)

where 𝜙c,𝑘 and \c,𝑘 are given by (10) and (11), respectively. The definition (51) represents an IIR controller whose
output is saturated component-wise by the scalar saturation function sat�̄� defined by

sat�̄�𝑖 (𝑥𝑖)
△
=

{
𝑥𝑖 , |𝑥𝑖 | < �̄�𝑖 ,

sign(𝑥𝑖)�̄�𝑖 , |𝑥𝑖 | ≥ �̄�𝑖 .
(52)

Next, define the filtered signals

𝑢f,𝑘
△
= 𝐺f,𝑘 (q)𝑢𝑘 , (53)

𝜙f,𝑘
△
= 𝐺f,𝑘 (q)𝜙c,𝑘 , (54)

where, for startup, 𝑢f,𝑘 and 𝜙f,𝑘 are initialized at zero and thus are computed as the forced responses of (53) and (54),
respectively, and where 𝐺f,𝑘 (q) is the time-dependent target model constructed using the updated numerator coefficients
𝐺0,𝑘+1, . . . , 𝐺[,𝑘+1 of the model (39). In particular,

𝐺f,𝑘 (q)
△
= −

[∑︁
𝑖=0

𝐺𝑖,𝑘+1
1
q𝑖
, (55)

In the case where 𝑞 = 𝑚 = 1, it follows from 𝐺0,𝑘 = · · · = 𝐺 b−1,𝑘 = 0 and 𝐺 b ,𝑘 = 𝐺 b that (55) and −𝐸𝐺d (q) have
the same leading numerator coefficient and relative degree. Note that, at each step 𝑘, the numerator of (55) is chosen to
be the numerator of (50). If there exists 𝑘 ≥ 0 such that 𝐺0,𝑘 = · · · = 𝐺[,𝑘 = 0𝑞×𝑚, then 𝐺f,𝑘 (q) is chosen to be

𝐺f,𝑘 (q)
△
= −1𝑞×𝑚. (56)

The retrospective performance variable is defined to be

𝑧𝑘 (\c)
△
= 𝑧𝑘 − 𝑢f,𝑘 + 𝜙f,𝑘\c. (57)

Using (55) and (56), (57) can be expressed as

𝑧𝑘 (\c)
△
= 𝑧𝑘 − 𝑁𝑘𝑈𝑘 + 𝑁𝑘Φc,𝑘\c. (58)

where

𝑁𝑘
△
=

{[
−1𝑞×𝑚 0 · · · 0

]
, 𝐺0,𝑘+1 = · · · = 𝐺[,𝑘 = 0,[

−𝐺0,𝑘+1 · · · − 𝐺[,𝑘+1
]
, otherwise,

(59)

7

𝑁𝑘 ∈ R𝑞×([+1)𝑚, 𝑈𝑘 and Φc,𝑘 are given by (23) and (24) with 𝑛f = [, respectively, and 𝐺0,𝑘+1, . . . , 𝐺[,𝑘+1 ∈ R𝑞×𝑚 are
the numerator coefficients of the RLSID model. Note that, by performing the RLSID update at step 𝑘 before the RCAC
update, it follows thus the estimated numerator coefficients 𝐺0,𝑘+1, . . . , 𝐺[,𝑘+1 are available for constructing 𝑁𝑘 at step
𝑘.

Next, define the controller cost variable

𝑧c,𝑘 (\c)
△
=

𝐸𝑧𝑧𝑘 (\c)
𝐸𝑢𝜙c,𝑘\c

𝐸Δ𝑢 (𝜙c,𝑘\c − 𝑢𝑘)

 ∈ R𝑞+𝑟1+𝑟2 , (60)

where the performance weighting 𝐸𝑧 ∈ R𝑞×𝑞 is nonsingular and 𝐸𝑢 ∈ R𝑟1×𝑚 and 𝐸Δ𝑢 ∈ R𝑟2×𝑚 are the control weighting
and control-move weighting, respectively. If 𝐸𝑢 = 0 and 𝐸Δ𝑢 = 0, then 𝑟1 = 0 and 𝑟2 = 0, respectively, and all
expressions involving 𝐸𝑢 and 𝐸Δ𝑢 are omitted from (60), as well as from all subsequent expressions. Note that

