
Output-Based Mesh Optimization Using Metric-Conforming
Node Movement

Krzysztof J. Fidkowski∗
University of Michigan, Ann Arbor, MI, 48188

This paper presents a two-step method for performing output-basedmesh adaptation using
node movement, for high-order discretizations. In the first step, an optimal target metric is
determined over the current mesh using an optimization procedure that equidistributes a
marginal output error to degree-of-freedom cost. In the second step, the nodes are moved
so as to minimize the error between the mesh-implied metric and the target metric, i.e. to
make the mesh better conform to the target metric. This movement is the solution of a global
optimization problem, made possible by virtue of the meshes being coarse for high-order
methods. No additional flow solutions or error calculations take place during this second
optimization step, and hence the optimization is not computationally expensive. Results for
three diverse cases demonstrate the ability of the modemovement strategy to reduce the output
error relative to a given initial mesh, at a level that in one case surpasses that of a baseline
re-meshing strategy.

I. Introduction
Error estimation and mesh adaptation improve the accuracy and robustness of numerical simulations [1]. Numerous

types of error estimates exist, ranging from heuristic feature-based measures [2–5] to more rigorous output-based
ones [1, 6–8], with the latter showing the most promise for convection-dominated aerodynamic problems. Similarly,
many adaptive methods have been studied, including local mesh modification [9–15], order adaptation [16–18], and
global re-meshing [19–22]. While re-meshing has been the method of choice for recent works in metric-based mesh
optimization [23, 24], it is not always robust or even tractable, especially for three-dimensional meshes with curved,
anisotropic elements. In this work we therefore investigate another adaptive approach, based on node movement.

Node movement, also called A-refinement [25–27], is not a novel concept. In many previous works it has been used
alone or in combination with other local mesh operators. While less flexible than global re-meshing in terms of size
control and degree-of-freedom distribution, it has the advantage of improved robustness, since small changes can be
undone or addressed locally to prevent inversion errors.

This paper presents a metric-based node movement approach for high-order discretizations. The novelty of the
work is in the use of a metric field error, instead of a direct solution or output error, to drive the node movement. The
approach is also formulated as a global optimization problem for the node coordinates. Whereas such an optimization is
generally not tractable for large-scale problems discretized using second-order methods, where the number of nodes can
range in the millions or even billions, high-order methods can yield excellent accuracy on much coarser meshes [28]. In
addition, we employ an iterative optimization strategy and are not concerned with perfect mesh optimality.

We foresee the application of the node movement approach to cases where global re-meshing is difficult or
not possible, for example for structured meshes [29], for which the connectivity must remain the same. Another
application is in concurrent shape and mesh optimization [30], where smooth variations of the mesh are desired. Finally,
three-dimensional problems where high-order curved re-meshing is not yet automated would benefit from adaptation
through node movement.

The node movement strategy is presented for a discontinuous Galerkin finite-element discretization, which is
reviewed briefly in Section II. Section III presents the output error estimation procedure, and Section IV presents the
metric optimization algorithm. Section V describes the node-movement strategy, which is the new contribution of this
work. Results in Section VI demonstrate the error reduction attained with node movement and compare it to global
re-meshing. Section VII concludes with a summary of the work and possible future directions.

∗Professor, Department of Aerospace Engineering, AIAA Associate Fellow.

1

II. Discretization

A. Governing Equations
Consider a system of unsteady partial differential equations in conservative form,

mu
mC
+ ∇ · ®F(u,∇u) + S(u,∇u) = 0, (1)

where u ∈ RB is the B-component state vector, ®F ∈ Rdim×B is the flux vector, dim is the spatial dimension, and S is a
source term.

For scalar advection-diffusion, B = 1, and the flux is ®� = ®+D − `∇D, where ®+ is the velocity and ` is the viscosity.
The source term is nonzero in this work when prescribing a manufactured solution. For the Navier-Stokes equations, we
use a conservative state vector u ∈ Rdim+2 = [dD, d ®+, d�], where d is the density, ®+ is the velocity, and � is the total
energy per unit mass. The source term is nonzero when modeling turbulence using Reynolds averaging, for which an
additional equation is included [31, 32].

B. The Discontinuous Galerkin Method
The discontinuous Galerkin (DG) method [33–35] is a finite-element discretization in which the approximation

space is discontinuous across element boundaries. On each element, Ω4, the state is spatially approximated by uℎ, a
linear combination of polynomial basis functions of order ?. Multiplying Eqn. 1 by test functions in the same space as
the solution and integrating by parts to couple elements via fluxes, here the Roe [36] convective flux and the second
form of Bassi and Rebay (BR2) [37] for the viscous flux, yields the weak form. Choosing a polynomial basis then yields
a system of ordinary differential equations, R(U) = 0, where U ∈ R# is the discrete state vector, and # is the total
number of unknowns. We solve this system using a Newton-Raphson method with pseudo-time continuation [38]and
the generalized minimum residual (GMRES) [39] linear solver, preconditioned by an element-line Jacobi smoother with
a coarse-level (? = 1) correction [35, 40].

