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This paper presents a method for performing output-based mesh adaptation for large-eddy
simulations of turbulence. Instead of an unsteady adjoint, which is expensive to compute and
requires non-trivial regularization, the method is based on the field-inversion and machine-
learning approach to data-driven turbulence modeling. The data here come not from experi-
ments but from statistics computed from unsteady forward simulations. The resulting trained
turbulence models yield steady-state solutions that represent the time-averaged unsteady flow-
fields. Adjoints computed from these steady-state models yield the sensitivity information
required for an adjoint-weighted residual error estimate and adaptive indicator. Each adap-
tive iteration then only requires one unsteady primal solution with minimal storage: average
statistics and fine-space residual information. Combined with unstructured mesh optimiza-
tion, the method drives unsteady outputs to accurate values in only a few adaptive iterations.
The performance is demonstrated on two-dimensional, low Reynolds number airfoil simula-
tions, and comparisons are made to other techniques, including uniform and residual-based
adaptation.

I. Introduction
In simulations of turbulent flow, both modeling and discretization errors affect flowfields and outputs of interest.

Estimating these errors is important for robust and efficient calculations: incorrect models or coarse meshes lead to
inaccurate solutions, whereas over-refined meshes unnecessarily increase computational time. Furthermore, without
quantified discretization error estimates, simulations lack robustness or rely on expensive convergence studies. This
work focuses on discretization errors, while at the same time tackling turbulence modeling errors by using data from
higher-fidelity unsteady simulations.

Of particular interest here are output-based discretization error estimates, as these are useful for applications
that demand accuracy in output scalars and efficient meshes for their prediction. Much previous work exists in this
area, mostly for steady [1–4] and deterministic unsteady [5–10] simulations. However, these methods are not directly
applicable to unsteady turbulent flow simulations, for which the requisite unsteady adjoint problem is unstable [11].

Strategies for controlling discretization errors in unsteady turbulent flows have included time windowing [12–14],
least-squares shadowing [11, 15–17], model reduction [18, 19], and entropy-adjoint methods [20]. However, these
strategies lack robustness, e.g. due to arbitrary time windows or large discretization errors in model reduction, add
intractable expense for practical problems, e.g. in the adjoint solution for least-squares shadowing, or do not target
specific outputs of interest, e.g. in the entropy-adjoint approach.

An alternative, cheaper strategy for controlling output errors in unsteady turbulent flows is to appeal to steady-state
models, such as the Reynolds-averaged Navier-Stokes (RANS) equations. Output-based error estimation and adaptation
has already been applied to such models in many previous works [21–24], with the lingering caveat that modeling errors
can outweigh discretization errors, in particular for off-design conditions such as low Reynolds numbers or flows with
separation. Adapting RANS meshes to strict discretization error tolerances in such cases is thus of questionable value.

RANS modeling error is the impetus for unsteady methods, such as large-eddy simulations. Once an investment
is made in unsteady simulations, RANS ostensibly has little value. However, in this work, for the purpose of error
estimation and adaptation, an effort is made to return to RANS via corrections that tune it to the unsteady data. An
approach for doing this already exists in the field inversion and machine learning (FIML) framework [25–31], which has
been applied more broadly to incorporate multiple sources of data, including experiments, into improved turbulence
models. A unique and enabling aspect of FIML as used in this work is that the corrected RANS model need not be
general: accuracy is only required in the vicinity, in terms of resolution, of a particular flowfield, as the model is
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retrained at each adaptive iteration. Once a corrected RANS model is created to reproduce the statistical outputs of
interest, its adjoint is used as the basis for error estimates in the unsteady simulation.

The resulting unsteady adaptive method requires one unsteady primal simulation per adaptive iteration, without
state storage nor checkpointing. Only the time-averaged state and residual need to be stored. Following the unsteady
simulation, field inversion and machine-learning training yield an equation-level correction to a RANS model, which is
used to obtain a fine-space adjoint that weights the averaged unsteady residual to provide an output error estimate. An
indicator from a localized version of this estimate then drives mesh refinement and optimization. The present method
focuses only on spatial discretization errors, which are often the most important and difficult to quantify in complex
flowfields.

The adaptive method is presented in the context of a discontinuous Galerkin finite-element discretization, which is
reviewed briefly in Section II. Section III presents the field-inversion and machine-learning algorithm, with a novel
objective function geared for output error estimation. Sections IV and V discuss the error estimation, based on the
adjoint-weighted residual, and the adaptation methods, which include both ℎ and ? refinement and optimization. Finally,
Section VI presents adaptive results, and Section VII concludes with a summary and a discussion of future directions.

II. Equations and Discretization

A. Governing Equations
Consider a system of unsteady partial differential equations in conservative form,

mu
mC
+ ∇ · ®F(u,∇u) + S(u,∇u) = 0, (1)

where u ∈ RB is the B-component state vector, ®F ∈ Rdim×B is the flux vector, dim is the spatial dimension, and S is the
source term arising from the turbulence model, in this work the Reynolds-averaged Navier-Stokes (RANS) equations
with the Spalart-Allmaras (SA) closure [32, 33]. A detailed exposition of the equations and closure relations of the
model as used presently can be found in our previous work [33, 34].

The FIML approach relies on correcting the turbulence model at the differential-equation level, through a
multiplicative factor, V, on the turbulent production term in the eddy-viscosity equation,

m (dã)
mC
+ ∇ · (d®vã) − 1

f
∇ · [d(a + ã 5=)∇ã] = −

1
f
(a + ã 5=)∇d · ∇ã +

212
f
d∇ã · ∇ã + V % − �. (2)

% is the turbulence production function, and scaling % by V affects the entire solution as the eddy viscosity equation is
coupled to the conservation equations. Other terms appearing in the equation are the density, d, the velocity, ®v, the
turbulence working variable, ã, the turbulent destruction function, �, modeling constants 212, f, and a function for
dealing with negative viscosity, 5=.