𝑧c,𝑘 (\c)T𝑧c,𝑘 (\c) = 𝑧𝑘 (\c)T𝑅𝑧𝑧𝑘 (\c) + \T
c 𝜙

T
c,𝑘𝑅𝑢𝜙c,𝑘\c + (𝜙c,𝑘\c − 𝑢𝑘)T𝜙T

c,𝑘𝑅Δ𝑢𝜙c,𝑘 (𝜙c,𝑘\c − 𝑢𝑘) , (61)

where 𝑅𝑧
△
= 𝐸T

𝑧 𝐸𝑧 ∈ R𝑞×𝑞 is positive definite, and 𝑅𝑢
△
= 𝐸T

𝑢𝐸𝑢 ∈ R𝑚×𝑚, 𝑅Δ𝑢
△
= 𝐸T

Δ𝑢
𝐸
Δ𝑢

∈ R𝑚×𝑚 are positive
semidefinite. Using Proposition 1, for all 𝑘 ≥ 0 the controller coefficient vector \c,𝑘 is updated recursively using

𝑃c,𝑘+1 = 1
_c,𝑘

𝑃c,𝑘 − 1
_c,𝑘

𝑃c,𝑘𝜙
T
fc,𝑘 (_c,𝑘 𝐼𝑞+𝑟1+𝑟2 + 𝜙fc,𝑘𝑃c,𝑘𝜙

T
fc,𝑘)

−1𝜙fc,𝑘𝑃c,𝑘 , (62)

\c,𝑘+1 = \c,𝑘 + 𝑃c,𝑘+1𝜙
T
fc,𝑘 (𝑦c,𝑘 − 𝜙fc,𝑘\c,𝑘), (63)

where

𝑦c,𝑘
△
=

[
𝐸𝑧𝑧𝑘 − 𝐸𝑧𝑁𝑘𝑈𝑘

0
−𝐸Δ𝑢𝑢𝑘

]
∈ R𝑞+𝑟1+𝑟2 , 𝜙fc,𝑘

△
=

[−𝐸𝑧𝑁𝑘Φc,𝑘
−𝐸𝑢𝜙c,𝑘
−𝐸Δ𝑢𝜙c,𝑘

]
∈ R(𝑞+𝑟1+𝑟2)×𝑙\c . (64)

and 𝑃c,0 ∈ R𝑙\c ×𝑙\c is positive definite.
For all of the examples in this paper, \m,𝑘 and \c,𝑘 are initialized at 0, and thus (56) is invoked at startup. This

assumption reflects the absence of additional prior modeling information; in practice, however, \m,𝑘 and \c,𝑘 can
be initialized based on any available modeling information. To initialize RLSID and RCAC, 𝑃c,0 = 𝑝c,0𝐼𝑙\c and
𝑃m,0 = 𝑝c,0𝐼𝑙\m are chosen, where, for convenience, 𝑝c,0 > 0 is a common tuning parameter.

C. Data-Dependent Variable Rate Forgetting
For data-dependent variable-rate forgetting, set

_m,𝑘 =
1

1 + Y𝑒(𝑧m,𝑘−𝜏d , . . . , 𝑧m,𝑘)1[𝑒(𝑧m,𝑘−𝜏d , . . . , 𝑧m,𝑘)]
, (65)

_c,𝑘 =
1

1 + Y𝑒(𝑧𝑘−𝜏d , . . . , 𝑧𝑘)1[𝑒(𝑧𝑘−𝜏d , . . . , 𝑧𝑘)]
, (66)

where

𝑒(𝑥𝑘−𝜏d , . . . , 𝑥𝑘)
△
=

√︃
1
𝜏n

∑𝑘
𝑖=𝑘−𝜏n

𝑥T
𝑖
𝑥𝑖√︃

1
𝜏d

∑𝑘
𝑖=𝑘−𝜏d

𝑥T
𝑖
𝑥𝑖

− 1.2, (67)

“1” is the step function that is 0 for negative arguments and 1 for nonnegative arguments, and 𝑒(0, . . . , 0) △
= 0. In (65)–(67),

Y ≥ 0, 0 < 𝜏n < 𝜏d are numerator and denominator window lengths, respectively. If the sequence 𝑥𝑘−𝜏d , . . . , 𝑥𝑘 is
zero-mean noise, then the numerator and denominator of (67) approximate the average standard deviation of the noise
over the intervals [𝑘 − 𝜏n, 𝑘] and [𝑘 − 𝜏d, 𝑘], respectively. In particular, by choosing 𝜏d >> 𝜏n, it follows that the
denominator of (67) approximates the long-term-average standard deviation of 𝑥𝑘 , whereas the numerator of (67)
approximates the short-term-average standard deviation of 𝑥𝑘 . Consequently, the case 𝑒(𝑥𝑘−𝜏d , . . . , 𝑥𝑘) > 0 implies that
the short-term-average standard deviation of 𝑥𝑘 is greater than the long-term-average standard deviation of 𝑥𝑘 plus a

8

threshold of 0.2. The function 𝑒(𝑥𝑘−𝜏d , . . . , 𝑥𝑘) used in VRF suspends forgetting when the short-term-average standard
deviation of 𝑥𝑘 drops below 1.2 times the long-term-average standard deviation of 𝑥𝑘 . This technique thus prevents
forgetting in RLSID and RCAC due to zero-mean sensor noise with constant standard deviation rather than due to the
magnitude of the noise-free identification error and command-following error.