C. The Output Adjoint
The adjoint solution for a scalar output is the sensitivity of the output to residual source perturbations [1, 6]. Only

steady adjoint solutions are required in the present work, and these are much cheaper to compute than unsteady adjoints.
Linearizing the residual and scalar output, � (U), yields a linear system for the adjoint coefficients, 	 ∈ R# ,(

mR
mU

))
	 +

(
m�

mU

))
= 0, (2)

This equation is solved using a transposed version of the preconditioned-GMRES method used in the Newton-Raphson
primal solver. The adjoint solution plays an important role in output-based error estimation and mesh adaptation because
discretization errors originate as residual sources. The adjoint, as a residual sensitivity, weights the adjoint to produce
the output error.

III. Output Error Estimation
We use an adjoint solution to estimate the numerical error in the corresponding output of interest, �, through the

adjoint-weighted residual [1, 6]. Let � denote a coarse/current discretization space, and ℎ a fine one, here obtained by
increasing the approximation order by one, ? → ? + 1. Denote by U�

ℎ
the state prolongated from the coarse to the fine

space. Computing the fine-space residual using the prolongated state and weighting it by the fine-space adjoint error
gives an estimate of the output error between the coarse and fine spaces,

�ℎ (U�ℎ) − �ℎ (Uℎ) ≈ −X	
)
ℎRℎ (U�ℎ). (3)

We obtain the adjoint error, X	ℎ , by subtracting from the fine-space adjoint, solved exactly, its projection onto the coarse
space. The error estimate in Eqn. 3 is localized to elemental contributions, resulting in the elemental error indicators Y4

� ≈
#4∑
4=1
−)ℎ,4Rℎ,4 (U

�
ℎ) ⇒ Y4 ≡

��)ℎ,4Rℎ,4 (U�ℎ)��, (4)

2

where #4 is the number of elements, and the subscript 4 denotes components of the adjoint and residual associated with
element 4.

IV. Metric Optimization
The elemental error indicator together with additional error indicators evaluated on sub-elements, via Eqn. 4 with

projected adjoints, drive a metric optimization calculation based on MOESS: mesh optimization through error sampling
and synthesis [24, 41]. The optimized metric can then be used in mesh adaptation, e.g. through re-meshing or node
movement.

A Riemannian metric field,M(®G), encodes information about the desired size and stretching of the elements in a
computational mesh. At each point ®G in physical space, the symmetric positive definite metric tensorM(®G) ∈ Rdim× dim

provides a yardstick for measuring a non-dimensional distance from ®G to a nearby, infinitesimally-close, point ®G + X®G,

Xℓ =
√
X®G)MX®G. (5)

The set of points at unit metric distance from ®G is an ellipse, the principal axes and lengths of which are determined by
the eigenvectors and eigenvalues ofM.

Affine-invariant changes [42] to the metric field are made via a symmetric step matrix, S ∈ R3×3 , according to

M =M
1
2
0 exp(S)M

1
2
0 . (6)

Note that S = 0 leaves the metric unchanged, while diagonal values in S of change the metric stretching sizes.
The mesh optimization algorithm requires models for how the elemental error indicator and the cost change as the

metric changes. The error model is

Y4 = Y40 exp [tr(R4S4)] , (7)

where Y40 is the initial error on element 4, and R4 is an element-specific rate tensor determined through a sampling
procedure. The cost model is

�4 = �40 exp
[
1
2
tr(S4)

]
, (8)

where �40 is the initial cost, measured in terms of degrees of freedom, dof. This model is purely volume based: the
trace of the step matrix governs the change in an element’s volume, and hence the number of degrees of freedom
occupying the original volume. Details of both of these models can be found in previous work [24].

Given a current mesh with its mesh-implied metric (M0 (®G)), elemental error indicators Y40, and elemental rate
tensor estimates, R4, the goal of the metric optimization algorithm is to determine the step matrix field, S(®G), that
minimizes the error at a fixed cost. This algorithm iteratively equidistributes the marginal error to marginal cost ratio
over the mesh elements. In practice, the mesh optimization and flow/adjoint solution are performed several times at a
given target cost, Ctarget, until the error stops changing. Then the target cost is increased to reduce the error further if
desired.

V. Adaptation Using Node Movement
The result of MOESS is a step matrix field that can be used to calculate a desired metric field, which can then be

used to generate a new mesh, using the current mesh as a background scaffold on which the metric is defined and
interpolated. Alternatively, the current mesh can be altered in a local fashion to better conform to the prescribed metric.
This latter approach is the one taken in the present work.

A. Problem Formulation
Given a target step matrix field, Stgt (®G), we pose an optimization problem to reposition the node coordinates of the

current mesh so that the step matrix between the current and new mesh, S(®G), closely matches Stgt (®G). We currently do
not apply any other operations on the mesh, such as edge swapping/collapsing or node insertion, but these could be
considered, at least for unstructured meshes, in future work. The connectivity of the mesh therefore remains constant.

3

LetM40 be the current mesh-implied metric [41] on element 4. This set of tensors over all elements is computed
from the current mesh node coordinates, x0 ∈ R#G×dim, where #G is the number of nodes in the mesh. The new mesh is
obtained by displacing the node coordinates by Δx ∈ R#G×dim, and we denote the new mesh coordinates by x = x0 + Δx.
On element 4, the displacement creates a new mesh-implied metric,M4 (Δx). The step matrix between the current and
new mesh-implied metric is

S4 (Δx) ≡ S(M40,M4 (Δx)) = log
(
M−1/2

40 M4 (Δx)M−1/2
40

)
. (9)

Our goal in optimization is to determine the Δx that minimizes the difference between this step matrix and the target
step matrix over each element, Stgt

4 . In MOESS, the elemental target step matrix is obtained from the nodal target step
matrix by arithmetically averaging to elements [24, 41].