B. The Discontinuous Galerkin Method
The discontinuous Galerkin (DG) method [35–37] is a finite-element discretization that allows for a comprehensive

study of both ℎ (mesh size) and ? (approximation order) refinement. In DG, the domain Ω is divided into #4
non-overlapping elements, Ω4, on each of which the state u is spatially approximated by uℎ, a linear combination of
basis functions, here polynomials of order ?4, where 4 indexes the element, in reference space. No continuity constraints
are imposed on the approximations on adjacent elements. Multiplying Eqn. 1 by test functions in the same space as the
solution and integrating by parts to couple elements via fluxes, here the Roe [38] convective flux and the second form of
Bassi and Rebay (BR2) [39] for the viscous flux, yields the weak form. Choosing a polynomial basis then yields a
system of ordinary differential equations,

M
3U
3C
+ R(U) = 0, (3)

where U ∈ R# is the discrete state vector, # is the total number of unknowns, R(·) ∈ R# is the nonlinear spatial
residual, and M ∈ R#×# is the block-element sparse mass matrix. For steady simulations, the time derivative is not
present. The solver consists of a Newton-Raphson method with the generalized minimum residual (GMRES) [40] linear
solver, preconditioned by an element-line Jacobi smoother with a coarse-level (? = 1) correction [37, 41]. For unsteady
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simulations, we use a third-order modified extended backward difference formula [42] applied to the the semi-discrete
form.

C. The Output Adjoint
The adjoint solution for a scalar output is the sensitivity of the output to residual source perturbations [1, 4]. Only

steady adjoint solutions are required in the present work, and these are much cheaper to compute than unsteady adjoints.
Linearizing the residual and scalar output, � (U), yields a linear system for the adjoint coefficients, 	 ∈ R# ,(

mR
mU

))
	 +

(
m�

mU

))
= 0, (4)

This equation is solved using a transposed version of the preconditioned-GMRES method used in the Newton-Raphson
primal solver. The adjoint solution plays an important role in output-based error estimation and mesh adaptation because
discretization errors originate as residual sources. The adjoint, as a residual sensitivity, weights the adjoint to produce
the output error.

III. Field Inversion and Machine Learning
An unsteady simulation produces a time history of discrete states, U(C), form which only an average unsteady state

can be computed,

Ū =
1

) 5 − )8

∫ )5

)8

U(C) 3C, (5)

In a turbulent simulation, the averaging start time )8 is assumed to be after any initial-condition transients, while the
final time ) 5 is assumed to be sufficiently long after )8 to ensure adequate statistics. For the error estimate, we also store
an average residual, as described in Section IV. The goal in field inversion and machine learning (FIML) is to solve an
inverse problem for a correction field that makes the corrected turbulence model solution close to Ū, and then to train a
machine-learning model, here a neural network, to output the correction field as a function of local state information in
the flow-field.

A. Field Inversion
The correction, V(®G), with a nominal value of 1, is a scalar field that multiplies the production term in the

eddy-viscosity transport equation of the SA turbulence model. In this work, V(®G) is approximated by a ? = 1 DG
Lagrange basis on each element and is represented by the discrete vector #. Field inversion can then be written as a
constrained discrete minimization problem,

min
#

� inv ≡ F (U(#)) + W
2
(# − 1))M(# − 1)

s.t. R(U, #) = 0
(6)

where F (U, Ū) measures the error in the solution relative to the unsteady average. The additional regularization term in
Eqn. 6 penalizes, in a continuous spatial integral sense, large deviations of the correction field from the nominal value of
one. For the problems considered here, W is set to 10−7, and this term is never active in the objective – it is included for
completeness in exposition in cases of ill-conditioned choices of F .

The baseline error measure is an integral of the surface stress distribution error,

F dist (U, Ū) = 1
2

∫
airfoil
‖2(U) · ®= − 2(Ū) · ®=‖2 3B, (7)

where 2 is the stress tensor and ®= is the unit normal vector on the airfoil surface. This error measure yields a state that
closely reproduces the stress distribution, and hence forces/moments, obtained from the averaged unsteady flowfield.

In output error estimation, the adjoint-weighted residual may be active not only on the airfoil surface, but also in the
domain interior, where inaccuracies could propagate and affect the output of interest. Another field inversion error
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measure is then a domain-interior integral of the inaccuracy in the state. To mimic the adjoint-weighted residual, the
present measure is a weighted error norm, in which the weight is based on an adjoint solution,

F AWR (U, Ū) =
∑
4

1
2

(
W)
4 (U4 (V) − Ū4)

)2
W)
4 ≡ 	)4

mR4
mU4

. (8)

The superscript AWR stands for adjoint-weighted residual, which refers to the use of a combination of the adjoint and
residual Jacobian matrix for the weight. The adjoint corresponds to the adapted output and is computed about the
converged state U(V). The elemental Jacobian matrix converts state errors to residuals, which are then weighted by the
adjoint. In cases of a mismatch in the state rank between U an Ū, e.g. due to the use of an augmented system in the
turbulence modeling, only the common state components are compared, so that adjoint components corresponding to
any new equations are not used.