A list of parameters to be selected for RCAC is presented in Table 1.

Table 1 Tuning parameters that need to be selected for DDRCAC. Typical ranges are given.

Parameter Description Selection
[Model window length Integer ≥ 1 (1–10)
𝑛c Controller window length Integer ≥ 1 (2–40)
𝐸𝑢 Control weighting scaled 𝑚 × 𝑚 identity
𝐸Δ𝑢 Control move weighting scaled 𝑚 × 𝑚 identity
�̄� Control saturation-limit

vector
95% actuator saturation
limit

𝑝c,0 Initial RLS covariance
scaling for RLSID and
RCAC

𝑝c,0 > 0

Y Forgetting parameter 0 ≤ Y < 1 (0.001 – 0.2)
𝜏n, 𝜏d Forgetting window lengths Integers 𝜏d > 𝜏n (𝜏n ∈ [1–

400], 𝜏d ∼ 3𝜏n)

VI. Fluent and DDRCAC Interface
A Fluent User Defined Function (UDF) is used to couple Ansys Fluent with the MATLAB-based DDRCAC

controller. This integration employs a TCP WinSocket script for bidirectional communication between the Fluent UDF
(acting as the client) and the DDRCAC MATLAB script (serving as the server) at each iteration.

Before the Fluent simulation is run, a server script is compiled and run to initiate the DDRCAC server. The
DEFINE_ON_DEMAND macro in this script reads the sensor location coordinates. Since Fluent stores flow data at
mesh cell centroids, which might not correspond to sensor locations, this function identifies the nearest mesh cell to the
selected sensor locations. The UDF client connects to the server prior to the fluid computation.

At the conclusion of each fluid simulation time step, the DEFINE_AT_END macro is called. This macro computes
the flow properties at the sensor location via linear interpolation of the neighboring mesh cell values and gradients
(when available). This data are then transferred to the DDRCAC server via TCP communication. The server processes
and loads this controller data with the MATLAB Engine API. It then calls the DDRCAC MATLAB script, and the
server then sends the resulting control command back to the DDRCAC/Fluent interface. A DEFINE_PROFILE macro,
called at the start of each time step, sets a uniform velocity profile across the control inlet based on the requested control
from DDRCAC.

VII. Application of DDRCAC to Boundary Layer Control
In this section, the flow-control objective is to have the fluid follow a constant streamwise velocity setpoint at a

sensor location. To achieve this objective, DDRCAC is used to specify the free-stream inlet velocity 𝑢𝑘 . As in all of the
examples in this paper, no model of the fluid dynamics is assumed to be available to DDRCAC; rather, RLSID learns a
linear model, which is used by RCAC.

Example 1. Streamwise velocity setpoint in a 2D duct boundary layer. We consider a 2D duct with width 0.5 m
and length 1 m. A setpoint is specified for the streamwise velocity at a specified location that is halfway along the length
of the duct and within the expected boundary layer. This geometry is defined with a symmetry boundary condition
along the midheight plane of the duct. A velocity inlet is set along the left edge, and a pressure outlet is placed along the
right edge. The bottom edge is a no-slip wall. A single idealized streamwise velocity sensor measures the streamwise
flow velocity 𝑦𝑘 at the specified location. This data is used to compute the command-following error 𝑧𝑘 .

The control input requested by RCAC is the magnitude of the uniform velocity profile at the duct inlet. The fluid
computation is incompressible, unsteady, viscous, and laminar. The viscosity is 1.7894e-5 kg/(ms). The velocity of the
flow field in the duct is initialized to be 0 m/s at all locations. The flow state is then advanced forward in time with a

9

time step of 0.01 s using first order implicit time stepping. RCAC uses a sampled-data architecture discussed in Section
II that samples the velocity sensor with a matching time step of 0.01 s.

Figure 4 shows the sensor measurements and requested control input as well as the coefficients estimated by RLSID
and RCAC. Figure 5 shows the boundary layer profile at the location of the sensor. Note that the sensor is within the
boundary layer.