The optimization problem for the mesh node coordinate displacement reads

Δx = arg min
Δx

�metric (Δx) ≡
#4∑
4=1

1
2
W4 ◦

(
S4 (Δx) − Stgt

4

) 2
�
+
5∑
5 =1

W

2
S�5 + (Δx) − S�5 − (Δx)

2
�
, (10)

where #4 is the number of elements, ‖ · ‖� is the Frobenius norm, # 5 is the number of faces, and 5 +/ 5 − denote the two
elements adjacent to face 5 . For an element 4, S�4 is the step matrix between the identity metric, i.e. reference element,
and the new metric, which reduces to the logarithm of the new metric, S�4 (Δx) = S(I,M4 (Δx)) = log (M4 (Δx)).

The first term in the objective, Eqn. 10, measures the difference between the realized and target step matrices, and
reducing this difference is the primary goal of the optimization. The second term, which consists of a sum over faces of
step matrix differences between adjacent elements, regularizes the optimization problem by preventing large changes in
element size and shape. The non-dimensional regularization parameter W controls the amount of regularization, and in
this work we have obtained good results on all problems with W = .03.

The tensorW4 in Eqn. 10 is an optional, non-dimensional weight on step matrix errors. The Hadamard product, ◦,
applies the weight component-wise. In this work we use a normalized linearization of the adaptation output error with
respect to the step matrix,W4 = mE4/mS4, which is available from MOESS. The normalization consists of taking the
absolute value of the tensor entries, to prevent cancellation of errors, and scaling them to the range [X, 1], where X > 0
prevents zero weight on entries of the step matrix to which the adaptation error is least sensitive.

A constraint on the optimization is that the geometry mapping Jacobian determinant remains positive, i.e. no
negative volumes. Presently we do not formally impose this constraint in the optimization problem and instead only
check for it during the line search when choosing the step length. Small volumes correspond to large-magnitude step
matrices, and hence, in general, the optimization naturally steers away from negative volumes.

As the mesh changes during the solution of the optimization problem, elements move to new locations, and hence
their target step matrices change. This effect is not captured in the above formulation, where we assume that each element
has a constant target step matrix, Stgt

4 . Including it would require interpolating the target step matrix to elements of the
new mesh and linearizing the objective for the gradient calculation. However, we have found that in an iterative solution
procedure with multiple solutions and adaptations, the mesh converges even with the constant target per optimization.

B. Gradient Calculation
For a linear triangular element, the mesh-implied metric is calculated by requiring unit measure of the three edges.

Let ®G8 be the coordinate of triangle vertex 8. Define the edge vector 8 as ®48 ≡ ®Gmod(8+1,3) − ®G8 = [ΔG8 ,ΔH8]. Unit measure
of edge 8 can then be expressed as

1 = ®4)8 M®48 = (ΔG8)20 + 2ΔG8ΔH81 + (ΔH8)22, (11)

whereM = [0, 1; 1, 2] is the metric representation in the chosen coordinate system. Writing this equation for each of
the three edges then yields a 3 × 3 linear system of equations for the metric entries a ≡ [0, 1, 2]) :

(ΔG1)2 2ΔG1ΔH1 (ΔH1)2

(ΔG2)2 2ΔG2ΔH2 (ΔH2)2

(ΔG3)2 2ΔG3ΔH3 (ΔH3)2

︸ ︷︷ ︸
A

0

1

2

︸︷︷︸
a

=

1
1
1

 . (12)

4

A gradient-based solution of the optimization problem in Eqn. 10 requires the derivatives of the metric entries with
respect to the vertex coordinates, ma/m®G: . These can be obtained by differentiating Eqn. 12 with respect to ®G: ,

mA
m®G:

a + A
ma
m®G:

= 0 ⇒ m�8;

m®G:
0; + �8 9

m0 9

m®G:
= 0 ⇒

m0 9

m®G:
= −(A−1) 98

m�8;

m®G:
0; . (13)

The entries of mA
m ®G: are calculated in a straightforward manner from the expression for A in Eqn. 12. The resulting

derivatives of 0, 1, 2 with respect to ®G: can be assembled into the tensor mM/m®G: .
The derivative of the mesh-implied metric is required in the calculation of the step matrix in Eqn. 9, the Frobenius

norm of which contributes to the objective. Denoting the argument of log(·) in Eqn. 9 by T4, we have

T4 ≡ M−1/2
40 M4 (x)M−1/2

40 ⇒ mT4
m®G:

=M−1/2
40

mM4

m®G:
M−1/2

40 . (14)

Unfortunately, the matrix logarithm does not lend itself to a straightforward linearization when T4 and its derivative do
not commute, which will generally be the case. As such, we use finite differences to compute this derivative, in an
efficient manner only for mS4/mT4, which requires three finite differences (in two dimensions). The chain rule then gives

mS4
m®G =

mS4
mT4

mT4
m®G:

. (15)

From Eqn. 10, the gradient of the optimization objective function, with respect to x, all of the vertex coordinates of
the mesh, is assembled via a summation over elements and faces,

m�metric

mx
=

#4∑
4=1

[
W4 ◦

(
S4 − Stgt

4

)]
:
(
W4 ◦

mS4
mx

)
+
5∑
5 =1

W
(
S 5 + − S 5 −

)
:
(
mS 5 +
mx
−
mS 5 −
mx

)
. (16)

In the present work, the implementation of the gradient was verified by finite-difference comparison using a random
perturbation to the node coordinates.

