
High-Order Node Movement Discretization Error Control in
Shape Optimization

Devina P. Sanjaya ∗

University of Tennessee, Knoxville, TN, 37996

Krzysztof J. Fidkowski†
University of Michigan, Ann Arbor, MI, 48188

We present mesh node movement as an effective discretization error control strategy for
shape optimization problems on structured meshes. The context is aerodynamic shape op-
timization via mesh deformation on anisotropic, structured meshes suitable for Reynolds-
averaged Navier-Stokes (RANS) simulations. Movement of interior nodes occurs concurrently
with the shape optimization iterations, with the objective of minimizing the output error for
a fixed mesh size. The output-based error estimates that drive the node movement rely on
an adjoint solution that is also used by the gradient-based shape optimization. In the context
of high-order solution approximation on curved meshes, the high-order mesh nodes provide
additional degrees of freedom for controlling the discretization error. Even though the meshes
of interest are structured, a metric-based mesh optimization algorithm is used in an interme-
diate step to provide element sizing and anisotropy information. The objective of the node
movement is then to make the mesh better conform to the computed metric field. Results from
two-dimensional aerodynamics shape optimization problems demonstrate the ability of the
node movement to decrease discretization error, and the efficacy of the output error estimates.

I. Introduction
The increased demand for more accurate and robust computational fluid dynamics (CFD) simulations has largely

motivated research in high-order CFD methods [1] and output-based mesh adaptation [2–4]. The growing interests in
high-order CFD methods and their applications have recently led us to research in high-order mesh adaptation and
optimization [4–6]. And thanks to the rapid growth of computing power, CFD is now widely recognized as an essential
tool for engineering design and optimization [7, 8].

Shape optimization is an important problem in the aerospace engineering community. One approach to shape
optimization is to formulate the problem as a trimmed optimization problem in which the parameter vector consists of
distinct shape design parameters and trim parameters, and this is the approach taken in this work. Previous works in
shape optimization emphasize the importance of controlling the discretization errors, as these errors can strongly affect
the reliability of the optimization objective and the sensitivity calculations, which in the end, affect the overall quality
of the optimization results [9–11]. Our focus here is on controlling the discretization errors on structured, high-order
meshes with fixed element counts. The error control is done solely through mesh node movement, which is formulated
as a metric-based mesh optimization driven by output error estimates. To control the discretization errors effectively,
the shape and mesh node optimizations are done concurrently. Two optimization frameworks are proposed in order
to offer different workflow and cost allocation for mesh node movement. While these frameworks are developed for
general high-order, finite-element methods and governing equations, we present our results specifically for a high-order,
discontinuous-Galerkin (DG) discretization of the Reynolds-averaged Navier-Stokes (RANS) equations. Finally, we
note that hanging node adaptation is not performed in this work.

The reminder of this paper is outlined as follows. In Section II, we give a brief review on our chosen discretization,
the DG method. In Section III, we describe the general shape optimization problem. Details of the error estimation,
metric calculation, and mesh node movement are given in Sections IV and V. Section VI presents the proposed
optimization frameworks. Preliminary results are shown in Section VII, and Section VIII concludes the present work
and discusses our plans for the final paper.
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1



II. Discretization

A. Primal
We consider discretizations of differential equations in conservation form,

∇ · ®H(u,∇u) + S(u) = 0, (1)

where u(®G, C) ∈ RB is the conservative state vector containing mass, momentum, and energy per unit volume, B is the
state rank, ®H(u,∇u) = ®F(u) + ®G(u,∇u) is the total (inviscid and viscous) flux, and S(u) is a source term active when
modeling turbulence. In this work, the Reynolds-averaged Navier-Stokes (RANS) equations with the Spalart-Allmaras
(SA) closure [12, 13] are of interest.