Fig. 4 Example 1: After an initial learning period, (a) shows that the streamwise velocity converges to the
commanded value of 0.1 m/s in about 1 s. (b) shows that the resulting converged inlet velocity is 3.7646 m/s,
in agreement with the classical Blasius equation. (c) shows the log of the error between the commanded value
and the streamwise velocity. (d) shows the time history of the estimated coefficients \m of the identified model,
where numerator coefficients are plotted in blue and denominator coefficients are plotted in red. (e) shows the
time history of the updated controller coefficients \c. (f) shows the spectral radius of the identified model and
controller. Note that both RLS updates converge in about 0.75 s.

As an independent check of the simulation and asymptotic performance, we use the classical Blasius laminar
boundary layer analysis to determine the required inlet velocity that produces the setpoint velocity at the sensor location.
In particular, the Blasius solution is governed by [30]

𝑓 ′′′ + 1
2
𝑓 𝑓 ′′ = 0, (68)

with the boundary conditions

𝑓 (0) = 0, 𝑓 ′ (0) = 0, 𝑓 ′ (∞) = 1. (69)

For these boundary conditions, we solve (68) iteratively until 𝑓 ′ (∞) = 1, which yields 𝑓 ′′ (0) = 0.3320. The sensor
location in the boundary layer is specified by the nondimensional parameter [given by

[= 𝑦

√︂
𝑢∞
a𝑥

, (70)

10

Fig. 5 Example 1: Boundary layer profile at the sensor location at step 𝑘 = 500. (a) shows the boundary layer
profile, which indicates that the sensor height of 1e-4 m places it well within the boundary layer. (b) is zoomed in
to show that the streamwise velocity at the sensor height is 0.1 m/s, matching the setpoint.

where 𝑦 is the distance from the wall, 𝑢∞ is the free-stream velocity, a is the kinematic viscosity, and 𝑥 is the distance
along the plate from the leading edge to the sensor. Solving the Blasius equation yields the velocity profile in the
boundary layer. We then find the velocity at the sensor location, which is given by

𝑢 = 𝑓 ′ ([)𝑢∞. (71)

To determine the inlet velocity that results in the setpoint velocity at the sensor location, we substitute the setpoint 𝑟𝑘
for the velocity at sensor location 𝑢 and substitute the inlet velocity 𝑢𝑘 for the freestream velocity 𝑢∞. We then initialize
inlet velocity 𝑢𝑘 and then use an iterative method to compute the desired velocity 𝑟𝑘 . Figure 6 shows the relationship
between the setpoint velocity at the sensor location and the required inlet velocity obtained from the Blasius solution.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

Fig. 6 Example 1: Required inlet velocity versus the setpoint at the sensor location computed by the Blasius flat
plate laminar boundary layer theory. The red dot indicates the setpoint for Example 1. For the setpoint 0.1 m/s
at the sensor location, Blasius theory yields the required inlet velocity 4.0461 m/s. RCAC converges to 3.7646 m/s.

The above procedure results in a required inlet velocity of 4.0461 m/s. This is close to the RCAC converged value of
3.7646 m/s. Note that RCAC achieves this value with no knowledge of the fluid dynamics and no model of the flow
being controlled. We note that an exact match is not expected since the simulation does not adhere exactly to flat plate
laminar boundary layer theory; in particular, this case is not a pure flat plate but rather a duct. Additionally, 𝑅𝑒𝑥 at the

11

sensor location is 1.29e5 using the converged inlet velocity. The Blasius solution is more accurate with higher Reynolds
numbers flows.

Example 2. Stepwise-varying streamwise velocity setpoint in a 2D duct boundary layer. We extend Example 1 and
use DDRCAC to follow a stepwise variable setpoint. This example uses an identical setup to Example 1. Figure 7 shows
the sensor measurements, setpoint, requested control input, and coefficients estimated by RLSID and RCAC. As in
Example 1, the controller specifies the inlet velocity to achieve the commanded velocity at the sensor location.

Fig. 7 Example 2: After an initial learning period and transient response occurring each time the setpoint
changes, (a) shows that the streamwise velocity converges to the commanded value after about 0.5 s. (b) shows the
corresponding inlet velocities. (c) shows the log of the error between the setpoint and the streamwise velocity.
(d) shows the time history of the estimated coefficients \m of the identified model, where numerator coefficients
are plotted in blue and denominator coefficients are plotted in red. (e) shows the time history of the updated
controller coefficients \c. (f) shows the spectral radius of the identified model and the controller. Note that, after
each setpoint change, both RLS updates converge in about 0.5 s.