C. Boundary Nodes
Whereas interior mesh nodes can move in all dim directions, boundary mesh nodes will be constrained to move in

0 − (dim−1) directions. To keep the optimization problem itself unconstrained, we reduce the degrees of freedom
of boundary nodes according to the type of node. In two dimensions, most boundary nodes will have one degree of
freedom, so that they can slide along their boundary edge. Corners, defined as points across which the boundary normal
changes by a threshold angle or as points on two different boundary groups, are fixed and hence have zero degrees of
freedom.

For each node, 8, boundary or interior, we define the number of degrees of freedom of its motion, =dof
8

, and a basis
for its motion, { ®q 9 }8 , where 1 ≤ 9 ≤ =dof

8
. For general boundary nodes, the normal direction is removed from the

basis of its motion. Corner nodes cannot move, =dof = 0, and edge nodes in three dimensions can only move in one
direction. Denoting by y the vector of coefficients on the basis vectors, over all nodes, we map the gradient in Eqn. 16 to
m�metric/my and use this gradient in the optimization:

m�metric

my
=
m�metric

mx
mx
my
. (17)

The definition of the motion basis is straightforward for linear boundary edges, but it requires more attention for
curved edges, in order to maintain geometric fidelity. On a curved edge, the motion of a boundary point is along the
curve defined by the high-order nodes that make up the adjacent edges, and the motion basis (i.e. the direction) changes
with the node’s position. Figure 1 illustrates the setup of this motion.

The variable H is defined as the arc-length along the curved edge, and separate arc-lengths are measured for positive
and negative H, as the two directions correspond to two different edges. When the node is moved, its new position is
computed by “snapping” it to the curved edge, which is done by evaluating the interpolant of the high-order nodes
for the given H: Hmax corresponds to movement across the entire edge on the H > 0 side, whereas Hmin corresponds to
movement along the edge for the H < 0 side. We note that this motion only pertains to the element vertices (the “linear”
nodes), as high-order nodes are handled separately and are not part of the optimization.

5

y = 0

ymax

snap
ping

node
s for

y < 0 snapping nodes for y > 0

y

~x(y)

high-order node

ymin

Fig. 1 Motion of a boundary node on a curved boundary in two dimensions.

D. Iterative Optimization
The optimization problem in Eqn. 10 can be solved using an iterative technique, such as steepest descent or the

limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [43]. In the current work, we use the latter,
with a history of 20 updates for approximating the inverse Hessian, and 100 iterations are taken. Each optimization
iteration requires evaluation of the objective and its gradient, and a line search that consumes several more objective
evaluations. However, as no system solution is needed for the objective evaluation, the optimization iterations are rapid,
so that the dominant cost remains the flow and adjoint solutions in the outer mesh adaptation loop. Furthermore, as
the solution approximation order increases, relatively coarser meshes are needed, making the node optimization even
cheaper.

The result of the optimization is a vector of node displacements, Δx = {Δ®G8}, or equivalently Δy in the case of
boundary constraints, which can be mapped to Δx, as described in Section V.C. To prevent negative volumes and to
determine the initial step size for the first line search, this update is limited by measuring the node displacement using
the mesh-implied metric of each adjacent element,

Δ;4 ≡ ‖Δ®G)8 M4Δ®G8 ‖. (18)

Recalling that a metric measure is dimensionless, and that all element edges have unit measure under the mesh-implied
metric, we require that Δ;4 < 5 , where 5 is a constant, here chosen as 5 = 0.5. Negative volumes can still occur and
they are handled through backtracking during the line search.

E. High-order nodes
Discretizations that approximate the solution at high order require curved elements for boundary representation [44],

which means additional nodes per element beyond the linear, or @ = 1, vertices. The optimization problem can be
applied to these nodes as well, by extending the mesh-implied metric and gradient calculations presented in Section V.B
to include the high-order nodes. For the present work, however, we only optimize the location of the @ = 1 nodes. To
avoid re-curving, the displacements of the high-order nodes are calculated by evaluating the @ = 1 displacement field at
the high-order node locations. Including the high-order nodes in the optimization problem will be investigated in future
work.

VI. Results
This section presents results of applying the metric-based node optimization. Following a flow solution, MOESS is

applied to obtain a target metric field. This field is then used to move the nodes so as to make the mesh-implied metric
conform to the target. The optimization procedure is inexpensive as it does not require additional flow solutions or
adjoints: the target metric field remains fixed throughout the optimization. The process then repeats starting with the
optimized mesh, which will in general yield a different solution and target metric. The results of the node-movement
adaptation are compared to MOESS with metric-based re-meshing [45].

A. !2 Error Minimization
In this problem we consider a manufactured solution of the two-dimensional scalar advection-diffusion problem,

D(G, H) = 0.5 (1 − tanh(40(A − 0.5))) , (19)

6

over a square domain ®G ∈ [−1, 1]2, where A2 = G2 + H2. The Péclet number for the advection-diffusion problem is 10
based on a unit distance. The output of interest is the !2 error between the manufactured and approximated solutions,

�!2 ≡ ‖D(G, H) − Dℎ (G, H)‖2. (20)

Figure 2 shows the initial mesh and manufactured solution. The initial mesh has 512 triangles, generated from a
structured 16 × 16 mesh in which each square is split into two triangles. The solution approximation order is ? = 2, and
all elements are linear, @ = 1. The manufactured solution exhibits sharp variation from near 1 to near 0 at A = 0.5, and
this is the area that we expect adaptation to target.