To discretize Eqn. 1, we use a finite-element method, the discontinuous Galerkin (DG) discretization [14]. The
computational domain Ω is divided into #4 elements, Ω4, in a non-overlapping tessellation )ℎ. Inside element Ω4,
the state components are approximated by polynomials of order ?, with no continuity constraints between elements.
Formally, we write: uℎ ∈ Vℎ = [Vℎ]B , whereVℎ =

{
D ∈ !2 (Ω) : D |Ω4

∈ P ? ∀Ω4 ∈ )ℎ
}
, andP ? denotes polynomials

of order ? on the reference space of element Ω4.
The weak form of Eqn. 1 is obtained by multiplying the equation by test functions in the same approximation space,

integrating by parts, and coupling elements via single-valued fluxes that are functions of the states on the two adjacent
elements. We use the Roe-approximate Riemann solver [15] for the convective flux, and the second form of Bassi
and Rebay (BR2) [16] for the viscous flux. Choosing a basis for the test and trial spaces yields a system of nonlinear
equations,

R(U, x) = 0, (2)

where U ∈ R# is the discrete state vector, R(U) ∈ R# is the spatial residual vector, # is the total number of spatial
degrees of freedom, and x ∈ R=par is a vector of parameters that in this work consists of trim and shape design variables.

B. Adjoint
For a scalar output computed from the state vector, � (U), the discrete steady adjoint vector, 	 ∈ R# , is the local

sensitivity of � to perturbations in the steady residual, R [2]. Linearizing the residual and output yields the following
linear adjoint equation, (

mR
mU

))
	 +

(
m�

mU

))
= 0. (3)

This equation is solved using the same matrix solver used for the Newton-Raphson primal system. The adjoint vector
can be used to efficiently compute PDE-constrained sensitivities of the output with respect to parameters, x, of the
problem. In general, if both the residuals and the output depend on x, the PDE-constrained sensitivity of the output with
respect to the parameter vector is

3�

3x
=
m�

mx
+ 	) mR

mx
. (4)

In this work, derivatives of � and R with respect to x are evaluated using finite-differences. This poses no computational
bottleneck in the present study with a small number of parameters. For larger numbers of parameters, analytical or
algorithmic differentiation methods can be applied to increase the efficiency of this calculation.

III. Shape Optimization
We assume trimmed optimization problems in which the parameter vector consists of distinct shape design

parameters, xdes ∈ R=des , and trim parameters, xtrim ∈ R=trim , concatenated into x = [xdes; xtrim] ∈ R=par . Formulated as a
minimization statement for a scalar output �, the problem reads

min
xdes

� (U, x)

s.t. R(U, x) = 0
Rtrim ≡ Jtrim (U, x) − J̄trim = 0,

(5)
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where Jtrim ∈ R=trim is the vector of trim outputs, and J̄trim ∈ R=trim is the vector of target trim values. In this work, we
consider =trim = 1: the lift coefficient, 2ℓ , trimmed by angle of attack, U.

A. Shape Optimization with Concurrent Trimming
To optimize the design, we use a gradient-based method: the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [17]

algorithm with a backtracking line search. The implementation features concurrent trimming and optimization with a
constrained gradient calculation. A given initial design, xdes0 , is first trimmed using multiple solver iterations, where at
each iteration, the trim parameters are updated using the the PDE-constrained sensitivity matrix 3Jtrim

3xtrim ∈ R
=trim×=trim ,

computed using adjoints of the trim outputs, and a user-specified trim tolerance.
Shape optimization follows the initial trimming. Each optimization iteration consists of solutions for the state U: ,

and adjoints of the objective and trim outputs. The adjoints yield PDE-constrained sensitivities with respect to the
design and trim parameters. The trimmed gradient of the objective with respect to the design parameters is then

3�

3xdes

�����
trim

=
3�

3xdes
+ 3�

3xtrim
3xtrim

3xdes
,

3xtrim

3xdes
= −

[
3Jtrim

3xtrim

]−1
3Jtrim

3xdes
, (6)

The gradient of the objective output as given in Eqn. 6 is then used in the BFGS algorithm.