12

Example 3. Streamwise velocity setpoint in a cylinder boundary layer in a 2D duct. In this example, we command
the streamwise velocity at a location within the boundary layer on the front of an axial cylinder within a duct. We use
the same duct geometry from Example 1, with the addition of an axial cylinder with a radius of 0.1 m. This geometry is
shown in Figure 8.

Fig. 8 Example 3: Axial cylinder in duct geometry and mesh with sensor location indicated. A symmetry
condition is applied at the top edge of the geometry, resulting in an axial cylinder centered within the duct.

This case is a more complex version of Example 1 since the required free-stream velocity is more difficult to compute
from theory. The flow field is initialized to have 0 m/s velocity at all locations within the duct. The fluid computation is
incompressible, unsteady, viscous, and turbulent using the 𝑘 − 𝜔 turbulence model. The viscosity is 1.7894e-5 kg/(ms).
At the inlet, the turbulent intensity is 5% and the turbulent viscosity ratio is 10. The velocity of the flow field in the duct
is initialized to be 0 m/s at all locations. The flow state is then advanced forward in time with a time step of 0.01 s using
first order implicit time stepping. RCAC uses a sampled-data architecture discussed in Section II with a matching time
step of 0.01 s.

A single idealized streamwise velocity sensor measures the streamwise flow velocity 𝑦𝑘 within the boundary layer at
the sensor location indicated in Figure 8. For this example, we consider the streamwise direction to be with respect to the
inlet and not tangent to the cylinder surface. This data is used to compute the performance variable 𝑧𝑘 for RCAC. Figure
9 shows that DDRCAC determines the inlet velocity needed to achieve the commanded velocity at the sensor location.

13

Fig. 9 Example 3: After an initial learning period, (a) shows that the streamwise velocity converges to the
commanded value of 0.3 m/s in about 0.5 s. (b) shows that the resulting converged inlet velocity is 1.2099 m/s.
(c) shows the log of the error between the commanded value and the streamwise velocity. (d) shows the time
history of the estimated coefficients \m of the identified model, where numerator coefficients are plotted in blue
and denominator coefficients are plotted in red. (e) shows the time history of the updated controller coefficients
\c. (f) shows the spectral radius of the identified model and controller. Note that both RLS updates converge in
about 1 s.

14

VIII. Application of RCAC to Turbulence Control in Mixing Layers
In this section, the flow-control objective is to minimize turbulence at the sensor location. In contrast to Section VII,

these examples have a constant, uncontrolled inlet velocity. To achieve the control objective, RCAC is used to specify a
control inlet velocity 𝑢𝑘 used in the presence of the uncontrolled inlet. The turbulence at the sensor location is assessed
by an idealized measurement 𝑦𝑘 of turbulent kinetic energy (TKE). TKE is the mean kinetic energy per unit mass due to
turbulent eddies in the flow and can be computed using measurements of flow velocity fluctuations in time. In these
Reynolds-averaged simulations using the 𝑘 − 𝜔 model, the turbulent kinetic energy is one of the state variables. Once
again, no model of the fluid dynamics is assumed to be available; RLSID learns a linear model, which is used by RCAC.

Example 4. Turbulent kinetic energy suppression in a mixing layer due to a backwards-facing step in 2D duct. For
flow over a backwards-facing step, the objective is to use DDRCAC to suppress turbulence in the resulting mixing layer.
We retain the same duct geometry from Example 1, but we now add a backwards-facing step of length 0.2 m and height
0.075 m at the inlet side of the duct. A constant, uniform inlet velocity is specified with velocity 5 m/s along the left
edge of the duct above the step. The horizontal surface of the step and the lower surface of the duct are no-slip walls, the
upper surface of the duct is a symmetry plane, and the right edge is a pressure outlet. The vertical edge of the step is the
control inlet with velocity requested by RCAC. The viscosity is 1.7894e-5 kg/(ms). At all inlets, the turbulent intensity
is 5% and the turbulent viscosity ratio is 10.

The flow field is initialized to have 0 m/s velocity at all locations within the duct. The fluid computation is
incompressible, unsteady, viscous, and turbulent using the 𝑘 − 𝜔 turbulence model. A single idealized TKE sensor
provides the TKE 𝑦𝑘 . This data is used to compute the performance variable 𝑧𝑘 for RCAC. The flow state is advanced
forward in time with a time step of 0.01 s using first order implicit time stepping. RCAC uses a sampled-data architecture
discussed in Section II with a matching time step of 0.01 s.

