
Residual-Based Time-Step Control for High-Order
Discretizations

Krzysztof J. Fidkowski∗
University of Michigan, Ann Arbor, MI, 48188

This paper presents a study of temporal errors, as well as a time-step control strategy for
their reduction, in high-order spatial discretizations of convection-dominated flow equations.
The discontinuous Galerkin finite-element method serves as the spatial discretization, and it
is combined with implicit, semi-discrete time-marching schemes. Efficiency of the schemes,
measured in terms of the number of implicit system solutions for a given level of accuracy, is
compared for different spatial orders andmesh sizes. For uniform time stepping, certain hybrid
multi-step/stage schemes can be more efficient than popular diagonally-implicit Runge-Kutta
methods. A residual-based adaptive time-step control strategy is also presented for balancing
spatial and temporal errors in each time step, with a focus on performance on spatially-adapted
meshes. The methods are tested on an unsteady manufactured solution for scalar advection-
diffusion, and for the Navier-Stokes equations on two problems with moving geometry and
mesh.

I. Introduction
In the area of computational fluid dynamics, high-order spatial discretizations [1], particularly when combined with

output-basedmesh adaptation [2], have yielded a robust solution approach for steady-state problems. Discretization errors
can be estimated and reduced through mesh-adaptive techniques. Less effort has been devoted to unsteady problems, for
which high-order spatial methods are paired with high-order temporal schemes. In the presence of non-smooth temporal
solutions or output definitions, which are common in practical engineering problems, high-order accuracy in time can
be difficult to attain. In addition, high-order systems are often stiff and require implicit time-integration methods, which
allow for a large time step but also burden the user with selecting the appropriate time step. As a result, many practical
unsteady simulations may be done with a poor choice of time step: one that is too large leads to high temporal errors
that drown out the benefits of high-order spatial accuracy, whereas a time step that is too small wastes computational
resources. Typically, time-step convergence studies are performed to ascertain the appropriate time step, at a cost of
multiple unsteady simulations.

Prior to choosing the time step, there is also the question of what time marching method to use. Classic explicit
methods [3] become inefficient with increasing stiffness, which is exacerbated by high spatial order, adapted meshes,
turbulence modeling, anisotropic meshes, etc. As a result, much attention has been given to implicit time integration
methods in such cases, including highly-accurate but expensive variational methods [4, 5] and more common semi-
discrete methods [6, 7]. The latter are relatively simple to implement starting from an implicit steady solver, and they
are the focus of this work.

Many semi-discrete methods have been developed for integrating general stiff systems of ordinary differential
equations, not necessarily those arising from high-order spatial discretizations. These include multi-step methods,
which are inexpensive but of limited stability at high order, multi-stage methods, which do not require a history of
multiple steps but often need many stages per time step, and hybrid methods that blend the two.

Desirable characteristics of a time-integration scheme include a high order of accuracy, low cost, A-stability, and
often L-stability [6]. The stability properties are important for high spatial-order discretizations of convection-dominated
flows, which may have a combination of eigenvalues with large-magnitude negative real parts and ones close to the
imaginary axis. When using adaptive time stepping, another consideration is the requirement of uniform time steps,
characteristic of multi-step methods, which must be replaced by another method at the initial time or when the time step
changes.

In this work, we investigate the accuracy and efficiency of various semi-discrete time-marching schemes for
high-order spatial discretizations of advection-dominated flows. We look at the temporal convergence properties of the

∗Professor, Department of Aerospace Engineering, AIAA Associate Fellow.

1

methods, as measured by errors in the flowfield and scalar outputs, and the cost as measured by the number of nonlinear
solutions required to attain a given error. We also present a time-step control strategy that strives to balance the temporal
and spatial errors, i.e. to hit the “sweet-spot” for unsteady simulations in which just the right amount of computational
effort is expended for the time integration in light of the spatial errors. To this end, we do not consider output-based
methods that require adjoints, which can be very effective [8–15] but which require a high implementation and solution
cost for unsteady problems that makes them out of reach for many codes.

The remainder of this paper presents the discretizations studied, with emphasis on a self-contained exposition of the
time-marching schemes, and the time-step control strategy that uses error estimates obtained from fine-space residual
evaluations. Results on prototypical problems, including the Navier-Stokes equations on deforming domains, compare
the accuracy and efficiency of the time-marching schemes and demonstrate the performance of the time-step control
strategy.

II. Discretization
This section presents the spatial and temporal discretizations used in this study. Similar results would likely

be attained with different high-order spatial discretizations, while the temporal scheme discussion is meant to be a
comprehensive exposition of various popular methods.

A. Spatial
We consider discretizations of differential equations in conservation form,

mu
mC
+ ∇ · ®H(u,∇u) + S(u) = 0, (1)

where u(®G, C) ∈ RB is the conservative state vector, B is the state rank, ®H(u,∇u) = ®F(u) + ®G(u,∇u) is the combined
inviscid and viscous flux, and S(u) is a source term, active in this work when applying the method of manufactured
solutions.

To discretize Eqn. 1 in space, we use the discontinuous Galerkin finite-element method [16]. The computational
domainΩ is divided into #4 elements,Ω4, in a non-overlapping tessellation)ℎ . Inside elementΩ4, the state components
are approximated by polynomials of order ?, with no continuity constraints between elements. Formally, we write:
uℎ ∈ Vℎ = [Vℎ]B, whereVℎ =

{
D ∈ !2 (Ω) : D |Ω4

∈ P ? ∀Ω4 ∈)ℎ
}
, and P ? denotes polynomials of order ? on the

reference space of element Ω4.
The discontinuous Galerkin weak form of Eqn. 1 is obtained by multiplying the equation by test functions, wℎ , in

the same approximation space, integrating by parts, and coupling elements via single-valued fluxes that are functions of
the states on the two adjacent elements. The weak form then reads: find uℎ ∈ Vℎ such that ∀wℎ ∈ Vℎ ,

−
∫
Ω4

∇w)ℎ · ®H(uℎ ,∇uℎ) 3Ω +
∫
mΩ4

w)ℎ Ĥ · ®= 3B −
∫
mΩ4

m8w+)ℎ K+8 9
(
u+ℎ − ûℎ

)
= 9 3B +

∫
Ω4

w)ℎ S(uℎ) = 0, (2)

where (·)) denotes transpose, ûℎ = (u+ℎ + u−
ℎ
)/2, K8 9 is the diffusivity tensor arising from G8 = K8 9 (u)m 9u, and on the

element boundary mΩ4, (·)+, (·)− denote quantities taken from the element or its neighbor (or boundary condition),
respectively. For the normal flux, Ĥ · ®=, we use the Roe-approximate Riemann solver [17] and the second form of Bassi
and Rebay (BR2) [18] for the viscous flux. Additional details of the spatial discretization can be found in our previous
work [19]. Choosing a basis for the test and trial spaces yields a system of nonlinear equations,

M
3U
3C
+ R(U) = 0, (3)

where U ∈ R# is the discrete state vector, R(U) ∈ R# is the spatial residual vector, M ∈ R#×# is the block-sparse
mass matrix, and # is the total number of spatial degrees of freedom.