B. Line Search
During the line search, an objective function evaluation accounts for a linearized trim parameter change and includes

an off-trim correction. Let p be the design-space search direction, and ` the current line-search step length. Prior to
running the flow solver, the design and trim parameters are modified according to

xdes (`) = xdes: + Δxdes, Δxdes = `p, xtrim (`) = xtrim: + 3xtrim

3xdes
Δxdes, (7)

where the purpose of the xtrim modification is to maintain linearized trim conditions. The corresponding flow solution
U(`) may not be exactly trimmed, as the state and outputs can be nonlinear, while the trim modification arises from
linearizations about the zero step-length state and design. The objective calculation then includes an off-trim correction,

� (`) = � (U(`), x(`)) + 3�

3xtrim

�����
U(`) ,x(`)

Δxtrim (`), (8)

where the trim parameter change is computed using U(`) and x(`).
Following the line search, the trim parameters are first modified according to Eqn. 7 for the linear modification, and

are then subject to one trimming iteration using the trim sensitivity matrix already available from the last line-search
iteration.

C. Airfoil Parametrization
We consider airfoils whose camber, I2 (G), and thickness, C (G), profiles are parametrized as polynomials with

bounding multiplicative envelopes,

I2 (G) = G(1 − G)
[
20 + 21G + . . . + 2?2G?2

]
, (9)

C (G) = 0 abssmooth
{√
G(1 − G)

[
1 + C1G + . . . + C?C G?C

]
, 0.2G(1 − G)

}
(10)

where 28 are the coefficients of the order ?2 camber polynomial, C8 are the coefficients of the order ?C thickness
polynomial, and the smooth absolute value function is defined for non-negative 1 as

abssmooth (0, 1) =
{
|0 | if |0 | ≥ 1
(02 + 12)/(21) otherwise

(11)

The coefficient 0 enforces a given constant airfoil area, �,∫ 1

0
C (G) 3G = �. (12)
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IV. Error Estimation and Metric Calculation

A. Adjoint-Weighted Residual
In this work, we use the adjoint solution not only to calculate shape sensitivities, but also to estimate the numerical

error in the optimization objective �. This error estimation is done via the adjoint-weighted residual [2, 18]. Let the
subscript � denote the current “coarse” spatial discretization, and ℎ a fine one, obtained by increasing the approximation
order by one, ? → ? + 1. U�

ℎ
is the state vector field prolongated from the coarse space to the fine space. The fine-space

residual computed using the prolongated state and weighted by the fine-space adjoint gives an estimate of the output
error between the coarse and fine spaces,

�ℎ (U�ℎ ) − �ℎ (Uℎ) ≈ −X	
)
ℎRℎ (U�ℎ ). (13)

In this expression, X	ℎ is the adjoint error, obtained by subtracting from the fine-space adjoint its projection onto the
coarse space. The fine-space adjoint is solved “exactly” to a strict relative error tolerance, using the same preconditioned
GMRES method as for the primal. The error estimate in Eqn. 13 is localized to elements, resulting in the elemental
error indicators Y4

� ≈
#4∑
4=1
−	)ℎ,4Rℎ,4 (U

�
ℎ ) ⇒ Y4 ≡

��	)ℎ,4Rℎ,4 (U�ℎ )��, (14)

where #4 is the number of elements, and the subscript 4 denotes components of the adjoint and residual associated with
element 4.

B. Mesh Optimization through Error Sampling and Synthesis (MOESS)
The adjoint-weighted residual error from Eqn. 14 drives a metric-based optimization based on MOESS [3, 19].

A Riemannian metric field, M(®G), encodes information about the desired size and stretching of the elements in a
computational mesh. The set of points at unit metric distance from ®G is an ellipse, the principal axes and lengths of
which are determined by the eigenvectors and eigenvalues ofM.

Affine-invariant changes [20] to the metric field are made via a symmetric step matrix, S ∈ R3×3 , where 3 is the
spatial dimension, according to

M =M
1
2
0 exp(S)M

1
2
0 . (15)

Metric optimization requires models for how the elemental error indicator and the cost change as the metric changes.
The error model is

Y4 = Y40 exp [tr(R4S4)] , (16)

where Y40 is the initial error on element 4, and R4 is an element-specific rate tensor determined through a sampling
procedure. The cost model is

�4 = �40 exp
[
1
2
tr(S4)

]
, (17)

where �40 is the initial cost, measured in terms of degrees of freedom. Details of both of these models can be found in
previous work [19].