A mixing layer forms due to the difference in velocity between the flow above and below the step. Figure 10
shows the TKE contour for the uncontrolled flow with the sensor location indicated. Meanwhile, Figure 11 shows flow
pathlines for the uncontrolled flow.

Fig. 10 Example 4: Turbulent kinetic energy contour and sensor location for the uncontrolled flow. A region of
high TKE forms due to shear between the layers of fast-moving air above the step and slow-moving air below the
step. The TKE sensor is located in this region.

Fig. 11 Example 4: Pathlines in the uncontrolled flow. A region of circulation appears near where the TKE is
high.

For the controlled flow, we specify a TKE setpoint of 0 J/kg. The controller is enabled at 1 s. Figure 12 shows

15

the TKE values at the sensor location, the controlled inlet velocity requested by RCAC, and the RLS coefficients from
RLSID and RCAC. Figure 13 shows the TKE contour for the controlled flow. Figure 14 shows pathlines in the controlled
flow.

Fig. 12 Example 4: The controller is enabled at 1 s (indicated by the green line). Once enabled, the controller
begins learning. After this learning period, (a) shows that the TKE at the sensor location is reduced from the
uncontrolled value of 1.11 J/kg to 0.0441 J/kg. (b) shows that the resulting converged inlet velocity is 1.7688
m/s. (c) shows the log of the error between the setpoint and the TKE at the sensor location. (d) shows the time
history of the estimated coefficients \m of the identified model, where numerator coefficients are plotted in blue
and denominator coefficients are plotted in red. (e) shows the time history of the updated controller coefficients
\c. (f) shows the spectral radius of the identified model and controller. Note that both RLS updates converge in
about 1 s.

Fig. 13 Example 4: Turbulent kinetic energy contour and sensor location for the controlled flow. RCAC
reduces the TKE at the sensor location by requesting the flow velocity through the vertical step edge. RCAC
does not decrease TKE away from the sensor; TKE is higher in other locations, particularly at the step face and
downstream of the sensor.

16

Fig. 14 Example 4: Pathlines in the controlled flow. The circulation region near the sensor in the uncontrolled
flow is removed in the controlled flow.

Example 5. Turbulent kinetic energy suppression in a 2D duct with crossflow jets. We apply DDRCAC to a
duct with width 0.25 m and length 1 m. The top and bottom duct surfaces are no-slip walls. The left surface is an
uncontrolled velocity inlet with constant velocity 10 m/s. The right surface is a pressure outlet. On the bottom surface,
0.333 m downstream of the inlet is an uncontrolled jet with constant velocity 50 m/s. On the top surface, 0.500 m
downstream of the inlet is a velocity inlet control jet controlled by DDRCAC. The viscosity is 1.7894e-5 kg/(ms). At all
inlets, the turbulent intensity is 5% and the turbulent viscosity ratio is 10.

Figure 15 shows the duct geometry and the location of the uncontrolled constant jet and the control jet. Using a
single idealized TKE sensor, the control objective is to minimize TKE at the sensor location. The flow field is initialized
to have 0 m/s velocity at all locations within the duct. The fluid computation is incompressible, unsteady, viscous, and
turbulent using the 𝑘 − 𝜔 turbulence model. A single idealized sensor provides the TKE 𝑦𝑘 . This data are used to
compute the performance variable 𝑧𝑘 for RCAC. The flow state is advanced forward in time with a time step of 0.01 s
using first order implicit time stepping. RCAC uses a sampled-data architecture discussed in Section II with a matching
time step of 0.01 s.

Fig. 15 Example 5: Duct geometry and mesh. The constant jet is located on the bottom surface of the duct, and
the control jet is located on the top surface of the duct.

The constant velocity jet introduces turbulence into the duct. Figure 16 shows the TKE contour for the uncontrolled
flow with the sensor location indicated. Meanwhile, Figure 17 shows flow pathlines for the uncontrolled flow.

For the controlled flow, we specify a setpoint of 0 J/kg TKE at the sensor location. The controller is enabled at 0.5 s,
allowing for the flow to develop. Figure 18 shows the TKE measurement, controlled inlet velocity requested by RCAC,
and RLS coefficients from RLSID and RCAC. Figure 19 shows the contour of TKE for the converged controlled flow.

17

Fig. 16 Example 5: Turbulent kinetic energy contour and sensor location for the uncontrolled flow. A region of
high TKE forms due the constant, uncontrolled crossflow jet. At the location of the sensor, the TKE is 42.1 J/kg.