B. Temporal
To advance Eqn. 3 forward in time, we consider multi-step and multi-stage time integration schemes. These schemes

advance the solution from time node = to = + 1, U= → U=+1, over a time step of size ΔC, using state information at = and
possibly previous time nodes. This subsection summarizes the formulas for the methods used.

2

BDF An =step backwards differentiation (BDF) formula takes the form

M
ΔC

=step∑
8=0

08U=+1−8 + R(U=+1, C=+1) = 0, (4)

where for BDF1, =step = 1, 08 = [1,−1], and for BDF2, =step = 2, 08 = [32 ,−2, 1
2]. BDF2 requires a different startup

scheme, here taken as BDF1. In addition, BDF3 and beyond are no longer A-stable, and hence not used in this work.

(S)DIRK An =stage diagonally-implicit Runge-Kutta (DIRK) method for advancing the state from U= to U=+1 over a
time step of size ΔC takes the form

for 8 = 1 : =stage

S8 = −
M
ΔC

W0 +
8−1∑

9= 0 or 1
08 9R(W 9 , C= + 1 9ΔC)

solve:
M
ΔC

W8 + 088R(W8 , C= + 18ΔC) + S8 = 0

end

(5)

where W0 = U= is the state at the start of the time interval, U=+1 = W=stage is the desired result, and C= + 18ΔC are the stage
times. When the on-diagonal coefficients 088 are identical, these methods are called singly-diagonally-implicit Runge
Kutta (SDIRK) [20], although this designation is not ubiquitous [21]. Presently, we will omit the S from SDIRK for
consistency with previous published work. When the summation in the construction of S begins at 9 = 0, the methods
are called (first-stage) explicit DIRK methods, to denote that there is no system solution, only a residual evaluation, at
“stage 0”. The designation ESDIRK then means that the summation starts at 9 = 0 and that the 088 are identical.

The coefficients 08 9 and 18 define the method. A third-order accurate, three-stage scheme used in this work, DIRK3,
has coefficients [21]

08 9 =

U 0 0

g − U U 0
V1 V2 U

 , 18 =

U

g

1

 . (6)

where U is the root of G3 − 3G2 + 3
2G −

1
6 = 0 lying in (1

6 ,
1
2), g = (1 + U)/2, V1 = −(6U2 − 16U + 1)/4, and

V2 = (6U2 − 20U + 5)/4. A fourth-order accurate DIRK4 scheme with =stage = 5 is [22]

08 9 =

1
4 0 0 0 0
1
2

1
4 0 0 0

17
50 − 1

25
1
4 0 0

371
1360 − 137

2720
15
544

1
4 0

25
24 − 49

48
125
16 − 85

12
1
4

, 18 =

1
4
3
4
11
20
1
2
1

. (7)

For the ESDIRK methods, the indices of the coefficients 08 9 and 18 begin at 0. Appendix A presents these for the fourth
and fifth-order accurate schemes, ESDIRK4 and ESDIRK5, used in this work.

MEBDF Modified extended backwards differentiation formulae (MEBDF) [23, 24] build on the standard backwards
differentiation formulae, using additional system solutions, to improve stability at high-orders of accuracy. Denoting by
BDF(=→ = + 1) the =step BDF formula that advances the state from time node = to = + 1, the corresponding MEBDF
scheme consists of the following steps:

Ū=+1 = BDF(=→ = + 1)
Ū=+2 = BDF(= + 1→ = + 2) using Ū=+1 at = + 1

solve for U=+1:
M
ΔC

U=+1 + (V0 − E0)R(U=+1) +
1−=step∑
9=0

0 9U=+ 9 + E0R(Ū=+1) + V1R(Ū=+2) = 0

(8)

3

The MEBDF schemes are A-stable and require additional coefficients: the =step values 0 9 , V0, V1. A nonzero value
of E0 distinguishes MEBDF from the original EBDF schemes [25], and it is given by E0 = V0 − 1/00. MEBDF3 is a
three-step, fourth-order accurate method with coefficients

0 9 =

[
−279

197
,

99
197

,− 17
197

]
, V0 =

150
197

, V1 = −
18

197
. (9)

Note that MEBDF requires uniform time steps and another startup scheme for the first =step − 1 steps, here taken as
DIRK of one order lower than the MEBDF order (e.g. DIRK3 for MEBDF3).

SAMF The split Adams-Moulton family (SAMF) [26] of schemes consist of two stages, the first of which is a predictor,

M
ΔC

1
10 + 20\

Ū + R(Ū, C=+1) + S0 = 0, (10)

where

S0 =
M
ΔC

(
−(1 + 0sum\)U= +

=step∑
8=2

08\U=+1−8
)
+
=step∑
8=1
(18 + 28\)R(U=+1−8 , C=+1−8), (11)

and 0sum =
∑=step
8=2 08 . The second stage is a corrector,

M
ΔC

U=+1 + (10 + 20\)R(U=+1, C=+1) + S1 = 0, (12)

where

S1 = −
M
ΔC

U= +
=step∑
8=1

18R(U=+1−8 , C=+1−8) + \R(Ū, C=+1). (13)

Specifically, SAMF3 is a three-step, two-stage, fourth order, method with �(89.999◦) stability (almost �-stable), with
coefficients (starting at index 0),

a = [1, 0,−72/15, 16/15],
b = [9/24, 19/24,−5/24, 1/24],
c = [−1, 209/45,−11/9, 11/45],
\ = −15/88 − 3

√
5/22.

(14)

For the initial time steps of this multi-step scheme, we use DIRK3.

III. Time-Step Control
We develop a time-step control strategy that balances the temporal and spatial errors in an unsteady simulation. The

temporal error can be defined as the difference between the solution obtained with the current temporal discretization
and one with an infinitely-refined temporal discretization, e.g. using an infinitesimally-small time step. The spatial
error can analogously be defined as the difference between the solution with the current spatial discretization and one
that is infinitely-refined, e.g. using a mesh size that approaches zero. Without access to these additional solutions, we
need alternative ways to measure the errors. One possibility is an output error, through an adjoint-weighted residual.
However, computing an unsteady adjoint is expensive, due to the requisite backwards-in-time integration on a finer
space. An adjoint approach would also require the selection of one scalar output. An alternative, used in this work, is
an unweighted residual, which is straightforward to measure and requires no extra solutions. Although unweighted
residuals by themselves do not always yield accurate spatial adaptive indicators, particularly for advection-dominated
flows, the relative effect of spatial and temporal discretization on the residual is still informative in choosing the time
step.

We consider the error made in one time step, from C= to C=+1 = C= + ΔC. Even if the state U= exactly approximates
the true solution at C=, the computed solution at U=+1 will be polluted by errors from two sources. First, the exact

4

solution for C > C= will generally not lie in the finite-dimensional spatial approximation space, i.e. the span of the
finite-element basis functions in our case. The resulting spatial error arises from an incorrect representation of the
state and its time rate of change, the velocity. Second, the time integration scheme will generally not exactly capture
the temporal evolution of U(C), except in certain special cases such as when U is constant or varies as a low-order
polynomial in time. The resulting temporal error depends on the time integration scheme and step size.