Given a mesh with a mesh-implied metricM0 (®G), elemental error indicators Y40, and elemental rate tensor estimates,
R4, the goal of the metric optimization algorithm is to determine the step matrix field, S(®G), that minimizes the error at
a fixed cost. This algorithm iteratively equidistributes the marginal error to marginal cost ratio over the mesh elements.
In practice, the mesh optimization and flow/adjoint solution are performed several times at a given target cost, Ctarget,
until the error stops changing, at which point the cost can be increased.

V. Mesh Node Movement
We use mesh node movement to control the discretization error during the shape optimization. The node movement

is formulated as a metric-based mesh optimization, guided by output-based error estimates. The mesh optimization
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essentially finds the optimal locations of vertices and high-order nodes with the goal of making the mesh better conform
to a desired metric field. Conformity to a desired metric field translates to lower discretization error. In this work, we
explore methods to simultaneously adjust the locations of the high-order nodes as vertices are moved. As a start, we will
move the high-order nodes using warped-element refinement method. We will then implement a different optimization
architecture that allows for more coupling between the vertex and high-order node movements.

A. Vertex Position Optimization
As a stepping stone towards optimizing the positions of both vertices (i.e. “Q1 nodes”) and high-order nodes, we first

simplify the problem by considering only the vertices for the optimization problem. We reposition the vertices to better
conform to a requested metric, which comes from MOESS. The algorithm for this repositioning is presented in detail in
[21]. It formulates an unconstrained optimization problem for the displacement of vertices with the error in the elemental
step matrix as an objective function. This large optimization problem, which is not overly large for coarse high-order
meshes, is solved using a limited-memory (L-BFGS) algorithm [22]. Presently, we combine this vertex movement with
the shape optimization in a simple coupling: the vertices are moved after each BFGS shape optimization iteration. No
vertex movement occurs within the BFGS line-search iterations. The advantage of applying node movement instead of
remeshing is that the latter changes the size of the discrete problem, requiring parallel repartitioning and remapping
of states and adjoints, and that remeshing with anisotropic curved elements lacks robustness for complex geometries.
In shape optimization, where many iterations of adaptation on changing geometries are required, robustness of mesh
changes is paramount.

In the node movement procedure described in [21], the high-order node displacements are interpolated from the
vertex displacements. Over many shape-optimization iterations, in which vertices can propagate large distances around
a changing geometry, bunching of high-order nodes can occur, as illustrated in Fig. 1. In this work, we therefore
modify the high-order node placement via a new repositioning step, described below, which is applied after each vertex
movement iteration.

(a) Bunched high-order nodes (b) After repositioning

Fig. 1 Alleviation of high-order node bunching during vertex movement via distance-based repositioning.

Let ®G: , 1 ≤ : ≤ #&, denote the current positions of all #& nodes, including the high-order ones, inside one element.
Here we assume that this element is a triangle, but the same procedure can be applied to other element types. Suppose
that we know the reference-space coordinates, (b: , [: ), of these nodes. We seek new node positions, ®̃G; , 1 ≤ : ≤ #&,
for equally-spaced reference coordinates (b̃; , [̃;) that yield a Lagrange interpolant of ®G: at (b: , [: ). That is, the desired
Lagrange interpolant is

®G(b, [) =
#&∑
;=1
®̃G;q; (b, [), (18)

where q; (b, [) are the Lagrange basis functions on equally-spaced reference nodes. In order to interpolate the original
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nodes, we require ®̃G; to solve the following linear system:

#&∑
;=1

q; (b: , [: ) ®̃G; = ®G: . (19)

The solution involves inverting a matrix whose entries are the Lagrange basis functions evaluated at (b: , [: ).
What remains is specifying the reference coordinates, (b: , [: ), of the original nodes. We do this by a distance-based

edge formula, in which the reference coordinates are calculated using distances between nodes in global space, as
illustrated in Figure 2. The distance-based weighting approximates the final arc-length position of each interpolated
original point in global space. Edge nodes shared between elements are displaced by an average of the repositioning
calculation on the adjacent elements.