Fig. 17 Example 5: Pathlines in the uncontrolled flow. A region of circulation occurs near where the TKE is
high.

18

Fig. 18 Example 5: The controller is enabled at 0.5 s (indicated by the green line). Once enabled, the controller
begins learning. After this learning period, (a) shows that the TKE at the sensor location does not reach the
setpoint of 0 J/kg, but is reduced to 10.6770 J/kg from the uncontrolled flow value of 42.1 J/kg. (b) shows that the
resulting converged control inlet velocity is 14.2643 m/s. (c) shows the log of the error between the setpoint and
the TKE at the sensor location. (d) shows the time history of the estimated coefficients \m of the identified model,
where numerator coefficients are plotted in blue and denominator coefficients are plotted in red. (e) shows the
time history of the updated controller coefficients \c. (f) shows the spectral radius of the identified model and
controller. Note that both RLS updates converge in about 2 s.

Fig. 19 Example 5: Turbulent kinetic energy contour and sensor location for the controlled flow. RCAC reduces
the TKE at the sensor location by requesting the flow velocity through the control jet.

19

Fig. 20 Example 5: Pathlines in the controlled flow with sensor location indicated. In the controlled flow, the
circulation region is moved away from the sensor location.

20

IX. Conclusions
This paper presented preliminary results on active flow control using data-driven retrospective cost adaptive

control (DDRCAC). DDRCAC extends RCAC to include online closed-loop system identification, which facilitates the
application of RCAC to flow control [20]. For all of the examples considered in this paper, DDRCAC was implemented
as a “cold-start” technique, where no prior modeling information was assumed to be available. Since DDRCAC requires
the user to specify various hyperparameters, future research will focus on the robustness of DDRCAC to the choice of
these parameters as well as additional flow scenarios and performance objectives, including 3D flows with multiple
sensors and actuators.

X. Acknowledgments
This research was supported in part by ONR under grant N00014-22-1-2457.

References
[1] Bewley, T. R., “Flow control: new challenges for a new renaissance,” Progress in Aerospace sciences, Vol. 37, No. 1, 2001, pp.

21–58.

[2] Aamo, O. M., and Krstic, M., Flow Control by Beedback: Stabilization and Mixing, Springer, 2003.

[3] Gunzburger, M. D., Perspectives in Flow Control and Optimization, SIAM, 2002.

[4] Gad-el Hak, M., Flow Control: Passive, Active, and Reactive Flow Management, Cambridge University Press, 2000.

[5] Joslin, R. D., and Miller, D. N. (eds.), Fundamentals and Applications of Modern Flow Control, AIAA, 2009.

[6] Barbu, V., Stabilization of Navier–Stokes Flows, Springer, 2011.

[7] Cattafesta III, L. N., and Sheplak, M., “Actuators for active flow control,” Ann. Rev. Fluid Mech., Vol. 43, 2011, pp. 247–272.

[8] Luhar, M., Sharma, A. S., and McKeon, B. J., “Opposition control within the resolvent analysis framework,” J. Fluid Mech.,
Vol. 749, 2014, p. 597–626.

[9] Brunton, S. L., and Noack, B. R., “Closed-loop turbulence control: Progress and challenges,” Appl. Mech. Rev., Vol. 67, No. 5,
2015.

[10] Duriez, T., Brunton, S. L., and Noack, B. R., Machine Learning Control—Taming Nonlinear Dynamics and Turbulence,
Springer, 2017.

[11] Wang, J., and Feng, L., Flow Control Techniques and Applications, Cambridge University Press, 2019.

[12] Modi, V. J., Munshi, S. R., Bandyopadhyay, G., and Yokomizo, T., “High-Performance Airfoil with Moving Surface
Boundary-Layer Control,” J. Aircraft, Vol. 35, No. 4, 2021, p. 544–553.

[13] King, R. (ed.), Active Flow Control, Springer, 2007.

[14] Bewley, T. R., and Liu, S., “Optimal and robust control and estimation of linear paths to transition,” J. Fluid Mech., Vol. 365,
2001, pp. 305–349.

[15] Mushtaq, T., Seiler, P., and Hemati, M. S., “Feedback control of transitional flows: A framework for controller verification
using quadratic constraints,” AIAA Aviation Forum, virtual, 2021. AIAA-2021-2825.

[16] Joshi, S. S., Speyer, J. L., and Kim, J., “A Systems Theory Approach to the Feedback Stabilization of Infinitesimal and
Finite-Amplitude Disturbances in Plane Poiseuille Flow,” J. Fluid Mech., Vol. 332, 1997, pp. 157–184.