As defined, both the spatial and temporal errors are local, meaning that they are made in one time step. Reducing
the spatial error requires a finer mesh or a higher spatial order. Reducing the temporal error requires a smaller time step
or a scheme with a higher temporal order of accuracy. The errors are also generally coupled: for example, changing the
spatial approximation space affects the representation of the state and velocity, which then changes the state trajectory
through the time step and affects the temporal error.

Our goal is to control the time step, ΔC, to make the temporal error comparable to the spatial error. This task requires
a definition of error that is not overly expensive to compute and that allows for a direct comparison of spatial and
temporal errors. We use a residual-based approach and note that, by Eqn. 3, the spatial residual is a scaled state velocity,

R(U) = −M
3U
3C
. (15)

Errors in the spatial residual thus correspond to errors in the velocity. Both the spatial and the temporal discretizations
affect the velocity, and hence the velocity error provides a consistent means of comparing discretizations.

A. Spatial Error
We first consider the spatial error. Measuring the spatial error requires a comparison of the solution relative to one on

a finer approximation space. In the present work, we use an order-incremented finer space, ? → ? + 1, which has more
basis functions and a richer approximation. We denote by the subscripts � and ℎ the current and fine approximation
spaces, respectively. Let U�

ℎ
= I�

ℎ
U� be the prolongation of the coarse state to the fine space. The prolongation

operator I�
ℎ
is lossless for the ? + 1 fine space, and it can act on either the state or the velocity.

Evaluating the fine-space residual with the injected state yields a certain spatial residual, Rℎ (U�ℎ). Unlike in steady
problems, we do not expect Rℎ to be close to zero, as the state will generally have a nonzero velocity. To measure the
spatial error, we therefore compare the velocity on the coarse space with the one on the fine space. This comparison
must be done on the same approximation space, taken as ℎ, and hence the coarse-space velocity is prolongated to the
fine space. The resulting spatial error, computed at a particular time node (here at the end of the time step, = + 1), is

Yspace ≡
Rℎ (I�ℎ U=+1�) −MℎI�ℎ M−1

� R� (U=+1�)
 . (16)

The residual error norm can be a standard one such as !2, or a more careful averaging, as discussed in Section III.C.
Multiplying the terms inside by the inverse fine-space mass matrix yields a velocity error, but we have observed improved
performance with residuals, particularly on adapted meshes. For problems with singularities, such as at airfoil trailing
edges, large velocity errors can be observed at the location of the singularity when incrementing the spatial order,
even when the elements there are small. Using residuals instead of velocities prevents these, usually already adapted,
elements from dominating the spatial error.

B. Temporal Error
Next, we consider the temporal error. Some time-marching methods have built-in error estimates that provide

differences in states between low and high-order time integration. Converted into velocities, such errors could be
used to define the temporal error. However, not all time-marching methods come equipped with such error estimates.
Therefore, we use a simplified projection-based error estimate obtained by reconstructing the state as an appropriate-order
polynomial in time, U(C), and projecting it to a lower order polynomial in time, Ũ(C). The temporal reconstruction
is obtained by using endpoint states and velocities [5], and for the schemes considered in this work, only cubic
reconstruction is employed. The projection to a lower temporal order, here quadratic, is !2 over the time step =→ = + 1,
with the constraint that the state at = does not change. The temporal error is then the difference between the velocities,
measured as fine-space residuals, at time node = + 1 using the original state and the state from the lower-order temporal
reconstruction:

Ytime ≡
Rℎ (I�ℎ U=+1�) − Rℎ (I�ℎ Ũ=+1�)

 . (17)

Figure 1 summarizes the procedure for measuring the spatial and temporal errors, using a color coding consistent with
that given in Eqns. 16 and 17.

5

H, t space

Un
H

Un+1
H

H

t
h\H

Ũn+1
H

Fig. 1 Spatial and temporal error estimates via velocities at the end of one time step, = → = + 1. The colored
arrows are velocities that correspond to the residuals in Eqns. 16 and 17.

C. Element-based Averaging
Both Eqn. 16 and Eqn. 17 involve norms of residuals. A standard discrete norm, such as !1 or !2, computed over all

degrees of freedom can be sensitive to outliers and hence can perform poorly. We have observed this on output-adapted
meshes, where certain areas of the domain that have little impact on the output are not well resolved, for example as
shown in Figure 2, leading to large spatial residuals on the elements in these regions. These spatial residuals then

(a) State

(b) Residual

Fig. 2 Large spatial residuals in intentionally under-resolved regions of adapted meshes, here in the viscous
wake of an airfoil, can dominate residual-based spatial error estimates.

dominate the error estimates, and the adaptive time stepping algorithm suffers. Specifically, the large overall spatial
error makes the time step too large when the errors are balanced, adversely affecting the temporal accuracy in the
resolved regions. A proper means of resolving this problem would require adjoints as residual weights, but unsteady
adjoints would add a tremendous computational cost. Fortunately, we have found a simpler approach that works well on
such adapted meshes. This approach relies on the observation that these meshes, by virtue of being adapted, have large

6

elements in the under-resolved regions, so that the large spatial residuals occur over a small number of elements. By
using an element-based averaging approach, outlier effects can be mitigated.

Denote by the subscript 4 norms (here !2) computed over a single element. So element 4 has a spatial error of
Ytime,4 and a temporal error of Ytime,e. Define the temporal error fraction on element 4 as

5time,4 ≡
Ytime,e

Ytime,e + Yspace,e
. (18)

The total temporal error fraction over the entire mesh is then computed by averaging 5time,4 over elements,

5time =
1
#4

∑
4

5time,4 . (19)

D. Control Algorithm
The spatial and temporal error estimates are calculated after taking a time step. Let ΔC be the size of this step. The

time-step control algorithm must then decide whether to redo this time step, if the temporal error is too high compared
to the spatial error, or whether to proceed to the next time step. If the latter, the algorithm should pick the size of the
next time step to balance the errors. This choice is done using the current-step error estimates, and hence the decision
about the size of the next step will be retrospective. In this work, we set the time step using a relatively simple strategy
based on an assumed temporal order, A. The strategy proceeds as follows:

1) Take the current time step, estimate the errors, and compute 5time according to Eqn. 19.
2) If 5time > 5limit, redo the time step using ΔC/2.
3) Else, set ΔCnext = min(Amax, 5

−1/A)ΔC, where 5 ≡ 5time/(1 − 5time) is the temporal/spatial error ratio.
For the present results, we use 5limit = 0.6, Amax = 1.5, A = 2, which may not be optimal but have yielded reasonable
results. Better choices for these parameters, basing A on the formal temporal order of accuracy, and a more sophisticated
control strategy are the subject of future work.

Finally, we note that much previous work exists in adaptive time stepping for ordinary differential equations [20, 27].
The novelty of the present approach is the idea of balancing temporal and spatial errors, which only applies when the
system of ODEs arises from partial differential equations. Rather than keeping the temporal error constant, we peg
it to the spatial error to expend the appropriate amount of computational effort on time accuracy for a given spatial
discretization. Recent work exists with the same intent [28], using an embedded time-stepping scheme. Our work differs
in its support for general time-stepping schemes, and in its use of a simple element-based average norm suitable for
output-based adapted meshes.