ξ

η

a
b c

d

e

ξ =
a + b

a + b + c
(1 − η̄)

η =
d

d + e
(1 − ξ̄)

Fig. 2 Illustration of distance-based reference coordinate calculation for face node repositioning. b̄ and [̄ are
calculated by a weighted average of unscaled distance-based reference coordinates along the shared column and
row of nodes, respectively.

B. Warped-Element Refinement Method
In this section, we briefly review the warped-element refinement method (@-adaptation). The key idea here is to

strategically place the high-order nodes within a mesh element given fixed vertex locations and without changing the
original outer shape of the element. The goal of the high-order node movement can be set to minimizing errors in solution
approximations [23], engineering output predictions [4], or metric approximations [5, 6, 24]. This refinement/adaptation
method embraces clustering of the high-order nodes within an element as some clustering (when done properly) can
offer accuracy and robustness benefits. Of course, the validity of the element must always be maintained.

In a @-adapted mesh, warping of mesh elements occurs in regions where complex geometries and/or important
flow features are present. Here, we note that warping of mesh elements specifically refers to the changes in the inner
shape of the elements. That is, the edges of these elements remain unchanged and the vertices are at the same locations
as in the initial mesh (i.e., the one before @-adaptation is applied). This avoids mesh tangling issues, which can be
particularly difficult to resolve for high-order curved meshes. Figure 3 illustrates the concept of element warping and
the current status of @ adaptation.

Warping of mesh elements is done through distorting the reference-to-global mapping used in the geometry
approximation:

®G( ®b) =
#@∑
8=1
®G8q8 ( ®b) (20)

� =
m®G
m ®b

=

#@∑
8=1
®G8
mq8

m ®b
( ®b), (21)
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Initial ⍺ = 2.79° ⍺ = 3.29°

Elements along
shock boundary

Inner shape
of the element

Mesh element
(q = 3)

Geometrical
warping along
the shock boundary

Same vertex 
locations as in the 
initial mesh

No changes 
made to the 
outer shape of 
the element

Fig. 3 Sample @-adapted mesh around a shock boundary in a RANS problem over an RAE 2822 airfoil. The
different angles of attack (U) are shown to highlight the changes made to the inner shapes of the initial mesh
elements. The outer shapes of the elements and the vertex locations remain the same as in the initial mesh [4].

where ®G is the global-space coordinate, ®b is the reference-space coordinate, q8 are the basis functions for geometry
approximation, #@ is the number of geometry nodes in a mesh element, and � is the mapping Jacobian matrix. This
approach is desirable since it allows us to take advantage of the existing infrastructure that is already available in
most high-order codes. In this paper, we use Lagrange basis functions with uniform node distribution in the reference
space since they allow for an intuitive specification of the high-order element. Other basis functions could also be
used to define the element geometry, as long as the resulting mapped elements constitute a complete, non-overlapping
tessellation of the domain.

C. Coupling Between Vertices and High-Order Nodes
In the context of high-order meshes, the optimal locations of high-order nodes depend on the optimal locations of

vertices and vice versa. Thus, ideally the mesh node movement strategy fully captures the global coupling between
vertices and high-order nodes. That is, once a vertex or a high-order node is moved, the rest of the mesh nodes are
automatically readjusted. From this viewpoint, the warped-element refinement method cannot capture global coupling,
since it restricts the high-order node movement to maintain an element’s outer shape and vertex locations. Nevertheless,
the warped-element refinement method is still a convenient and powerful tool to improve upon linear meshes or heuristics
used to determine the locations of high-order nodes.

As an attempt to capture the aforementioned global coupling (and to curve an element’s edges), we study global
mesh optimization for solution approximation problems on structured meshes. Here, we use all-at-once and sequential
optimization approaches to minimize the least-squares solution errors by moving the vertices and high-order nodes
globally. All mesh nodes are movable as long as they do not alter the computational domain. The initial mesh is uniform,
and the optimization parameters are set to the same values for all cases presented in Figs. 4 and 5. No parameter tuning
is performed here. The main takeaways from this study are:

• Global mesh optimization is more expensive, but improves accuracy and robustness, especially for coarse meshes
or higher geometry approximation order (@).