(a) Initial mesh (512 elements) (b) Manufactured solution

Fig. 2 Initial mesh and manufactured solution for the scalar case.

Figure 3 shows the meshes obtained by the presented node-movement strategy, and by the baseline metric-based
re-meshing using BAMG. These are shown at outer adaptive iterations, each of which consists of solving the scalar
advection diffusion problem with the manufactured solution source term, computing the optimal step matrix field
using MOESS, and adapting the mesh, either via node-movement or re-meshing. The node-movement adaptation
itself consists of multiple L-BFGS iterations, as described in Section V.D. The re-meshing is performed at a constant
(approximately) degrees of freedom equal to that of the initial mesh.

In the node-movement meshes, we see a gravitation of the nodes to the A = 0.5 circle, where the elements also
become stretched to efficiently approximate the sharp variation of the scalar in only the radial direction. Comparing
to 5th iteration meshes, limitations of the fixed-topology in the node-movement strategy become evident: elements
outside of the circle become stretched to enable adequate resolution at the circle, but this stretching is not necessary
for approximating the nearly-constant scalar field there. More efficient meshes could be obtained by including mesh
topology changes, such as edge swapping and collapse.

Figure 4 shows the convergence of the output, which is the !2 error norm between the solution on a given adapted
mesh and the analytical manufactured solution. We see similar errors on the first two adaptive iterations, after which the
node-movement strategy stagnates, while the re-meshing strategy continues to a lower error value before also stagnating.
The stagnation is expected at a fixed degrees of freedom, and the higher errors with node movement are likely due to the
sub-optimality of the fixed mesh topology.

B. Transonic Airfoil
This case consists of the NACA 0012 airfoil at free-stream Mach number of "∞ = 0.8 and angle of attack of

U = 1.25◦. The initial mesh, shown in Figure 5, has 632 elements, curved to @ = 3 geometry order at the airfoil boundary.
This figure also shows the Mach number contours, which exhibit a strong shock on the upper surface and a weaker shock
on the lower surface. The solution approximation order is set to ? = 2, and element-wise constant artificial-viscosity is
used to capture the shocks [46].

The adaptation was performed with the drag on the airfoil as the target output. Figure 6 shows the adapted meshes
using node movement and re-meshing. We see that the adaptation focuses on the foot of the shocks and the leading and
trailing edges. The strong upper surface shock itself is not targeted for heavy adaptation, although the element edges

7

(a) Node movement, iteration 1 (b) Node movement, iteration 3 (c) Node movement, iteration 5

(d) Re-meshing, iteration 1 (e) Re-meshing, iteration 3 (f) Re-meshing, iteration 5

Fig. 3 Meshes at various outer adaptation iterations for the presented nodemovement strategy and the baseline
metric-based re-meshing, for the scalar case.

0 1 2 3 4 5 6 7 8
adaptive iteration

10 3

10 2

ou
tp

ut
 e

rro
r

node movement
remeshing

Fig. 4 The analytic !2 error norm output convergence for the scalar case.

8

(a) Initial mesh (632 elements) (b) Mach number (0-1.6)

Fig. 5 Initial mesh and Mach contours for the transonic airfoil case.

appear aligned to the shock by the 9th adaptive iteration, notably in the node movement strategy. The region behind the
shock, near the airfoil surface, is also targeted for refinement, more so in the case of MOESS. This is likely due to a
spurious entropy trail caused by the artificial-viscosity shock capturing, which is strongest at the foot of the shock.

(a) Node movement, iteration 1 (b) Node movement, iteration 5 (c) Node movement, iteration 9

(d) Re-meshing, iteration 1 (e) Re-meshing, iteration 5 (f) Re-meshing, iteration 9

Fig. 6 Drag-adapted meshes for the transonic airfoil case.

Figure 7 shows the convergence of the drag output for both adaptive strategies. The truth output was obtained
from a re-meshing run at the same order, but with 10 times more degrees of freedom. Due to the presence of the
shocks, the relatively coarse meshes used, and the simple artificial-viscosity shock capturing method, the adaptations
are somewhat noisy. There is nevertheless a downward trend in the error with both strategies, and by the later stages, the
drag error on the meshes obtained with node movement is lower than the error on the meshes obtained with re-meshing.

9

A reason for this could be the that slight element position changed during re-meshing, caused by the non-uniqueness of
a metric-conforming mesh, makes fitting the shock to edges unreliable. On the other hand, optimization of the node
position keeps the same mesh topology and is more likely to keep shocks fit along mesh edges, a configuration in which
the error is generally lowest.

0 2 4 6 8 10 12
adaptive iteration

10 4

ou
tp

ut
 e

rro
r

node movement
remeshing

Fig. 7 Drag output convergence for the transonic airfoil case.