IV. Results
In this section, we present results that compare the efficiency of the various time-marching schemes, and the

performance of the time-step control strategy. Three problems serve as the testing platform: a manufactured solution for
the scalar advection-diffusion equation, and two Navier-Stokes simulations on deforming domains.

A. Manufactured Solution
We first consider a manufactured solution for the two-dimensional scalar advection-diffusion equation, which takes

the following simplified form of Eqn. 1,

mD

mC
+ ∇ ·

(
®+D − `∇D

)
+ ((D) = 0. (20)

The source term ((D) drives D(G, H, C) to the following manufactured solution,

DMS (G, H, C) = sin(0G) sin(1H) cos(2C). (21)

Presently, we choose a square 2 × 2 domain, Ω, with the lower-left corner as the origin, ®+ = [0.8, 0.6], ` = 0.5, and
(0, 1, 2) = (2.3, 2.9, 4.2). The unsteady manufactured solution is prescribed as a full-state boundary condition on all

7

four edges of the square. The time horizon is from C = 0 to C =) = 2, and the output of interest is the !2 norm of the
state error at the final time,

!2 state error =
(

1
|Ω|

∫
Ω

(
D(G, H,)) − DMS (G, H,))

)2
3Ω

) 1
2

. (22)

At time C = 0 the state is initialized using least-squares projection of DMS. Figure 3 shows the state at various times in
the simulation.

(a) C = 0 (b) C = 1 (c) C = 2

Fig. 3 Scalar manufactured solution states at various times.

The test matrix for the convergence study consists of five time schemes: BDF2, DIRK3, MEBDF3, SAMF3, and
ESDIRK4. For each scheme, simulations are performed on ? = 2, 3, three grid sizes (4 × 4, 8 × 8, 16 × 16, split into
triangles), and eight numbers of time intervals: #C = 2, 4, 8, 16, 32, 64, 128, 256, for a total of 48 simulations per scheme.
Figure 4 shows the final-time !2 error plotted versus time step size ΔC for all of the ? = 2 runs. Lines connect data for a
single mesh and time scheme, with #C varying.

10 2 10 1 100

time step, t

10 4

10 3

10 2

10 1

L 2
 st

at
e

er
ro

r

2

4

DIRK3: nelem=32, p=2
DIRK3: nelem=128, p=2
DIRK3: nelem=512, p=2
BDF2: nelem=32, p=2
BDF2: nelem=128, p=2
BDF2: nelem=512, p=2
MEBDF3: nelem=32, p=2
MEBDF3: nelem=128, p=2
MEBDF3: nelem=512, p=2
SAMF3: nelem=32, p=2
SAMF3: nelem=128, p=2
SAMF3: nelem=512, p=2
ESDIRK4: nelem=32, p=2
ESDIRK4: nelem=128, p=2
ESDIRK4: nelem=512, p=2
Adaptive time step

Fig. 4 Manufactured solution output convergence results, ? = 2.

We observe the expected behavior: with increasing #C , the !2 error first decreases as a large temporal error is

8

reduced, but then stalls to a constant value of the spatial error when the latter begins to dominate. The finest spatial
resolution run of BDF2 does not reach this plateau, as its relatively low temporal order keeps the temporal error dominant
for the #C values simulated. Not all of the time schemes reach their asymptotic theoretical convergence rates prior to the
spatial error taking over, but the higher-order schemes do show more rapid temporal convergence. In addition, we note
that the order of accuracy of each scheme was also verified separately on a fixed spatial discretization, using a truth
solution with a large number of time steps.

Figure 5 shows the error convergence results for ? = 3. Compared to ? = 2, the errors now stall out at lower values,
as expected from the higher spatial approximation order. As a result, BDF2 only bottoms out for the coarsest mesh.
Otherwise, the start of the curves, at small #C and large ΔC, is the same as for ? = 2, since this is the region where
temporal error dominates.

10 2 10 1 100

time step, t

10 5

10 4

10 3

10 2

10 1

L 2
 st

at
e

er
ro

r

2

4

DIRK3: nelem=32, p=3
DIRK3: nelem=128, p=3
DIRK3: nelem=512, p=3
BDF2: nelem=32, p=3
BDF2: nelem=128, p=3
BDF2: nelem=512, p=3
MEBDF3: nelem=32, p=3
MEBDF3: nelem=128, p=3
MEBDF3: nelem=512, p=3
SAMF3: nelem=32, p=3
SAMF3: nelem=128, p=3
SAMF3: nelem=512, p=3
ESDIRK4: nelem=32, p=3
ESDIRK4: nelem=128, p=3
ESDIRK4: nelem=512, p=3
Adaptive time step

Fig. 5 Manufactured solution output convergence results, ? = 3.

In both Figures 4 and 5, the larger highlighted markers correspond to the adaptive time-step results. These are
obtained only for the DIRK3 and the ESDIRK4 schemes, which do not require uniform time stepping. For each of these
runs, #C is initially set to a coarse value of 4. The time step control strategy then sets the time step using comparisons to
the spatial error, as described in Section III. This leads to a sharp reduction in the initial time step, which is redone
several times as the temporal error is found dominant. The time step then varies through the simulation to maintain
balance with the spatial error. The location of the resulting data point on the plot is determined by using the actual error
and the average time step,)/#C .

Ideally, we expect the results of the adaptive time-step runs to lie at the “kink” of the corresponding uniform
time-step refinement results, where the errors begin to stall out – perhaps further to the right when the problem calls for
non-uniform time steps. For this temporally smooth and periodic problem, however, the optimal time step distribution is
close to uniform. And indeed, the time-step control results do lie close to the kinks of the uniform refinement results.
The important point is that the control strategy is able to determine the time step automatically, even when starting from
a coarse temporal discretization, eliminating the need for a temporal convergence study with multiple simulations.

Finally, back to uniform time stepping, we are also interested in the efficiency of the various time-marching schemes.
We can obtain this information from the data in Figures 4 and 5, by plotting the errors versus the number of nonlinear
solutions required, instead of versus ΔC. The number of nonlinear solutions per time step ranges from 1 for BDF2, to 5
for ESDIRK4. Figure 6 shows the resulting data. We see that the spread in the lines is now much smaller, since as
expected, the higher-order time-marching schemes require more stages. At low error levels, BDF2 performs on par with
the other methods, but this is still where temporal error dominates for all of the spatial discretizations. At more strict
error tolerances, the SAMF3 method becomes most efficient, due to its low cost of two stages per time step, followed by
ESDIRK4, due to its high accuracy compensating for its high cost of five stages per time step.

9

10 2 10 1 100

1/(number of nonlinear solutions)

10 5

10 4

10 3

10 2

10 1

L 2
 st

at
e

er
ro

r
DIRK3: nelem=32, p=3
DIRK3: nelem=128, p=3
DIRK3: nelem=512, p=3
BDF2: nelem=32, p=3
BDF2: nelem=128, p=3
BDF2: nelem=512, p=3
MEBDF3: nelem=32, p=3
MEBDF3: nelem=128, p=3
MEBDF3: nelem=512, p=3
SAMF3: nelem=32, p=3
SAMF3: nelem=128, p=3
SAMF3: nelem=512, p=3
ESDIRK4: nelem=32, p=3
ESDIRK4: nelem=128, p=3
ESDIRK4: nelem=512, p=3
Adaptive time step

Fig. 6 Manufactured solution output convergence efficiency results, versus total number of nonlinear solutions,
for ? = 3.