Using either of the two error measures, Eqn. 7 or Eqn. 8, the inverse problem is solved using a limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [43], with a history of 10 updates for approximating the
inverse Hessian. The required gradient of � inv with respect to # is evaluated using an adjoint. The residual linearization
with respect to # is calculated using finite differences, an inexpensive calculation because the correction affects a residual
source term, so that no inter-element effects need to be considered. The linearization for all elements is computed
non-intrusively with a few entire-domain residual evaluations.

B. Machine Learning
While field inversion produces a single correction field for a particular mesh and solution approximation order,

error estimation involves a comparison of solutions or outputs between different approximation spaces. This requires a
model for how the correction field changes with the solution. The model is assumed to be local, which simplifies the
calculations and does not preclude capturing convective propagation effects, as the correction enters at the residuals
level.

In FIML, an artificial neural network is used as the model that maps local states and geometry information to the
correction field [25]. Previous works have shown that FIML yields corrected turbulence models that can better match
the high-fidelity target data [26, 28, 29, 31], although the generality of this approach is still in debate [44]. Fortunately,
in the present work a general-purpose turbulence mode is not sought, as adaptation only requires a model that is accurate
close to a given training solution.

Figure 1 shows the structure of the network used in this work, which is a single-hidden-layer perceptron that maps
the feature vector, x0 ∈ R=0 , to the correction scalar, V, through the hidden layer, x1 ∈ R=1 . The parameters associated

     

x0

Input layer

β

x1

Hidden layer

∂u
∂x

∂u
∂y Output layer

d

u

x1 = σ(W1x0 + b1) β =Woutx1 + bout

Fig. 1 Structure of the artificial neural networks used to predict the correction field.

with the network consist of the weights and biases, W8 ∈ R=8×=8−1 , b8 ∈ R=8 , where =8 is the number of neurons in layer
8. An entry-wise sigmoid activation function, f(G) = 1/(1 + 4−G), is applied to the map from the input layer to the
hidden layer. The size of the input layer is =0 = (1 + dim)B + 1 neurons (state, its gradient, wall distance), and the size of
the hidden layer is set to =1 = 30 for the two-dimensional problems considered in this work.
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The network parameters are optimized using an adaptive moment (Adam) estimation algorithm in TensorFlow [45],
with a mean squared error loss between the predicted and actual output-layer values. Training values of the correction
field come from the field inversion result for one particular unsteady simulation, measured at quadrature points of each
element. Thus, each inversion result yields an amount of training data that depends on the mesh size and quadrature
order.

The training data are randomized and split into mini-batches of size 1000 for the optimizer, and the learning rate is
set to .001. Prior to training, the weights and biases are initialized randomly from a unit normal distribution. 500,000
optimization iterations are taken in each training session for all of the presented results, although the mean-squared error
typically stabilizes well before this number. Two to three orders of magnitude drop in the loss are usually observed.

Once trained, the network is implemented as a physics model in the turbulence source calculation of the flow solver.
This model affects the residual, which changes the primal and adjoint solutions. The network is linearized in the
calculation of the residual Jacobian matrix for the Newton and discrete-adjoint solvers. Due to the nonlinear nature of
the network, an extra polynomial order of accuracy is added to the quadrature integration requirements when using the
turbulence correction.

IV. Output-Based Error Estimation

A. Unsteady Output Perturbations
For a time-averaged output computed from the unsteady discrete state,

�̄ ≡ 1
) 5 − )8

∫ )5

)8

� (U(C)) 3C, (9)

the unsteady adjoint, 	(C), arises from the Lagrangian

L ≡ �̄ + 1
) 5 − )8

∫ )5

)8

	(C)TRD (U(C)) 3C, (10)

where RD is the unsteady residual. The unsteady adjoint-weighted residual [46–48] yields an estimate of the impact of a
perturbation to the unsteady residual, XRD (C), on the time-averaged output,

X�̄ ≈ 1
) 5 − )8

∫ )5

)8

	(C)TXRD (C) 3C. (11)

Assuming that the spatial error dominates the temporal error, the D superscript on R can be dropped. Decomposing the
adjoint and residual perturbation into time-averaged and time-varying components,

	(C) = 	̄ + 	′(C), XR(C) = XR̄ + XR′(C), (12)

Eqn. 11 becomes

X�̄ ≈ 	̄T
XR̄ + 1

) 5 − )8

∫ )5

)8

	′(C)TXR′(C) 3C. (13)

When the time-varying components of the adjoint and residual perturbation are not strongly correlated, a reasonable
assumption for the chaotic problems of interest in this work, the first term dominates, and this is the steady-state
expression written using time-averaged quantities.

B. Augmented Systems
Suppose that a steady-state system of equations exists that extends the original unsteady states and equations with

the purpose of modeling the time-averaged solution directly. The relevant case in this work is a (FIML-corrected)
RANS model approximating the time-averaged state of a turbulent Navier-Stokes simulation. Denote the discretized
form of this steady problem by

R̃(Ũ) = 0, (14)
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where Ũ ∈ R#̃ is the augmented state vector, with #̃ ≥ # . Restriction, IA ∈ R#×#̃ , and prolongation, I? ∈ R#̃×# ,
operators map augmented states/residuals to original ones and vice versa. These are sparse matrices consisting of single
1’s in select rows/columns and are never constructed explicitly in practice. The augmented state approximates the
time-averaged solution of the original unsteady problem, i.e. Ū ≈ IA Ũ.