C. Laminar Flat Plate
The last case is that of laminar flow over a flat plate. The Reynolds number based on unit distance along the flat plate

is '4 = 104. Figure 8 shows the initial mesh of 360 linear triangles, obtained from subdividing elements of a structured
quadrilateral mesh. This figure also shows the Mach number contours, from which the boundary layer is evident. The
flat plate is of unit length and starts one third of the way downstream from the inflow. The boundary conditions are
no-slip adiabatic wall on the plate, total temperature and pressure inflow, static-pressure outflow and top-boundary, and
symmetry ahead of the plate. The solution approximation order is ? = 2.

(a) Initial mesh (360 elements) (b) Mach number (0-0.5)

Fig. 8 Initial mesh and Mach contours for the laminar flat plate case.

The output of interest for adaptation is the drag force on the flat plate. Figure 9 shows the adapted meshes obtained
using node movement and re-meshing. As the adaptation starts, the node movement strategy compresses the elements
above the plate vertically, so that by the fifth adaptive iteration, the boundary layer is already well-resolved. The
remaining adaptive iterations bring more nodes from the inflow region closer to the start of the flat plate, where
additional resolution is required. The re-meshing approach has the advantage of not being tied to the initial topology,
and more elements are placed above the start of the flat plate compared to the node-movement strategy, which must
balance resolution there with the resolution at the plate start itself given its fixed budget of elements across the height of
the channel. In addition, the fixed topology during node movement leads to inefficient vertically anisotropic elements

10

above and away from the middle of the flat plate, a region where isotropic and overall larger elements could be used, as
indicated in the re-meshing results.

(a) Node movement, iteration 1 (b) Re-meshing, iteration 1

(c) Node movement, iteration 5 (d) Re-meshing, iteration 5

(e) Node movement, iteration 10 (f) Re-meshing, iteration 10

Fig. 9 Drag-adapted meshes for the laminar flat plate case.

Figure 10 shows the convergence of the drag output error for both strategies. The truth output is obtained from a
re-meshing run using 5 times more degrees of freedom. We see that both methods show a fairly steady drop in the
output error, and that the re-meshing strategy performs better than the node-repositioning strategy. The inefficiencies in
node-repositioning outlined in the previous paragraph, tied to the mesh fixed topology, are likely responsible for this
difference. More sophisticated local mesh operations could address these inefficiencies. Nevertheless, discovery of
the boundary layer starting from a mesh with no boundary-layer resolution and the associated error drop of over three
orders of magnitude is impressive for optimization of the fixed-topology mesh.

VII. Conclusions
This paper presents a method for adapting meshes using node movement. Many previous approaches have looked

at node movement for adaptation in the past, driven by various error measures. The novelty of this work is the use
of a metric-based approach, in which the error estimate and prediction of the optimal mesh are disconnected from
the adaptation. Mesh optimization through error sampling and synthesis provides a target desired step matrix field,
generated from a general solution error measure, here the adjoint-weighted residual method. The mesh nodes are then
moved to optimize the error between the target step matrix and the realized step matrix from node repositioning, over all
of the elements. No additional flow/adjoint solutions or output error calculations are required for the solution of this
optimization problem. Instead, all calculations needed for the node optimization involve the mesh node coordinates and
the target step matrix. Results for a diverse set of three simulations show favorable performance of the node-repositioning
strategy when compared to metric-based re-meshing. Whereas the latter in general performs better, cases involving
discontinuous features such as shocks may be more amenable to node movement, which appears better-suited for
preserving alignment of the discontinuities with element edges. Additional efficiency improvements are expected by

11

0 2 4 6 8 10 12
adaptive iteration

10 8

10 7

10 6

10 5

10 4

10 3

ou
tp

ut
 e

rro
r

node movement
remeshing

Fig. 10 Drag output convergence for the laminar flat plate case.

including topology-changing capabilities in the node repositioning strategy. Finally, we note that the results of node
repositioning depend on the initial mesh, and perhaps the most useful application of the strategy will be when used in
tandem with, or following, re-meshing.

References
[1] Fidkowski, K. J., and Darmofal, D. L., “Review of Output-Based Error Estimation and Mesh Adaptation in Computational

Fluid Dynamics,” AIAA Journal, Vol. 49, No. 4, 2011, pp. 673–694. https://doi.org/10.2514/1.J050073.

[2] De Zeeuw, D., and Powell, K. G., “An Adaptively Refined Cartesian Mesh Solver for the Euler Equations,” Journal of
Computational Physics, Vol. 104, 1993, pp. 56–68.

[3] Coirier, W. J., and Powell, K. G., “Solution-adaptive cut-cell approach for viscous and inviscid flows,” AIAA Journal, Vol. 34,
No. 5, 1996, pp. 938–945.

[4] Pirzadeh, S. Z., “An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement,” , No.
99-3255, 1999.

[5] Aftosmis, M., and Berger, M., “Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded
Boundaries,” AIAA Paper 2002-14322, 2002.

[6] Becker, R., and Rannacher, R., “An optimal control approach to a posteriori error estimation in finite element methods,” Acta
Numerica, edited by A. Iserles, Cambridge University Press, 2001, pp. 1–102.

[7] Venditti, D. A., and Darmofal, D. L., “Anisotropic grid adaptation for functional outputs: application to two-dimensional
viscous flows,” Journal of Computational Physics, Vol. 187, No. 1, 2003, pp. 22–46.

[8] Nemec, M., and Aftosmis, M. J., “Error Estimation and Adaptive Refinement for Embedded-Boundary Cartesian Meshes,”
AIAA Paper 2007-4187, 2007.