B. Deforming Cylinder
For the second test case, we consider the solution of the Navier-Stokes equations inside a two-dimensional cylinder

undergoing translation, rotation, and deformation. The starting point for this case is one of the High-Fidelity CFD
workshop verification cases [29]. The unit-diameter cylinder initially centered at the origin undergoes three simultaneous
motions: elliptical deformation, rotation, and translation. The net mapping from reference coordinates, (-,.), to global
coordinates, (G, H), can be written as a combination of these motions,

G

H

1

 =

1 0 ?G (C)
0 1 ?H (C)
0 0 1

︸ ︷︷ ︸
translation

cos(\ (C)) − sin(\ (C)) 0
sin(\ (C)) cos(\ (C)) 0

0 0 1

︸ ︷︷ ︸
rotation

k(C) 0 0

0 1
k (C) 0

0 0 1

︸ ︷︷ ︸
deformation

-

.

1

 , (23)

where

k(C) = 1 + U(C), \ (C) = cU(C), [?G (C), ?H (C)] = [0.6, 0.8]U(C), U(C) =
{
C3/2 − 3C4/16
3C2/8 − C3/8

. (24)

The two expressions for U(C) correspond to startup at C = 0 of different smoothness: C3 for the first one, and C2 for the
second one. The mesh motion is implemented through an arbitrary Lagrangian-Eulerian approach with an analytical
mapping [14, 30]. The initial condition is stagnant fluid, with state vector

u = [d, dD, dE, d�] = [1, 0, 0, 10] . (25)

Note that the state vector is given in dimensional but convenient O(1) units. The dynamic viscosity is set to a constant
value of ` = 0.1, the specific heat ratio is W = 1.4, and the Prandtl number is 0.72. The simulation time horizon is from
C = 0 to C =) = 0.9. Figure 7 shows the solution at several times in the simulation.

The test matrix for the convergence study consists of five time schemes: BDF2, DIRK3, MEBDF3, SAMF3, and
ESDIRK5. For each scheme, simulations are performed on ? = 3, three grid sizes (20, 80, 320 quadrilaterals), and
seven numbers of time intervals: #C = 4, 8, 16, 32, 64, 128, 256, for a total of 21 simulations per scheme. Two outputs
are of interest in this case: (1) the final lift, defined as the vertical component of the force exerted by the fluid on the
cylinder at C =) , and (2) the vertical impulse, defined as the integral of the lift over the time horizon. Figure 8 shows

10

(a) C = 0.675 (b) C = 0.7875 (c) C = 0.9

Fig. 7 Cylinder geometry and Mach number contours at various times.

the final lift error plotted versus time step size ΔC for the ? = 2 runs and C2 startup. Lines connect data for a single mesh
and time scheme, with #C varying.

10 2 10 1

time step, t

10 5

10 4

10 3

10 2

10 1

Fi
na

l l
ift

 o
ut

pu
t e

rro
r

2

5

DIRK3: nelem=20, p=2
DIRK3: nelem=80, p=2
DIRK3: nelem=320, p=2
BDF2: nelem=20, p=2
BDF2: nelem=80, p=2
BDF2: nelem=320, p=2
MEBDF3: nelem=20, p=2
MEBDF3: nelem=80, p=2
MEBDF3: nelem=320, p=2
SAMF3: nelem=20, p=2
SAMF3: nelem=80, p=2
SAMF3: nelem=320, p=2
ESDIRK5: nelem=20, p=2
ESDIRK5: nelem=80, p=2
ESDIRK5: nelem=320, p=2
Adaptive time step

Fig. 8 Cylinder final lift convergence results, ? = 2 and C2 startup.

We observe the expected behavior: with increasing #C , the output error first decreases, at the appropriate convergence
rate, as a large temporal error is reduced, but then stalls to a constant value of the spatial error when the latter begins to
dominate. In this case, BDF2 does not reach this plateau for the #C values tested.

The highlighted markers plotted in Figure 8 are the adaptive time step results for DIRK3 and ESDIRK5. For each of
these runs, #C is initially set to a coarse value of 8. The time step control strategy reduces the initial time step, which is
redone several times and varies through the simulation to maintain balance with the spatial error, and the location of
the resulting data point on the plot is determined by using the average time step,)/#C . The time-step control strategy
performs reasonably well in identifying the appropriate balance between spatial and temporal errors for both DIRK3
and ESDIRK5.

Next, we consider the impulse output. Figure 9 shows the convergence of the error in the impulse for ? = 2 and the
C2 startup. We see that for this output, which involves an integral over the entire time horizon, all of the schemes are
limited in their temporal convergence rate to 2, when measured through a uniform time-step refinement study. The
temporal error dominates, and the flattening out of the error is not observed for the #C values tested. On the other hand,

11

10 2 10 1

time step, t

10 5

10 4

10 3

10 2

10 1

100
Im

pu
lse

 o
ut

pu
t e

rro
r 2

5

DIRK3: nelem=20, p=2
DIRK3: nelem=80, p=2
DIRK3: nelem=320, p=2
BDF2: nelem=20, p=2
BDF2: nelem=80, p=2
BDF2: nelem=320, p=2
MEBDF3: nelem=20, p=2
MEBDF3: nelem=80, p=2
MEBDF3: nelem=320, p=2
SAMF3: nelem=20, p=2
SAMF3: nelem=80, p=2
SAMF3: nelem=320, p=2
ESDIRK5: nelem=20, p=2
ESDIRK5: nelem=80, p=2
ESDIRK5: nelem=320, p=2
Adaptive time step

Fig. 9 Cylinder impulse convergence results, ? = 2 and C2 startup.

the adaptive time step results, shown by the highlighted markers, exhibit a much lower error with fewer overall time
steps. This is due to the control algorithm choosing small time steps at the beginning of the simulation, effectively
isolating the temporal (high-order) singularity caused by the C2 startup.

Figure 10 shows the time-step history for this case, and the small time steps at the beginning are evident. The initial
high temporal error fraction drops steeply as the initial time step is redone multiple times, and hence the large error
values shown do not contribute to the overall error. Note the undershoot of the temporal error fraction, which ideally
should be at 0.5, soon after startup. This undershoot is due to the control algorithm being able to grow ΔC only by a
limited factor at each step and to the fact that time steps in which the temporal error is small are not redone for efficiency
reasons.

0.0 0.2 0.4 0.6 0.8
time

0.0

0.2

0.4

0.6

0.8

1.0

te
m

po
ra

l e
rro

r f
ra

ct
io

n

Fig. 10 Temporal error fraction and time step history for the cylinder case, ? = 2 and C2 startup.