For the RANS problems of interest here, the augmented residual can be written as

R̃(Ũ) =
[
R(IA Ũ) + Raug (Ũ)

R̃aug (Ũ),

]
, (15)

where Raug is an additive change to the original residuals, and R̃aug is the set of new residuals (e.g. associated with the
eddy-viscosity equation). Lastly, define the output of the augmented steady-state problem, and the associated adjoint, as

�̃ (Ũ) ≡ � (IA Ũ),
(
mR̃
mŨ

))
	̃ +

(
m�̃

mŨ

))
= 0, (16)

so that the augmented-system output perturbation is X�̃ ≈ 	̃
)
XR̃.

C. Error Estimate
In numerical error estimation, residual perturbations arise from differences in the resolution of the discretizations. A

coarse solution, subscript �, will in general not satisfy the residual equations on a finer space, subscript ℎ, where the
finer space in this work is obtained by order enrichment. Denote by U�

ℎ
(C) = I�

ℎ
U� (C) the prolongation of the discrete

coarse unsteady state U� (C) into the fine space. Evaluating the fine-space residual using the prolongated solution gives
a residual perturbation,

XRℎ (C) = −Rℎ (U�ℎ (C)) +MℎI�ℎ M−1
� R� (U� (C)). (17)

The negative sign on the first term is present because residual perturbations are added to the left-hand side of the
discrete equations. The second term is necessary when only the spatial residual is used from Eqn. 3 instead of the full
unsteady residual, as the coarse spatial residual is not zero in an unsteady problem. The residual prolongation operator,
MℎI�

ℎ
M−1
�
∈ R#ℎ×#� , enables the calculation of the desired residual difference arising from a change in the spatial

approximation space.
From Eqn. 13, the output error can be estimated by time-averaging the unsteady reasidual perturbation and weighting

it by the time-averaged adjoint,

X�̄ℎ ≈ X	̄T
ℎXR̄ℎ , XR̄ℎ ≡

1
) 5 − )8

∫ )5

)8

XRℎ (C) 3C. (18)

This expression uses the adjoint perturbation instead of the fine-space adjoint itself, in order to reduce errors arising
from lack of strict Galerkin orthogonality in the residuals [10]. These perturbations are obtained by subtracting from the
fine-space adjoint its projection onto the coarse space.

From the augmented residual decomposition in 15, the restricted augmented adjoint, IAX	̃ℎ , weights perturbations
in the original residual. This means that IA X	̃ℎ is the sensitivity of the output to perturbations in Rℎ. It is therefore
used as a surrogate for the time-averaged adjoint in Eqn. 18, X	̄ℎ ≈ IAX	̃ℎ .

While many models could be used to augment a given unsteady system, the degree to which the proposed method
applies to different steady-state models depends on the size of the correction, measured by the magnitude of the
augmented residuals relative to the original unsteady ones. The quality of the error estimates depends on the corrections
being small. Large changes, e.g. by removing most of an existing model and replacing it with another, would yield an
incorrect adjoint field based on the new model that would not be appropriate for weighting the unsteady residuals of the
original model.

The error estimate requires the solution of the augmented system, here obtained from the FIML approach. The field
inversion and machine-learning rely on an unsteady simulation for the training data, which is the expensive part of the
process, but it is only a primal solution. An unsteady adjoint is not required for the error estimate.
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V. Mesh Adaptation and Implementation
The error estimate in Eqn. 18 is calculated after an unsteady simulation, which provides the time-averaged residual

and FIML training data. In order to adapt, the error estimate is localized to elements, as described below.

A. Error Localization
When the spatial discretization admits a separation of degrees of freedom into disjoint groups associated with the

mesh tessellation, such as elements in DG or cells in the finite-volume method, an inner product between two vectors
can be localized to those groups. In DG, the localization to elements, 4, yields an elemental error indicator

E4 ≡
��X	T

ℎ4XRℎ4
��, X�cons ≡

∑
4

E4, (19)

where the subscript 4 denotes degrees of freedom associated with element 4. The above equation also defines a
conservative error estimate, X�cons, as the sum of the error indicators. This error estimate is more robust for chaotic
unsteady simulations, as it avoids cancellation of errors between elements – residual perturbations could occur at different
times on different elements, leading to unpredictable cancellation that cannot be recovered from time-averaged residuals.
As the problems of interest are nonlinear, even the conservative error estimate is not a bound, and underestimation of the
error is possible, especially on under-resolved meshes [4].

B. Adaptive Strategies
Three adaptive strategies are considered in this work: output-based ?-adaptation, residual-based ?-adaptation, and

output-based mesh optimization. The first two rely solely on an elemental error indicator and follow a fixed-fraction
strategy. The elements are sorted according to their error indicators, and a fraction 5 adapt = 0.2 of elements with
the highest error indicators is chosen for ? refinement. In the output-based case, the error indicator comes directly
from Eqn. 19. For comparison, an unweighted residual indicator is obtained by omitting the adjoint from Eqn. 19:
Eres4 ≡

��XR4��.
The third adaptive strategy is mesh optimization through error sampling and synthesis, MOESS [49–51]. This

method optimizes the mesh using anisotropic metric-based adaptation, by minimizing the output error at a prescribed
computational cost. It relies on a metric field for describing the size, anisotropy, and orientation of mesh elements, and
changes to the metric field are applied in optimization iterations that equidistribute the marginal error to cost ratio.

As the MOESS a posteriori error estimates and rate calculations depend on the state, achieving an optimal mesh
generally requires several mesh optimization iterations, each with separate primal and adjoint solutions and residual
evaluations. For unsteady problems, the cost of multiple simulations becomes expensive. However, even by taking
just one MOESS adaptation iteration per unsteady run, rapid convergence to the optimal mesh has been observed, so
that only 3-4 unsteady simulations are typically required. The number of adaptation iterations of course depends on
the starting mesh, which for the present work is the result of MOESS applied to the uncorrected augmented system
(baseline RANS). Finally, we note that the use of MOESS sampling via adjoint projections [51] obviates the need for
extra residual evaluations on locally-refined elements, which would add to the implementation and run-time costs of the
unsteady simulations.