• The all-at-once approach tends to find a better optimum than the warped-element refinement method and sequential
optimization, but not always.

For the final paper, we will implement one of the global optimization approaches and perform a shape optimization on a
coarse mesh, but with high ? and @ orders.
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(a) Exact solution
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(b) Initial mesh (Y0/Y = 1)
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(c) Warped-element refinement (Y0/Y ≈ 2.7)
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(d) All-at-once (Y0/Y ≈ 34.4)
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y

(e) Sequential optimization (Y0/Y ≈ 11.1)

Fig. 4 Comparison of @ = 2 meshes for approximating an exponential function with ? = 2 and 16 mesh
elements. Y0/Y shows the error reduction factor compared to the initial, uniform mesh.
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(a) Exact solution

(b) Initial mesh (Y0/Y = 1) (c) Warped-element refinement (Y0/Y ≈ 64.4)

(d) All-at-once (Y0/Y ≈ 7.4) (e) Sequential optimization (Y0/Y ≈ 157.6)

Fig. 5 Comparison of @ = 8 meshes for approximating a “shock-like” function with ? = 8 and 9 mesh elements.
Y0/Y shows the error reduction factor compared to the initial, uniform mesh. Lighter shade indicates lower
error.
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VI. Implementation
Our proposed frameworks for shape optimization with concurrent mesh node movement are summarized in

Algorithms 1 and 2. The main difference lies in the workflow and cost allocation for mesh node movement. Algorithm 1
is computationally less expensive, and aims to localize the effect of node movement. Algorithm 2 is more computationally
expensive since it aims to capture the global coupling between the vertices and high-order nodes. Visually, we will see
that the resulting mesh from Algorithm 1 will maintain the original outer shapes of the elements, though clustering of
high-order nodes is allowed. Changes to the outer shapes of the elements (including curving elements’ edges) will only
occur in meshes resulting from Algorithm 2.

Algorithm 1: Optimization with error estimation and local node movement
1 input: initial design x0, initial mesh )ℎ , mesh adaptation iterations #adapt;
2 output: adapted mesh )adapt

ℎ
, optimal design x∗;

3 while not converged do
4 move the vertices in the mesh )ℎ as if all elements are @ = 1 ⊲MOESS/Hessian-based adaptation;
5 for 8 = 1, 2, · · · , #adapt do
6 move the high-order nodes given the optimized vertices→ )

adapt
ℎ

⊲ warped-element refinement;
7 check the validity of the high-order mesh ⊲ backtracking (if needed);
8 end
9 update xtrim to meet trim constraints ⊲ Eqn. 8;

10 compute the objective � and the error estimates X�;
11 calculate objective gradient 3�

3xdes

���
trim

⊲ Eqn. 6;

12 update xdes on )adapt
ℎ

⊲ line search;
13 end

Algorithm 2: Optimization with error estimation and global node movement
1 input: initial design x0, initial mesh )ℎ , mesh adaptation iterations #adapt;
2 output: adapted mesh )adapt

ℎ
, optimal design x∗;

3 while not converged do
4 for 8 = 1, 2, · · · , #adapt do
5 move the vertices and high-order nodes in the mesh )ℎ → )

adapt
ℎ

⊲ all-at-once or sequential;
6 check for the validity of the high-order mesh ⊲ backtracking (if needed);
7 end
8 update xtrim to meet trim constraints ⊲ Eqn. 8;
9 compute the objective � and the error estimates X�;

10 calculate objective gradient 3�

3xdes

���
trim

⊲ Eqn. 6;

11 update xdes on )adapt
ℎ

⊲ line search;
12 end

VII. Results
The two-dimensional shape optimization cases presented here are chosen to demonstrate the potential benefits of

node movement as a discretization error control strategy for shape optimization on structured meshes.