Changing the startup smoothness of the problem also mitigates the temporal singularity at C = 0. Figure 11 shows the
impulse output convergence for the smoother C3 startup. We observe improved convergence rates from the higher-order
schemes. The adaptive time step data points are also at reasonable error levels and average time step sizes, yielding
balanced temporal and spatial errors.

We note that this problem has, by design, zero spatial error at C = 0, since the startup is from a stagnant fluid state.
This causes a peculiar feature of very small initial time steps, as the temporal error is pegged to the instantaneous spatial
error. At later times, the spatial error grows, and concomitantly so does the time step, making the initial small time steps

12

10 2 10 1

time step, t

10 5

10 4

10 3

10 2

10 1
Im

pu
lse

 o
ut

pu
t e

rro
r

2

5

DIRK3: nelem=20, p=2
DIRK3: nelem=80, p=2
DIRK3: nelem=320, p=2
BDF2: nelem=20, p=2
BDF2: nelem=80, p=2
BDF2: nelem=320, p=2
MEBDF3: nelem=20, p=2
MEBDF3: nelem=80, p=2
MEBDF3: nelem=320, p=2
SAMF3: nelem=20, p=2
SAMF3: nelem=80, p=2
SAMF3: nelem=320, p=2
ESDIRK5: nelem=20, p=2
ESDIRK5: nelem=80, p=2
ESDIRK5: nelem=320, p=2
Adaptive time step

Fig. 11 Cylinder impulse convergence results, ? = 2 and C3 startup.

inefficient. However, without knowledge of the larger-magnitude errors to come at later times, the time-step control
algorithm is inherently limited in making such a resource allocation decision.

Finally, Figure 12 shows the efficiency data for the various schemes, as the impulse error plotted versus number of
nonlinear solutions required, for ? = 2, C3 startup. We see that the spread in the lines is smaller, as in the previous case.
At strict error tolerances, the SAMF3 again method becomes most efficient, due to its low cost of two stages per time
step, and its fourth-order formal temporal accuracy.

10 3 10 2 10 1

1/(number of nonlinear solutions)

10 5

10 4

10 3

10 2

10 1

Im
pu

lse
 o

ut
pu

t e
rro

r

DIRK3: nelem=20, p=2
DIRK3: nelem=80, p=2
DIRK3: nelem=320, p=2
BDF2: nelem=20, p=2
BDF2: nelem=80, p=2
BDF2: nelem=320, p=2
MEBDF3: nelem=20, p=2
MEBDF3: nelem=80, p=2
MEBDF3: nelem=320, p=2
SAMF3: nelem=20, p=2
SAMF3: nelem=80, p=2
SAMF3: nelem=320, p=2
ESDIRK5: nelem=20, p=2
ESDIRK5: nelem=80, p=2
ESDIRK5: nelem=320, p=2
Adaptive time step

Fig. 12 Cylinder impulse convergence efficiency results, versus total number of nonlinear solutions, for ? = 2
and C3 startup.

13

C. Plunging Airfoil
For the final test case, we consider a NACA 0012 airfoil at freestream Mach number 0.1, Reynolds number 1000,

and zero degrees angle of attack, undergoing plunging motion according to

ℎ(C) = 1
2
C3 − 3

16
C4 or

3
8
C2 − 1

8
C3. (26)

The first of these plunge motion functions is a smooth C3 startup, whereas the second is a less-smooth C2 startup.
Figure 13 shows the finer of the two computational meshes used, which consists of cubic curved triangles on the airfoil
boundary, and Mach number contours at various times.

(a) 1963-element mesh (b) C = 0

(c) C = 0.5 (d) C = 1.0

Fig. 13 Airfoil mesh and Mach number contours at various times during a plunge motion.

As in the previous case, the state vector is given in dimensional but convenient O(1) units, with d = 1 and*∞ = 1.
The dynamic viscosity is set to a constant value of ` = 0.001, the specific heat ratio is W = 1.4, and the Prandtl number
is 0.72. The simulation time horizon is from C = 0 to C =) = 1.0.

The test matrix for the convergence study consists of five time schemes: BDF2, DIRK3, MEBDF3, SAMF3, and
ESDIRK4. For each scheme, simulations are performed at ? = 2, on two grid sizes (520 and 1963 triangles), and seven

14

numbers of time intervals: #C = 4, 8, 16, 32, 64, 128, 256, for a total of 14 simulations per scheme. The output of interest
is the vertical impulse, given by the time-integral of the vertical force over the time horizon, which is) = 12/*∞.

Figure 14 shows the impulse error plotted versus time step size ΔC for the ? = 2 runs. Lines connect data for a single
mesh and time scheme, with #C varying. We observe the expected behavior: with increasing #C , the output error first

10 2 10 1

time step, t

10 4

10 3

10 2

Im
pu

lse
 o

ut
pu

t e
rro

r

2

4

DIRK3: nelem=520, p=2
DIRK3: nelem=1963, p=2
BDF2: nelem=520, p=2
BDF2: nelem=1963, p=2
MEBDF3: nelem=520, p=2
MEBDF3: nelem=1963, p=2
SAMF3: nelem=520, p=2
SAMF3: nelem=1963, p=2
ESDIRK4: nelem=520, p=2
ESDIRK4: nelem=1963, p=2
Adaptive time step

(a) C2 startup

10 2 10 1

time step, t

10 4

10 3

10 2

Im
pu

lse
 o

ut
pu

t e
rro

r

2

4

DIRK3: nelem=520, p=2
DIRK3: nelem=1963, p=2
BDF2: nelem=520, p=2
BDF2: nelem=1963, p=2
MEBDF3: nelem=520, p=2
MEBDF3: nelem=1963, p=2
SAMF3: nelem=520, p=2
SAMF3: nelem=1963, p=2
ESDIRK4: nelem=520, p=2
ESDIRK4: nelem=1963, p=2
Adaptive time step

(b) C3 startup

Fig. 14 Airfoil impulse convergence results, ? = 2.

decreases, at close to the appropriate convergence rate, as a large temporal error is reduced, but then stalls to a constant
value of the spatial error when the latter begins to dominate.

Adaptive time step results are also shown for DIRK3 and ESDIRK4. For each of these runs, #C is initially set to
a small value of 8, and the time-step control strategy reduces the initial time step, which is redone several times and
varies through the simulation to maintain balance with the spatial error. The time-step control strategy performs well in

15

identifying the appropriate balance between spatial and temporal errors for both the C2 and the C3 startups.
Figure 15 shows the time-step histories for DIRK3, ? = 2, on the 1963-element mesh. The small initial time steps

for the C2 startup are evident, set by the control strategy to reduce the high temporal error caused by a relatively-strong
initial-time singularity of the motion. On the other hand, the C3 startup yields a much more uniform time step, as the
motion is smoother at C = 0 and the initial temporal error fraction is not as high.

0.0 0.2 0.4 0.6 0.8
time

0.0

0.2

0.4

0.6

0.8

1.0

te
m

po
ra

l e
rro

r f
ra

ct
io

n

(a) C2 startup

0.0 0.2 0.4 0.6 0.8
time

0.0

0.2

0.4

0.6

0.8

1.0

te
m

po
ra

l e
rro

r f
ra

ct
io

n

(b) C3 startup

Fig. 15 Temporal error fraction and time step history for the airfoil case, ? = 2 and C2 startup.