[9] Castro-Diaz, M. J., Hecht, F., Mohammadi, B., and Pironneau, O., “Anisotropic unstructured mesh adaptation for flow
simulations,” International Journal for Numerical Methods in Fluids, Vol. 25, 1997, pp. 475–491.

[10] Freitag, L. A., and Ollivier-Gooch, C., “Tetrahedral Mesh Improvement Using Swapping and Smoothing,” International Journal
for Numerical Methods in Engineering, Vol. 40, 1997, pp. 3979–4002.

[11] Wood, W. A., and Kleb, W. L., “On Multi-dimensional Unstructured Mesh Adaptation,” AIAA Paper 99-3254, 1999.

12

https://doi.org/10.2514/1.J050073

[12] Habashi, W. G., Dompierre, J., Bourgault, Y., Ait-Ali-Yahia, D., Fortin, M., and Vallet, M.-G., “Anisotropic mesh adaptation:
towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles,” International Journal for
Numerical Methods in Fluids, Vol. 32, 2000, pp. 725–744.

[13] Park, M. A., “Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation,” AIAA Paper 2002-3286, 2002.

[14] Park, M. A., “Three–Dimensional Turbulent RANS Adjoint–Based Error Correction,” AIAA Paper 2003-3849, 2003.

[15] Park, M. A., and Darmofal, D. L., “Parallel Anisotropic Tetrahedral Adaptation,” AIAA Paper 2008-917, 2008.

[16] Burgess, N. K., andMavriplis, D. J., “An hp-Adaptive Discontinuous Galerkin, Solver for Aerodynamic Flows onMixed-Element
Meshes,” AIAA Paper 2011-490, 2011.

[17] Ceze, M. A., and Fidkowski, K. J., “An anisotropic hp-adaptation framework for functional prediction,” AIAA Journal, Vol. 51,
2013, pp. 492–509. https://doi.org/10.2514/1.J051845.

[18] Ahrabi, B. R., Anderson, W. K., and Newman, J. C., “An adjoint-based hp-adaptive stabilized finite-element method
with shock capturing for turbulent flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 318, 2017, pp.
1030–1065. https://doi.org/https://doi.org/10.1016/j.cma.2017.02.001, URL https://www.sciencedirect.com/science/article/pii/
S0045782516304947.

[19] Peraire, J., Vahdati, M., Morgan, K., and Zienkiewicz, O. C., “Adaptive remeshing for compressible flow computations,” Journal
of Computational Physics, Vol. 72, 1987, pp. 449–466.

[20] Peraire, J., Peiró, J., and Morgan, K., “Adaptive Remeshing for Three-Dimensional Compressible Flow Computations,” Journal
of Computational Physics, Vol. 103, 1992, pp. 269–285.

[21] Schall, E., Leservoisier, D., Dervieux, A., and Koobus, B., “Mesh adaptation as a tool for certified computational aerodynamics,”
International Journal for Numerical Methods in Fluids, Vol. 45, No. 2, 2004, pp. 179–196.

[22] Alauzet, F., Loseille, A., and Olivier, G., “Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows,” Journal
of Computational Physics, Vol. 373, No. 15, 2018, pp. 28–63. https://doi.org/10.1016/j.jcp.2018.06.043.

[23] Yano, M., and Darmofal, D., “An optimization-based framework for anisotropic simplex mesh adaptation,” Journal of
Computational Physics, Vol. 231, No. 22, 2012, p. 7626–7649. https://doi.org/10.1016/j.jcp.2012.06.040.

[24] Fidkowski, K. J., “A Local Sampling Approach to Anisotropic Metric-Based Mesh Optimization,” AIAA Paper 2016–0835,
2016. https://doi.org/10.2514/6.2016-0835.

[25] Capon, P. J., and Jimack, P. K., “On the Adaptive Finite Element Solution of Partial Differential Equations Using h-r Refinement,”
Tech. Rep. 96.03, University of Leeds, School of Computing, 1996.

[26] McRae, D. S., “r-Refinement Grid Adaptation Algorithms and Issues,” Computer Methods in Applied Mechanics and
Engineering, Vol. 2000, No. 4, 189, pp. 1161–1182.

[27] Ding, K., Fidkowski, K. J., and Roe, P. L., “Continuous adjoint based error estimation and r-refinement for the active-flux
method,” AIAA Paper 2016–0832, 2016. https://doi.org/10.2514/6.2016-0832.

[28] Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.,
Kroll, N., May, G., Persson, P.-O., van Leer, B., and Visbal, M., “High-Order CFD Methods: Current Status and Perspective,”
International Journal for Numerical Methods in Fluids, Vol. 72, 2013, pp. 811–845. https://doi.org/10.1002/fld.3767.

[29] Ait-Ali-Yahia, D., Baruzzi, G., Habashi, W. G., Fortin, M., Dompierre, J., and Vallet, M.-G., “Anisotropic mesh adaptation:
towards user-independent, mesh-independent and solver-independent CFD. Part II: Structured grids,” International Journal for
Numerical Methods in Fluids, Vol. 39, 2002, pp. 657–673.

[30] Chen, G., and Fidkowski, K. J., “Discretization error control for constrained aerodynamic shape optimization,” Journal of
Computational Physics, Vol. 387, 2019, pp. 163–185. https://doi.org/10.1016/j.jcp.2019.02.038.