[17] Joshi, S. S., Speyer, J. L., and Kim, J., “Finite Dimensional Optimal Control of Poiseuille Flow,” J. Guid. Contr. Dyn., Vol. 22,
1999, pp. 340–348.

[18] Gautier, N., Aider, J.-L., Duriez, T., Noack, B., Segond, M., and Abel, M., “Closed-loop separation control using machine
learning,” J. Fluid Mech., Vol. 770, No. 5, 2015, pp. 442–457.

[19] Rahman, Y., Xie, A., and Bernstein, D. S., “Retrospective Cost Adaptive Control: Pole Placement, Frequency Response, and
Connections with LQG Control,” IEEE Contr. Sys. Mag., Vol. 37, 2017, pp. 28–69.

21

[20] Rizzo, M., Santillo, M. A., Padthe, A., Hoagg, J. B., Akhtar, S., Bernstein, D. S., and Powell, K. G., “CFD-Based Identification
for Adaptive Flow Control Using ARMARKOV Disturbance Rejection,” Proc. Amer. Contr. Conf., Minneapolis, MN, 2006, pp.
3783–3788.

[21] Islam, S. A. U., Nguyen, T. W., Kolmanovsky, I. V., and Bernstein, D. S., “Data-Driven Retrospective Cost Adaptive Control for
Flight Control Application,” Journal of Guidance, Control, and Dynamics, Vol. 44, 2021, pp. 1732–1758.

[22] Goel, A., Bruce, A. L., and Bernstein, D. S., “Recursive Least Squares With Variable-Direction Forgetting: Compensating for
the Loss of Persistency [Lecture Notes],” IEEE Control Systems Magazine, Vol. 40, No. 4, 2020, pp. 80–102.

[23] Bruce, A. L., Goel, A., and Bernstein, D. S., “Convergence and consistency of recursive least squares with variable-rate
forgetting,” Automatica, Vol. 119, 2020, p. 109052.

[24] Mohseni, N., and Bernstein, D. S., “Recursive least squares with variable-rate forgetting based on the F-test,” Proc. Amer. Contr.
Conf., 2022, pp. 3937–3942.

[25] Lai, B., and Bernstein, D. S., “Exponential Resetting and Cyclic Resetting Recursive Least Squares,” 2015, pp. 985–990.

[26] Aljanaideh, K. F., and Bernstein, D. S., “Initial Conditions in Time- and Frequency-Domain System Identification: Implications
of the Shift Operator Versus the Z and Discrete Fourier Transforms,” IEEE Control Systems Magazine, Vol. 38, No. 2, 2018, pp.
80–93. https://doi.org/https://doi.org/10.1109/MCS.2017.2786419.

[27] Middleton, R., and Goodwin, G., Digital Control and Estimation: A Unified Approach, Prentice Hall, 1990. https://doi.org/https:
//doi.org/10.1002/rnc.4590040308.

[28] Islam, S. A. U., and Bernstein, D. S., “Recursive Least Squares for Real-Time Implementation,” IEEE Control Systems Magazine,
Vol. 39, No. 3, 2019, pp. 82–85. https://doi.org/https://doi.org/10.1109/MCS.2019.2900788.

[29] Bruce, A. L., Goel, A., and Bernstein, D. S., “Convergence and Consistency of Recursive Least Squares with Variable-Rate
Forgetting,” Automatica, Vol. 119, 2020, p. 109052. https://doi.org/https://doi.org/10.1016/j.automatica.2020.109052.

[30] White, F. M., Viscous Fluid Flow (2nd ed.), McGraw Hill, 1991.

22

https://doi.org/https://doi.org/10.1109/MCS.2017.2786419
https://doi.org/https://doi.org/10.1002/rnc.4590040308
https://doi.org/https://doi.org/10.1002/rnc.4590040308
https://doi.org/https://doi.org/10.1109/MCS.2019.2900788
https://doi.org/https://doi.org/10.1016/j.automatica.2020.109052

	Introduction
	Sampled-Data Adaptive-Control Architecture
	Retrospective Cost Adaptive Control (RCAC)
	RLS-Based Identification (RLSID)
	Data-Driven Retrospective Cost Adaptive Control (DDRCAC)
	RLSID
	RCAC
	Data-Dependent Variable Rate Forgetting

	Fluent and DDRCAC Interface
	Application of DDRCAC to Boundary Layer Control
	Application of RCAC to Turbulence Control in Mixing Layers
	Conclusions
	Acknowledgments