Finally, Figure 16 shows the efficiency data for the various schemes, as the impulse error plotted versus number of
nonlinear solutions required, for ? = 3, C3 startup. We see that the spread in the lines is smaller, as in the previous case,
but that this time ESDIRK4 is the most efficient time marching scheme, with SAMF3 coming in second. Thus, the
efficiency of a particular scheme is case dependent.

V. Conclusions
This paper investigates semi-discrete time marching schemes for high-order discretizations of convection-dominated

flow problems, using the discontinuous Galerkin method. It also presents a time-step control strategy that balances
numerical errors arising from the temporal and spatial discretizations. While the focus is on fluid-dynamics problems,
the same methods could apply to discretizations of other partial differential equations. In addition, other high-order
spatial discretizations could be considered, including continuous finite elements and flux reconstruction methods. A
caveat is that only implicit time marching methods have been considered: explicit methods for high-order are typically
already overly resolved temporally due to stability time step restrictions.

The results for three test problems, governed by the scalar advection-diffusion and the Navier-Stokes equations,
demonstrate the importance of choosing the correct time step. A time step that is too large creates too much temporal
error that drowns out the high-order spatial accuracy. Conversely, one that is too small wastes computational resources
in a situation where the spatial error dominates. The optimal time step choice can be identified through time-step
convergence studies for a particular spatial discretization and time-marching scheme. This approach of “decreasing the

16

10 3 10 2 10 1

1/(number of nonlinear solutions)

10 5

10 4

10 3

10 2
Im

pu
lse

 o
ut

pu
t e

rro
r

DIRK3: nelem=520, p=3
DIRK3: nelem=1963, p=3
BDF2: nelem=520, p=3
BDF2: nelem=1963, p=3
MEBDF3: nelem=520, p=3
MEBDF3: nelem=1963, p=3
SAMF3: nelem=520, p=3
SAMF3: nelem=1963, p=3
ESDIRK4: nelem=520, p=3
ESDIRK4: nelem=1963, p=3
Adaptive time step

Fig. 16 Airfoil impulse convergence efficiency results, versus total number of nonlinear solutions, for ? = 3
and C3 startup.

time step until the answers stops changing” is often employed in practice. We note that for two of the problems studied
in this work, the hybrid multistep/multistage split Adams-Moulton method (SAMF3) was found to be the most efficient
out of the methods tested, due to its requirement of only two stages for fourth-order accuracy. However, it requires
uniform time steps, which makes its application challenging and perhaps less efficient in a variable-time-step setting.

The multiple unsteady simulations required for a convergence study are expensive. Therefore, this work also
presents an automatic time-step control strategy for selecting the time step adaptively at each unsteady iteration to
balance the spatial and temporal errors. This strategy requires residual evaluations on a spatially finer approximation
space, which generally do not add significant cost compared to the nonlinear implicit solutions. No adjoint solutions
or backward-in-time integrations are required. The results demonstrate the efficacy of this strategy: the time step is
controlled in a manner that makes the spatial and temporal errors balanced, so that only one unsteady simulation is
required, with the temporal resolution set and adjusted automatically.

Finally, a more fundamental question raised by the present study is whether the local spatial and temporal errors
need to be balanced at all times through the course of the simulation. At times in the solution evolution when the local
spatial error becomes very small, the time step may not need to be reduced, since although the temporal error may be
larger than the spatial error for that time step, it may still be less than the errors committed on previous, or future, time
steps. Pegging the temporal error to the spatial error locally at each time may thus overly restrict the time step. An
alternative strategy is to keep track of the average error per time step, and to permit larger time steps as long as the
average error, or a fraction of it, is not exceeded. Of course, knowledge of errors in future time steps would still not be
available, but this is a reasonable start and improvement over the present local error strategy. This question is a direction
of future investigation.

17

A. ESDIRK coefficients
For the ESDIRK5 method used in this work, the coefficients are

08 9 =

0 0 0 0 0 0
1
4

1
4 0 0 0 0

8611
62500

−1743
31250

1
4 0 0 0

5012029
34652500

−654441
2922500

174375
388108

1
4 0 0

15267082809
155376265600

−71443401
120774400

730878875
902184768

2285395
8070912

1
4 0

82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4

18 =

[
0 1

2
83
250

31
50

17
20 1

]
For the ESDIRK5 method used in this work, the coefficients are[7]

08 9 =

0 0 0 0 0 0 0 0
41
200

41
200 0 0 0 0 0 0

41
400

−567603406766
11931857280679

41
200 0 0 0 0 0

683785636431
9252920307686 0 −110385047103

1367015193373
41
200 0 0 0 0

3016520224154
10081342136671 0 30586259806659

12414158314087
−22760509404356
11113319521817

41
200 0 0 0

218866479029
1489978393911 0 638256894668

5436446318841
−1179710474555
5321154724896

−60928119172
8023461067671

41
200 0 0

1020004230633
5715676835656 0 25762820946817

25263940353407
−2161375909145
9755907335909

−211217309593
5846859502534

−4269925059573
7827059040749

41
200 0

−872700587467
9133579230613 0 0 22348218063261

9555858737531
−1143369518992
8141816002931

−39379526789629
19018526304540

32727382324388
42900044865799

41
200

18 =

[
0 41

100
2935347310677
11292855782101

1426016391358
7196633302097

92
100

24
100

3
5 1

]
Note that the first, all-zero, row of 08 9 is never used and is only present for consistency with the row/column indices

beginning at zero for ESDIRK methods.

References
[1] Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.,

Kroll, N., May, G., Persson, P.-O., van Leer, B., and Visbal, M., “High-Order CFD Methods: Current Status and Perspective,”
International Journal for Numerical Methods in Fluids, Vol. 72, 2013, pp. 811–845. https://doi.org/10.1002/fld.3767.

[2] Fidkowski, K. J., and Darmofal, D. L., “Review of Output-Based Error Estimation and Mesh Adaptation in Computational
Fluid Dynamics,” AIAA Journal, Vol. 49, No. 4, 2011, pp. 673–694. https://doi.org/10.2514/1.J050073.

[3] Cockburn, B., and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” Journal of
Scientific Computing, Vol. 16, No. 3, 2001, pp. 173–261. https://doi.org/https://doi.org/10.1023/A:1012873910884.

[4] Richter, T., “Discontinuous Galerkin as Time-Stepping Scheme for the Navier-Stokes Equations,” Fourth International
Conference on High Performance Scientific Computing Modeling, Simulation and Optimization of Complex Processes, Hanoi,
Vietnam, 2009.

[5] Fidkowski, K. J., “Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convection-
dominated flows,” International Journal for Numerical Methods in Engineering, Vol. 88, No. 12, 2011, pp. 1297–1322.
https://doi.org/10.1002/nme.3224.

[6] Bijl, H., Carpenter, M. H., Vatsa, V. N., and Kennedy, C. A., “Implicit time integration schemes for the unsteady compressible
Navier–Stokes equations: laminar flow,” Journal of Computational Physics, Vol. 179, No. 1, 2002, pp. 313–329.