C. Implementation
Figure 2 illustrates the unsteady adaptation loop presented in this work. The starting point is a mesh/order distribution,

usually obtained from a steady adaptation/optimization using the augmented but uncorrected model. The unsteady
simulation is then performed on the current mesh, with a sufficiently-long time horizon for accurate statistics, and
with the measurement start time after the initial transients. The result of the unsteady simulation is an averaged state
and output, which provide the target data for field inversion. Machine learning follows field inversion, converting the
correction field V(®G) into a neural network model for V in terms of the state, its gradient, and the wall distance. This
model is used in the corrected-model simulation, which yields the augmented primal and adjoint fields. These are used
together with the time-averaged residual from the unsteady simulation to calculate the output-error estimate and adaptive
indicator, which then drive mesh adaptation. The process repeats with an unsteady simulation on the adapted mesh.

The present adaptation only addresses the error arising from the spatial discretization, which generally dominates
other sources of error. The temporal discretization is held fixed with a relatively small step size, determined a priori
through temporal convergence studies, to ensure that the spatial error dominates. In addition, the length of each unsteady
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Fig. 2 Flowchart of the proposed unsteady mesh-adaptation iterations.

simulation is determined a priori to keep the statistical averaging error low. The statistical error is further monitored for
each run, by breaking the averaging horizon into two segments and comparing the average on each to the total average.
Estimation of temporal and statistical errors and incorporating them into a unified adaptive process are topics for future
work.

VI. Results
This section presents results for two unsteady aerodynamics problems. All solutions are obtained using ? = 2

approximation order, except for the ? refinement study. The results focus on efficacy of the error estimates and the
convergence of the time-averaged outputs with respect to cost, as measured by spatial degrees of freedom. For a given
problem, the temporal discretization remains fixed at a high resolution, determined empirically such that temporal errors
do not pollute the results relative to spatial errors. For clarity, the adopted naming convention for the adaptive strategies
is as follows.

• FIMLMOESS [AWR]: Mesh optimization at a given target dof using the FIML-based approach for the adjoint
and field-inversion objective F dist (default) or F AWR (AWR).

• RANS MOESS: Mesh optimization at a given target dof using the baseline, uncorrected RANS model.
• FIML p-adapt [output]: ? refinement at a fixed fraction 5 adapt using the FIML adjoint and error estimate E1.
• p-adapt residual: ? refinement using the unweighted unsteady residual.

A. NACA 0012 Airfoil at U = 7◦, '4 = 10,000
The first example considers flow governed by the compressible Navier-Stokes equations over a NACA 0012 airfoil,

at Mach number " = 0.2, angle of attack U = 7◦, and a relatively low Reynolds number '4 = 104. The computational
domain extends approximately 100 chord lengths away from the airfoil and is meshed with unstructured triangles that
are curved at the airfoil surface using a cubic mapping.

The flow for this problem consists of a thin laminar boundary layer on the lower surface and a thicker boundary layer
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on the upper surface that breaks down into unsteady vortices approximately half-way down the chord. The vortices
are apparent in the instantaneous entropy and Mach number field plots shown in Figure 3. This figure also shows the
time-averaged Mach contours, which exhibit a large separation bubble structure on the upper surface. The uncorrected
RANS solution, also shown in the figure, fails to predict this structure and instead exhibits a thinner, mostly attached
boundary layer. In contrast, the corrected RANS fields, obtained using FIML, more closely represent the time-averaged
state. A difference also exists between the field inversion error measures: F AWR yields a more accurate fowfield
compared to F dist, due to the former’s accounting of errors arising from the domain interior. The last plots in Figure 3
compare the lift adjoint fields, conservation of G-momentum component, for RANS versus FIML, plotted on the same
color axis range. The FIML adjoint differs from the RANS one because it is based on a different baseline flow state, and
because the residual Jacobian matrix includes a linearization of the ML model. Both adjoint fields recognize the high
sensitivity of the lift to trailing-edge residuals, but the FIML adjoint has a more intricate sensitivity field on the upper
surface, which reflects the transitional flow in that region.

(a) Instantaneous entropy (b) Instantaneous Mach

(c) Time-averaged Mach (d) RANS Mach

(e) FIML FAWR Mach (f) FIML Fdist Mach

(g) FIML G-momentum adjoint (h) RANS G-momentum adjoint

Fig. 3 Instantaneous and time-averaged entropy, Mach number, and adjoint contours for flow over a NACA
0012 airfoil at " = 0.2, '4 = 1 × 104, U = 7◦.

The error estimates and adaptive strategies, including output and residual-based methods and uniform refinement in
ℎ and ?, are now compared. In the case of FIML MOESS, six unsteady iterations were run, and results are presented as
averages over the last three. For RANS MOESS, ten steady iterations were performed at each dof, and the presented
results are averages over the last five.

Figure 4 shows the results of the adaptations, plotted as the output of interest, the average lift coefficient in this
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case, versus spatial degrees of freedom. Since the temporal discretization remains fixed, the number of spatial dof
measures the solution cost. The error estimates are obtained using the conservative sum of indicators, Eqn. 19. These
are shown as shaded bands around the outputs, at ±X�cons. The exact solution is obtained from a ? = 3 simulation on a
uniformly-refined version of the finest lift-adapted mesh.
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Fig. 4 Lift coefficient convergence histories for various adaptive methods applied to the NACA 0012 airfoil at
" = 0.2, '4 = 104, U = 7◦.