A. Effect of Boundary-Layer Resolution in a RANS Optimization
As a first demonstration, we consider optimizing the shape of an airfoil flying at " = 0.2 and '4 = 106, with

area � = 0.0622, to produce the highest lift-to-drag ratio, !/�. The physical model is the Spalart-Allmaras RANS
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equations. In this case, we do not employ any of the node node optimization algorithms presented, and instead consider
optimization on static meshes with different element sizing. The goal is to demonstrate that optimization can take
advantage of numerical errors and converge to an incorrect shape and an infeasible !/�.

The airfoil is parametrized as described in Section III.C, with 4 camber and 3 thickness parameters. The angle
of attack is an additional optimization parameter, for a total of 8. The initial airfoil has all shape parameters set to
zero. Fig. 6 shows the results of shape optimization performed on a fine mesh of 2816 elements, using ? = 2 solution
approximation. We observe the following characteristics of the optimized airfoil: increased camber, a shift of the area
towards the middle of the airfoil, a thin flap-like trailing edge, and a narrower, slightly drooping leading edge. The
optimal !/� is calculated to be 89.6 after 40 optimization iterations.
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(b) Pressure coefficient distribution

(c) Optimized-shape Mach number contours, range 0-0.4

Fig. 6 Fine-mesh optimization: !/� = 89.6.

We now repeat the same optimization but on a coarse mesh of 704 elements, still with ? = 2. Fig. 7 shows the mesh
and shape optimization result. While the mesh has highly anisotropic elements near the boundary, the discretization
error of the coarser mesh pollutes the results significantly. The drag coefficient is severely underpredicted due to the
lack of sufficient boundary-layer resolution, leading to a spurious optimum with !/� = 407, almost five times higher
than the fine-mesh result. A fine-mesh analysis of this design, shown in Fig. 8, indicates that the flow does not stay
attached as long as predicted on the coarse mesh, and that the lift-to-drag ratio is actually over an order of magnitude
lower, !/� = 39.4.

Slightly repositioning the mesh nodes by decreasing the distance of the first layer of nodes away from the wall,
without changing the element count of 704, results in the optimized design shown in Figure 9. This design is much
closer to the fine-mesh optimum, as is the !/� value of 85.6. From this example, we see that accurate analyses and
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Fig. 7 Coarse-mesh optimization: !/� = 407.

Fig. 8 Fine-mesh analysis of coarse-mesh design: !/� = 39.4.
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optimizations are possible on coarse meshes, as long as the nodes are positioned appropriately – i.e. as long as the mesh
is optimal.
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Fig. 9 Repositioned-node, coarse-mesh optimization: !/� = 85.6.

B. Transonic Airfoil Optimization With Node Movement
In this problem we consider optimizing the shape of an airfoil with area � = .0622 to produce the minimum

drag at a fixed lift coefficient of 2ℓ = 0.5 in " = 0.8 flow. The physical model consists of the Euler equations, with
artificial-viscosity shock capturing [25]. The meshes are unstructured in this case, and mesh deformation following
shape changes is handled using radial basis functions. & = 3 curved elements are used in all of the meshes.

The airfoil is parametrized as described in Section III.C, with 3 camber and 2 thickness parameters. The angle of
attack is a trim parameter used to enforce the lift-coefficient constraint. We start the optimization on a coarse mesh of
558 elements, shown in Fig. 10a using ? = 2 approximation. Fig. 10c shows the shape optimization result using the
initial mesh. This is called the fixed-mesh optimization because the initial mesh does not change during the optimization.
The Mach contours show a region of supersonic flow over the upper surface, but no strong shocks. However, a fine-mesh
analysis with approximately 3000 elements, trimmed to the same lift coefficient and shown in Fig. 10e, indicates the
presence of a shock, which then increases the drag coefficient. The initial mesh is too coarse to capture this shock, and
hence the optimizer is not aware of its impact on the drag.