[7] Kennedy, C. A., and Carpenter, M. H., “Additive Runge-Kutta schemes for convection-diffusion-reaction equations,” Applied
Numerical Mathematics, Vol. 44, 2003, pp. 139–181.

18

https://doi.org/10.1002/fld.3767
https://doi.org/10.2514/1.J050073
https://doi.org/https://doi.org/10.1023/A:1012873910884
https://doi.org/10.1002/nme.3224

[8] Barth, T. J., “Space-Time Error Representation and Estimation in Navier-Stokes Calculations,” Complex Effects in Large Eddy
Simulations, edited by S. C. Kassinos, C. A. Langer, G. Iaccarino, and P. Moin, Springer Berlin Heidelberg, Lecture Notes in
Computational Science and Engineering Vol 26, 2007, pp. 29–48.

[9] Meidner, D., and Vexler, B., “Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems,” SIAM
Journal on Control Optimization, Vol. 46, No. 1, 2007, pp. 116–142. https://doi.org/https://doi.org/10.1137/060648994.

[10] Mani, K., and Mavriplis, D. J., “Error Estimation and Adaptation for Functional Outputs in Time-Dependent Flow Problems,”
Journal of Computational Physics, Vol. 229, 2010, pp. 415–440. https://doi.org/https://doi.org/10.1016/j.jcp.2009.09.034.

[11] Fidkowski, K. J., and Luo, Y., “Output-based Space-Time Mesh Adaptation for the Compressible Navier-Stokes Equations,”
Journal of Computational Physics, Vol. 230, 2011, pp. 5753–5773. https://doi.org/10.1016/j.jcp.2011.03.059.

[12] Fidkowski, K. J., “An Output-Based Dynamic Order Refinement Strategy for Unsteady Aerodynamics,” AIAA Paper 2012-77,
2012. https://doi.org/10.2514/6.2012-77.

[13] Flynt, B. T., and Mavriplis, D. J., “Discrete Adjoint Based Adaptive Error Control in Unsteady Flow Problems,” AIAA Paper
2012-0078, 2012.

[14] Kast, S. M., and Fidkowski, K. J., “Output-based Mesh Adaptation for High Order Navier-Stokes Simulations on Deformable
Domains,” Journal of Computational Physics, Vol. 252, No. 1, 2013, pp. 468–494. https://doi.org/10.1016/j.jcp.2013.06.007.

[15] Fidkowski, K. J., “Output-Based Space-Time Mesh Optimization for Unsteady Flows Using Continuous-in-Time Adjoints,”
Journal of Computational Physics, Vol. 341, No. 15, 2017, pp. 258–277. https://doi.org/10.1016/j.jcp.2017.04.005.

[16] Reed, W., and Hill, T., “Triangular Mesh Methods for the Neutron Transport Equation,” Los Alamos Scientific Laboratory
Technical Report LA-UR-73-479, 1973.

[17] Roe, P., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of Computational Physics, Vol. 43,
1981, pp. 357–372. https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5.

[18] Bassi, F., and Rebay, S., “GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations,” Discontinuous
Galerkin Methods: Theory, Computation and Applications, edited by B. Cockburn, G. Karniadakis, and C.-W. Shu, Springer,
Berlin, 2000, pp. 197–208.

[19] Fidkowski, K. J., “High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics,” 37th Advanced CFD
Lectures series; Von Karman Institute for Fluid Dynamics (December 9–12 2013), edited by H. Deconinck and R. Abgrall, von
Karman Institute for Fluid Dynamics, 2013.

[20] Nørsett, S. P., and Thomsen, P. G., “Local error control in SDIRK-methods,” BIT Numerical Mathematics, Vol. 26, No. 1, 1986,
pp. 100–113.

[21] Alexander, R., “Diagonally implicit Runge-Kutta methods for stiff ODE’s,” SIAM Journal on Numerical Analysis, Vol. 14,
No. 6, 1977, pp. 1006–1021.

[22] Rattenbury, N., “Almost Runge-Kutta Methods for Stiff and Non-Stiff Problems,” Ph.D. thesis, The University of Auckland,
2005.

[23] Cash, J., “The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae,”
Computers & mathematics with applications, Vol. 9, No. 5, 1983, pp. 645–657. https://doi.org/https://doi.org/10.1016/0898-
1221(83)90122-0.

[24] Cash, J., and Considine, S., “An MEBDF Code for Stiff Initial Value Problems,” ACM Transactions on Mathematical Software,
Vol. 18, No. 2, 1992, pp. 142–155. https://doi.org/10.1145/146847.146922.

[25] Cash, J., “On the integration of stiff systems of ODEs using extended backward differentiation formulae,” Numerische
Mathematik, Vol. 34, No. 3, 1980, pp. 235–246.

[26] Voss, D. A., and Casper, M. J., “Efficient Split Linear Multistep Methods for Stiff Ordinary Differential Equations,” SIAM
Journal on Scientific and Statistical Computing, Vol. 10, No. 5, 1989, pp. 990–999.

[27] Gustafsson, K., Lundh, M., and Søderlind, G., “A PI stepsize control for the numerical solution of ordinary differential
equations,” BIT Numerical Mathematics, Vol. 28, 1988, pp. 270–287. https://doi.org/10.1007/BF01934091.

19

https://doi.org/https://doi.org/10.1137/060648994
https://doi.org/https://doi.org/10.1016/j.jcp.2009.09.034
https://doi.org/10.1016/j.jcp.2011.03.059
https://doi.org/10.2514/6.2012-77
https://doi.org/10.1016/j.jcp.2013.06.007
https://doi.org/10.1016/j.jcp.2017.04.005
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/https://doi.org/10.1016/0898-1221(83)90122-0
https://doi.org/https://doi.org/10.1016/0898-1221(83)90122-0
https://doi.org/10.1145/146847.146922
https://doi.org/10.1007/BF01934091

[28] Pan, Y., Yan, Z.-G., Peiró, J., and Sherwin, S. J., “Development of a Balanced Adaptive Time-Stepping Strategy Based on an
Implicit JFNK-DG Compressible Flow Solver,” Communications on Applied Mathematics and Computation, Vol. 4, 2022, pp.
728–757. https://doi.org/10.1007/s42967-021-00138-1.

[29] Persson, P.-O., Fidkowski, K. J., and Wukie, N. A., “High-Fidelity CFD Workshop 2022: Mesh Motion,” AIAA Paper
2021–1551, 2021. https://doi.org/10.2514/6.2021-1551.

[30] Persson, P.-O., Bonet, J., and Peraire, J., “Discontinuous Galerkin Solution of the Navier-Stokes Equations on Deformable
Domains,” Computer Methods in Applied Mechanics and Engineering, Vol. 198, 2009, pp. 1585–1595.

20

https://doi.org/10.1007/s42967-021-00138-1
https://doi.org/10.2514/6.2021-1551

	Introduction
	Discretization
	Spatial
	Temporal

	Time-Step Control
	Spatial Error
	Temporal Error
	Element-based Averaging
	Control Algorithm

	Results
	Manufactured Solution
	Deforming Cylinder
	Plunging Airfoil

	Conclusions
	ESDIRK coefficients