Several observations can be made from Figure 4. First, uncorrected RANS converges quickly but under-predicts
the lift output. The lack of agreement between RANS and the time-averaged solution is not a surprise, given that the
present RANS model is not designed for such low Reynolds numbers. On the other hand, the unsteady output-adaptive
approaches perform much better. In particular, mesh optimization yields very good results, even with coarse meshes:
e.g. at 3000 dof, the meshes contain only 500 elements. The only other adaptive approach that comes close is lift-based
? refinement, which eventually jumps close to the correct average value by the third adaptive iteration. For this problem,
? refinement is efficient, as demonstrated by the relative advantage of uniform ? compared to uniform ℎ. However, local
? refinement cannot be done haphazardly, as demonstrated by the poor performance of the residual-based indicator,
which does not get close to the correct output due to its preoccupation with large residuals in areas that minimally
impact the lift output. In addition, ? refinement is sensitive to the initial mesh, which in this case already has reasonable
refinement in areas such as the leading and trailing edge, as shown in Figure 6. This mesh is also used as the initial
mesh for uniform ℎ and ? refinement.

Figure 5 shows the output history for lift-based ?-adaptation applied to this case. The multiple unsteady runs
are shown sequentially, so that the horizontal axis indicates the total unsteady run time, as measured in simulation
units, where one time unit is the airfoil chord divided by the freestream speed. Each unsteady run includes a “burn”
time followed by a time-averaging window. At the initial ? = 1 uniform order, the approximation space is too coarse
to resolve any unsteady behavior, and hence the initial flat output history. Note that the initial mesh only has 1133
elements. The green bars at the end of each unsteady run represent the ±X�cons error estimates, obtained using the
adjoint-weighted residual. The estimates are reasonably accurate, and adaptation improves the average output with only
localized high-order refinement.

In comparison to lift-based ?-adaptation, residual-based ?-adaptation does not perform very well, as observed in the
results shown in Figure 4. The reason for the poor performance of the unweighted residual is that residuals remain large
away from the airfoil, particularly on the larger elements. Without an adjoint field to provide a sensitivity, the residual
error indicator cannot discriminate between areas of the domain that affect the lift versus those that do not. As a result,
the method unnecessarily refines the order on large elements away from the airfoil, as shown in Figure 6. In contrast, the
lift-based adaptation focuses more refinement close to the airfoil, in particular at the trailing edge and the region of
unsteadiness above the airfoil. Refinement in these areas appears to be necessary for correct average lift prediction in
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Fig. 5 ?-adaptation history for the NACA 0012 airfoil at " = 0.2, '4 = 104, U = 7◦. The order field range is
? = 1 (blue) to ? = 5 (red). Red lines denote time-average outputs, and the green bars are error estimates at
±X�cons.

this case.

(a) Lift-adapted (b) Lift-adapted (zoom)

(c) Residual-adapted (d) Residual-adapted (zoom)

Fig. 6 Order fields, showing ? = 1 (blue) to ? = 5 (red) for lift and residual-based order-adapted fields for the
NACA 0012 airfoil at " = 0.2, '4 = 1 × 104, U = 7◦.
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Turning to FIML MOESS, Figure 7 shows the output history for lift adaptation at 6000 dof. The starting mesh is
the RANS mesh, also at 6000 dof. The unsteady output is severely under-predicted by an unsteady simulation on the
initial RANS mesh, even though the resolution does not appear egregiously incorrect in any area. In just one unsteady
adaptation iteration, however, a redistribution of the mesh resolution dramatically improves the unsteady output, and
additional iterations bring about smaller changes. The error estimate under-predicts the actual error on the coarse mesh,
which may be of insufficient resolution to obtain accurate errors. On subsequent iterations, the error estimates become
accurate.
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Fig. 7 FIMLMOESSadaptation history using 6000 dof for theNACA0012 airfoil at" = 0.2, '4 = 104, U = 7◦.
Red lines denote time-averaged outputs, and the green bars are error estimates at ±X�cons.

Table 1 presents the outputs, error estimates, and actual errors for various FIML MOESS adaptive simulations. The
outputs and error estimates were obtained by averaging the results of the latter half of the MOESS iterations. We see
a general trend of decreasing actual errors and improved error estimate efficacy with increasing degrees of freedom.
Comparing the two FIML inversion error measures, using F AWR leads to tighter error estimates, although the actual
errors do not change much from the baseline F dist case. The tighter error estimates could be due to improved FIML
domain-interior solutions with F AWR producing a more accurate adjoint field.

Table 1 Averaged lift coefficient and error estimates for FIML MOESS adaptive runs for the NACA 0012
airfoil at " = 0.2, '4 = 104, U = 7◦.

Target dof FIML objective Output Error Estimate
��Actual Error��

3000 F dist 0.7186 0.1309 0.0214
3000 F AWR 0.7040 0.0645 0.0360
6000 F dist 0.7288 0.0099 0.0112
6000 F AWR 0.7294 0.0087 0.0106
9000 F dist 0.7355 0.0057 0.0045
9000 F AWR 0.7353 0.0051 0.0047

Finally, Figure 8 compares four adapted meshes, each at the final MOESS iteration. The distribution of mesh
resolution and anisotropy reflects some of the solution features shown in Figure 3. First, the RANS-adapted mesh
contains elements of relatively high anisotropy along the upper surface, mostly close to the surface and at the edge of
the boundary layer. In contrast, meshes obtained using MOESS driven by the presented unsteady error estimates exhibit
thicker boundary-layer adaptation, with more isotropic elements and localized refinement approximately half-way down
the chord on the upper surface. In this region, the laminar flow off the leading edge begins to break down into unsteady
vortices. The output-adaptive approaches tag this region as important for an accurate average force prediction on the
airfoil. In addition, the output-adapted meshes contain more refinement close to the upper aft surface of the airfoil,
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likely due to the importance of capturing the interaction of the vortices and the boundary layer. The output adaptation
also heavily targets the edge of the laminar region coming off the front of the airfoil, as the location of this feature
dictates the outer flow over the airfoil, which strongly affects the lift.