The right column of Fig. 10 shows the result of shape optimization combined with the proposed vertex movement at
every optimization iteration. Compared to the fixed-mesh optimized shape, the airfoil is flatter on the upper surface,
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(a) Initial mesh and geometry, 558 elements (b) Optimized mesh and geometry, 558 elements

(c) Fixed-mesh optimization Mach (0-1.2) (d) Node-movement optimization Mach (0-1.2)

(e) Fine-mesh analysis of fixed-mesh result, Mach (0-1.2) (f) Fine-mesh analysis of node-movement result, Mach (0-1.2)

Fig. 10 Transonic airfoil shape optimization results using a fixed mesh (left column) and the proposed node
movement within the shape optimization iterations (right column). The approximation order is ? = 2.
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thicker towards the front, and more cambered towards the rear. The corresponding mesh with vertex movement has
more resolution at the leading edge, and anisotropic, vertically-aligned elements on the upper surface, which are better
for capturing shocks and features of the adjoint. A fine-mesh analysis of this geometry, also with approximately 3000
elements, indicates lower Mach numbers over the upper surface terminated by a shock that is weaker compared to the
fixed-mesh geometry. This result indicates that, with vertex movement, even the coarse 558-element mesh can be tuned
to approximate the features of the transonic flow around the optimized shape.

Tab. 1 presents the drag coefficient and angle of attack results from optimizations at two different orders, ? = 1 and
? = 2. The mesh for the ? = 1 runs was finer, at 1199 elements, compared to that for the ? = 2 runs, 558 elements,
to make the number of degrees of freedom similar with the discontinuous-Galerkin discretization. The table also
presents a fine-mesh trimmed analysis result, obtained using an adapted mesh with over six times as many degrees of
freedom. We first note that all of the drag coefficient values are small, as the problem is inviscid and the shock can be
mostly eliminated with an optimal shape. We observe that the ? = 2 fixed-mesh has the largest fine-grid analysis drag
coefficient, at 1.40 counts (1 count = 0.0001 23), followed by the ? = 1 fixed-mesh shape at 1.16 counts. Next is the
? = 1 shape obtained on a mesh with node movement, at 1.10 counts, followed by the best performance from the ? = 2
optimization with node movement, at 0.99 counts. The reason for the improved performance with node movement is the
lower discretization error on these meshes, which leads to the optimizer working with more accurate outputs. In addition,
adaptive ? = 2 outperforms adaptive ? = 1, even though it has slightly fewer degrees of freedom (3348 versus 3597),
which indicates that the ? = 2 approximation makes a more efficient use of its degrees of freedom. Finally, we note that
the drag coefficients predicted on the coarse meshes still greatly over-estimate the drag coefficient, due to increased
numerical dissipation, but that the results with node movement are closer to the fine-mesh analyses, as expected.

Table 1 Transonic airfoil shape-optimization results on fixed meshes and onmeshes with node movement. The
fine-grid columns refer to trimmed analysis of the optimized shape using a finer adapted mesh.

Case U (deg) 23 (counts) fine-grid U (deg) fine-grid 23 (counts)

? = 1 fixed-mesh .029 27.8 0.147 1.16
? = 1 node movement -0.28 6.46 -0.20 1.10
? = 2 fixed-mesh 0.50 5.94 0.58 1.40
? = 2 node movement -0.27 3.68 -0.18 0.99

The node movement in these cases is performed by solving a global optimization problem for the positions of the
vertices, which are the & = 1 nodes. The high-order node positions are not included in the optimization, and their
displacements are interpolated from the & = 1 node displacements, with the repositioning correction discussed in
Section V.A. Including the high-order nodes in the optimization is the subject of ongoing work.
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VIII. Conclusions and Future Work
In this paper, we present node movement as a discretization error control strategy for shape optimization problems on

high-order, curved meshes. For these cases, we show that slight repositioning of the elements’ vertices can significantly
improve the solution fields, even without changing the element count. On coarse meshes, repositioning of the vertices
becomes more critical since the solution fields may be captured incorrectly when vertices are not placed optimally.
We have shown this in a decoupled manner, by first considering the optimization of vertices, in which the high-order
nodes are interpolated, and then by presenting algorithms for optimizing the high-order node locations. The results
indicate accuracy and robustness benefits of moving vertices and high-order nodes for solution approximation problems.
In future work, we plan to combine both ideas and show that moving vertices and high-order nodes is an effective
discretization control strategy for shape optimization problems on high-order meshes.
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