[31] Allmaras, S., Johnson, F., and Spalart, P., “Modifications and Clarifications for the Implementation of the Spalart-Allmaras
Turbulence Model,” Seventh International Conference on Computational Fluid Dynamics (ICCFD7) 1902, 2012.

[32] Ceze, M. A., and Fidkowski, K. J., “High-Order Output-Based Adaptive Simulations of Turbulent Flow in Two Dimensions,”
AIAA Paper 2015–1532, 2015. https://doi.org/10.2514/6.2015-1532.

13

https://doi.org/10.2514/1.J051845
https://doi.org/https://doi.org/10.1016/j.cma.2017.02.001
https://www.sciencedirect.com/science/article/pii/S0045782516304947
https://www.sciencedirect.com/science/article/pii/S0045782516304947
https://doi.org/10.1016/j.jcp.2018.06.043
https://doi.org/10.1016/j.jcp.2012.06.040
https://doi.org/10.2514/6.2016-0835
https://doi.org/10.2514/6.2016-0832
https://doi.org/10.1002/fld.3767
https://doi.org/10.1016/j.jcp.2019.02.038
https://doi.org/10.2514/6.2015-1532

[33] Reed, W., and Hill, T., “Triangular Mesh Methods for the Neutron Transport Equation,” Los Alamos Scientific Laboratory
Technical Report LA-UR-73-479, 1973.

[34] Cockburn, B., and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” Journal of
Scientific Computing, Vol. 16, No. 3, 2001, pp. 173–261. https://doi.org/https://doi.org/10.1023/A:1012873910884.

[35] Fidkowski, K. J., Oliver, T. A., Lu, J., and Darmofal, D. L., “p-Multigrid solution of high–order discontinuous Galerkin
discretizations of the compressible Navier-Stokes equations,” Journal of Computational Physics, Vol. 207, 2005, pp. 92–113.
https://doi.org/10.1016/j.jcp.2005.01.005.

[36] Roe, P., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal of Computational Physics, Vol. 43,
1981, pp. 357–372. https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5.

[37] Bassi, F., and Rebay, S., “Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes
equations,” International Journal for Numerical Methods in Fluids, Vol. 40, 2002, pp. 197–207. https://doi.org/https:
//doi.org/10.1002/fld.338.

[38] Ceze, M. A., and Fidkowski, K. J., “Constrained pseudo-transient continuation,” International Journal for Numerical Methods
in Engineering, Vol. 102, 2015, pp. 1683–1703. https://doi.org/10.1002/nme.4858.

[39] Saad, Y., and Schultz, M. H., “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems,”
SIAM Journal on Scientific Computing, Vol. 7, No. 3, 1986, pp. 856–869. https://doi.org/https://doi.org/10.1137/0907058.

[40] Persson, P.-O., and Peraire, J., “Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier-
Stokes Equations,” SIAM Journal on Scientific Computing, Vol. 30, No. 6, 2008, pp. 2709–2733. https://doi.org/https:
//doi.org/10.1137/070692108.

[41] Yano, M., “An Optimization Framework for Adaptive Higher-Order Discretizations of Partial Differential Equations on
Anisotropic Simplex Meshes,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2012.

[42] Pennec, X., Fillard, P., and Ayache, N., “A Riemannian framework for tensor computing,” International Journal of Computer
Vision, Vol. 66, No. 1, 2006, pp. 41–66.

[43] Liu, D. C., and Nocedal, J., “On the Limited Memory BFGSMethod for Large Scale Optimization,”Mathematical Programming,
Vol. 45, 1989, pp. 503 – 528. https://doi.org/10.1007/BF01589116.

[44] Bassi, F., and Rebay, S., “High–order accurate discontinuous finite element solution of the 2-D Euler equations,” Journal of
Computational Physics, Vol. 138, 1997, pp. 251–285.

[45] Borouchaki, H., George, P., Hecht, F., Laug, P., and Saltel, E., “Mailleur bidimensionnel de Delaunay gouverné par une carte de
métriques. Partie I: Algorithmes,” INRIA-Rocquencourt, France. Tech Report No. 2741, 1995.

[46] Persson, P.-O., and Peraire., J., “Sub-cell shock capturing for discontinuous Galerkin methods,” AIAA Paper 2006-112, 2006.
https://doi.org/https://doi.org/10.2514/6.2006-112.

14

https://doi.org/https://doi.org/10.1023/A:1012873910884
https://doi.org/10.1016/j.jcp.2005.01.005
https://doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/https://doi.org/10.1002/fld.338
https://doi.org/https://doi.org/10.1002/fld.338
https://doi.org/10.1002/nme.4858
https://doi.org/https://doi.org/10.1137/0907058
https://doi.org/https://doi.org/10.1137/070692108
https://doi.org/https://doi.org/10.1137/070692108
https://doi.org/10.1007/BF01589116
https://doi.org/https://doi.org/10.2514/6.2006-112

	Introduction
	Discretization
	Governing Equations
	The Discontinuous Galerkin Method
	The Output Adjoint

	Output Error Estimation
	Metric Optimization
	Adaptation Using Node Movement
	Problem Formulation
	Gradient Calculation
	Boundary Nodes
	Iterative Optimization
	High-order nodes

	Results
	L2 Error Minimization
	Transonic Airfoil
	Laminar Flat Plate

	Conclusions