(a) RANS MOESS (b) FIML MOESS

(c) FIML MOESS AWR

Fig. 8 Various adapted meshes at 9000 dof for the NACA 0012 airfoil at " = 0.2, '4 = 104, U = 7◦.

B. NACA 0012 Airfoil at U = 7◦, '4 = 20,000
For a second test case, we consider the same flow as in the previous example, but at a higher Reynolds number of

'4 = 2 × 104. The higher Reynolds number reduces the thickness of the boundary layer and increases the complexity of
the vortex structure over the upper surface. As shown in the instantaneous flow snapshot in Figure 9, the breakdown of
the laminar flow over the upper surface now occurs earlier, at about 40% of the chord. The time-averaged Mach number
field exhibits a separation bubble, with re-attachment at about 60% of the chord. In contrast, the uncorrected RANS
model does not produce such a bubble and predicts a mostly attached, thinner boundary layer on the upper surface.
With the FIML correction, the bubble structure is better represented, particularly in the boundary-layer growth over the
first half of the airfoil.

As in the previous case, we compare various adaptive methods to uniform ℎ and ? refinement. The output of interest
remains the lift coefficient, and the cost is measured by the spatial degrees of freedom. The exact value of the lift is
approximated by a value obtained on a refined mesh at ? = 3. Figure 10 shows the convergence results. In this case,
the RANS prediction of the lift is closer to the exact value due to the re-attachment exhibited by the time-averaged
unsteady solution. However, the RANS solution is still inaccurate, and the error does not change with mesh refinement,
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(a) Instantaneous (b) Time-averaged

(c) RANS (d) FIML

Fig. 9 Instantaneous and time-averaged Mach number contours for flow over a NACA 0012 airfoil at " =

0.2, '4 = 2 × 104, U = 7◦.

indicating a persistent modeling error instead of a numerical error. The RANS error estimates reflect this as well, as
they are very low, imperceptible on the plot.
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Fig. 10 Lift coefficient convergence histories for various adaptive methods applied to the NACA 0012 airfoil at
" = 0.2, '4 = 2 × 104, U = 7◦.

The FIML MOESS results are better, as the outputs are closer to the exact value compared to any other method
at low dof, and the error estimates are representative of the actual error. The error bands decrease with increasing
mesh refinement in all of the results. The output-based ?-refinement result begins with an inaccurate result on the first
iteration, as expected since we start at ? = 1, and the initial mesh has only 2053 elements. Residual-based ? refinement
takes longer to get close to the output, and furthermore, by the last adaptive iteration it appears to be overshooting the
exact value instead of converging to it. Uniform ℎ and ? refinement converge to the exact value, but with more degrees
of freedom compared to the adaptive methods.

Figure 11 shows the time history of the lift and the error estimates for the output-based ?-refinement simulation.
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Over the course of five unsteady adaptive iterations, the average lift coefficient generally improves, and the error estimate
decreases. Refinement occurs in the expected critical areas of the vortex breakdown region above the airfoil, the trailing
edge, and the lower-surface boundary layer.
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Fig. 11 ?-adaptation history for the NACA 0012 airfoil at " = 0.2, '4 = 2 × 104, U = 7◦. The order field range
is ? = 1 (blue) to ? = 5 (red). Red lines denote time-averaged outputs, and the green bars are error estimates at
±X�cons.

Figure 12 shows the time history of the adaptation using FIML MOESS at 6000 dof. In just one adaptive iteration
starting with the RANS mesh, the time-averaged lift coefficient is already quite close to the exact value. Subsequent
variations in the output and error estimate are likely due to a combination of low dof and imperfections in the
metric-based meshing.

0 50 100 150 200 250
time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lif
t c

oe
ffi

cie
nt

Fig. 12 FIML MOESS adaptation history using 6000 dof for the NACA 0012 airfoil at " = 0.2, '4 =
2 × 104, U = 7◦. Red lines denote time-averaged outputs, and the green bars are error estimates at ±X�cons.

Table 2 presents the average outputs, error estimates, and actual errors for the FIML MOESS adaptation strategies at
various target dof. We see a general trend of a reduction in both the estimated and actual error with increasing dof.
With the exception of the coarsest mesh, which is arguably under-resolved for this problem, the use of F AWR yields the
most reliable error estimates.

Finally, Figure 13 shows the adapted meshes at 9000 dof for this simulation. As in the previous example, the
refinement patterns correlate to some of the features observed in the primal solutions in Figure 9. The RANS mesh
places anisotropic elements inside and on the edge of the boundary layers, which is expected due to the slow variation of
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Table 2 Averaged lift coefficient and error estimates for FIML MOESS adaptive runs for the NACA 0012
airfoil at " = 0.2, '4 = 2 × 104, U = 7◦.

Target dof FIML objective Output Error Estimate
��Actual Error��

6000 F dist 0.6473 0.0085 0.0107
6000 F AWR 0.6802 0.0075 0.0222
9000 F dist 0.6543 0.0061 0.0037
9000 F AWR 0.6655 0.0063 0.0075
13500 F dist 0.6476 0.0018 0.0104
13500 F AWR 0.6600 0.0012 0.0020
20250 F dist 0.6613 0.0034 0.0033
20250 F AWR 0.6569 0.0024 0.0011

the RANS solution along the chord. In contrast, the FIML-based methods place more isotropic elements above the
airfoil to capture the vortex breakdown. They also add more refinement in the thicker boundary-layer region towards the
front of the airfoil, as flow development in this regions affects behavior of the flow over the rest of the airfoil.

(a) RANS MOESS (b) FIML MOESS

(c) FIML MOESS AWR

Fig. 13 Various adapted meshes at 9000 dof for the NACA 0012 airfoil at " = 0.2, '4 = 2 × 104, U = 7◦.
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VII. Conclusions
This paper presents a method for estimating output errors and adapting meshes in numerical simulations of

unsteady turbulent flow. Applications of interest include large-eddy and detached-eddy simulations, LES and DES,
with statistically-steady output scalars, such as time-averaged forces. For such simulations, standard output-based
methods face the challenge of unstable unsteady adjoint solutions, which must be regularized using techniques that add
significant computational cost relative to the already-expensive primal simulation. We address this challenge by using
an augmented steady-state model, trained and corrected to match the unsteady data, to calculate a steady-state adjoint
suitable for error estimation using the adjoint-weighted residual.

In the present work, Reynolds-averaged Navier-Stokes, with a correction on the turbulence production term, serves as
the augmented model to the unsteady Navier-Stokes system. The correction field is determined through a field-inversion
calculation that drives the RANS solution towards the time-averaged unsteady solution, using the surface stress
distribution as the figure of merit. Following inversion, a neural-network model for the correction field is trained
using pointwise samples of the corrected state at element quadrature points. The inputs to the network consist of
readily-available local data: the state, its gradient, and the wall distance.

We use the field-inversion, machine-learning approach to derive a single-use rather than a general-purpose turbulence
model. The model need not generalize broadly, as in error estimation we only rely on it being accurate locally, for
solutions close to the training data. One unsteady primal solution provides the average state for training, and possibly an
average residual for error estimation. The augmented system, once trained, then takes over for error estimation and
adaptation.

Two error estimates are considered in this work, labeled as E1 and E2. Both measure the spatial error relative to an
order-incremented, ? + 1, fine approximation space, and both use an adjoint-weighted residual form. The difference
between the two lies in the residual calculation. The error estimate E1 uses a time-averaged spatial residual perturbation,
obtained during the unsteady simulation by sampling the difference in the spatial residual between the coarse and
fine spaces, both evaluated using the same state. Keeping track of this residual is slightly intrusive into the unsteady
simulation and adds some expense due to the ? + 1 spatial residual evaluations, although typically the cost of an implicit
time step solution still dominates. In contrast, the error estimate E2 uses the fine-space residual directly form the
augmented system. While this avoids averaging of the unsteady residual, the extension of E2 to the estimation of
temporal errors is not as clear. Finally, both error estimates use the augmented-system adjoint, solved exactly on the
? + 1 space – a relatively inexpensive, steady calculation. Regarding the applicability of this adjoint to error estimate
E1, we show that for augmented systems that retain the original equations, e.g. RANS modifying the Navier-Stokes
equations, a restriction of the augmented-system adjoint serves as the sensitivity of the output to residual perturbations
in the original equations.

Localized forms of the error estimates drive adaptation of the spatial mesh used in the unsteady calculation. The mesh
remains fixed throughout each unsteady calculation. We consider several output-adaptive strategies, using fixed-fraction
order adaptation and mesh optimization, and we compare these to uniform refinement, residual-based adaptation, and
adaptation on the uncorrected augmented system, i.e. RANS alone. Results are shown on unsteady problems in two
dimensions: low-Reynolds number large-eddy simulation, intermediate-Reynolds number transitional flow, and a simple
detached-eddy simulation at a high Reynolds number. These results demonstrate: (1) reasonable accuracy of the error
estimates, especially in the latter stages of adaptation; (2) slightly better performance of E1 compared to E2; (3) poor
performance of the unweighted-residual adaptation, which is distracted by wake and farfield residuals that do not
impact the output; and (4) incorrect results from uncorrected RANS adaptation, for which modeling errors outweigh
the discretization errors. Regarding the fourth point, we note that the test cases were chosen to be unsteady and/or at
Reynolds number outside of the usual domain of applicability of RANS, and hence the large modeling error of RANS is
not representative of its applicability to other cases, including a wide class of attached high-Reynolds number flows.

The error estimation and adaptation strategy introduced here relies only on a small number of unsteady primal
solutions, and no unsteady adjoints. Field-inversion, machine-learning, and steady-adjoint capabilities are required, but
these could be implemented separately from the unsteady simulation program. The only constraints are that both the
unsteady and steady programs operate on the same meshes, and that the steady-state equations augment the unsteady
ones through a model that admits a correction field. We note that whereas the present results are in two dimensions, the
developed methods extend directly to three-dimensional flows, which were not attempted in this developmental study
due to the high computational cost of three-dimensional unsteady simulations.

We have not considered temporal or statistical errors in the present work, but such an extension is possible in the
current framework. For example, to estimate temporal errors, the unsteady residual could be decomposed into spatial
and temporal contributions, and perturbations to each could be measured separately during the unsteady simulation.

17



Statistical errors could also be accounted for by monitoring the time history of the output of interest. Designing an
adaptive technique for balancing these errors to yield the most efficient unsteady simulations is a topic of ongoing work.
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