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Abstract

We present a data-driven approach for calculating adjoint sensitivities in unsteady turbulent flows, with appli-
cation to shape optimization and output-based adaptation. The approach does not use unsteady adjoint equa-
tions, which are expensive to solve and become unstable for chaotic problems, but instead relies on unsteady
data to train a corrected turbulence model, which then yields the required adjoint solutions. It is non-intrusive
and inexpensive, requiring only a small number of unsteady forward simulations, but sufficiently powerful to
capture unsteady effects in the sensitivities. Results for high-order discretizations of the unsteady Navier-
Stokes equations, augmented by a corrected Spalart-Allmaras turbulence closure, demonstrate the ability of
the approach in driving airfoil shape optimization and in adapting unsteady flowfields to target statistical outputs
of interest.
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1 Introduction

Turbulent flows exist in many fluid systems, including the aerodynamics of aerospace vehicles. Many
techniques have been developed to simulate such flows, ranging from completely ignoring viscous ef-
fects through potential-flow or Euler equations, to resolving every turbulent scale via direct numerical
simulation (DNS). In between lie steady-state methods based on Reynolds averaging (RANS), and
unsteady methods such as large-eddy and detached-eddy simulations (LES, DES). Whereas steady-
state methods are generally adequate for vehicles at “on-design” conditions, high-fidelity simulations
at off-design conditions, often characterized by regions of separated flow, generally require unsteady
methods. Ensuring the accuracy of such simulations and enabling their use in design are the topics
addressed in this work.

A persistent theme of this paper is the calculation of sensitivities in unsteady flowfields using ad-
joints. Adjoint methods, which enjoy wide popularity in shape optimization [41, 35, 33, 12, 10] and
output-based mesh adaptation [5, 48, 36, 18], cannot be directly applied to unsteady turbulent flow
simulations, as they are unstable for such systems [26] and require expensive regularization tech-
niques to provide meaningful answers [49, 51, 50, 7, 37, 38]. Furthermore, unsteady adjoints come
with massive storage and computation requirements, which become impractical for forward simula-
tions that already stress computational resources [21]. For these two reasons, the present work is
not based on unsteady adjoint methods.

Unsteady adjoints are useful when computing sensitivities of deterministic events, such as maneu-
vers, gust interactions, or short-duration aeroelastic events [34, 32, 19, 14, 27, 16, 39, 6, 2]. However,
for turbulent flows, they provide potentially too much information: the sensitivity of an output to a flow
residual at a single point in space and time loses significance when that particular flow state may not
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appear in another simulation that follows a different trajectory [29]. Instead, of engineering interest
are generally only statistical quantities, such as time averages of outputs, which should be predictable
by steady-state models.

Many steady-state turbulence models based on Reynolds averaging of the Navier-Stokes equations
exist but often do not provide sufficient accuracy relative to unsteady models at off-design condi-
tions. Instead of choosing one, we create multiple steady-state models, each specific to the unsteady
case being considered. This approach is based on the idea of field inversion and machine learning
(FIML) [40, 47, 23, 22, 52, 25], which starts with an existing steady-state model and corrects it via a
PDE-level multiplicative factor on the turbulence production term. A high-fidelity unsteady simulation
provides the truth solution for the inverse problem for this correction factor, and a machine-learning
approach maps local flow features to the correction factor. The result is a corrected steady-state
model that can be used on different meshes or shapes.

The proposed approach consists of iterative turbulence model calibration, through FIML and a small
number of unsteady simulations, coupled with steady-state optimization and adaptation using the
corrected turbulence models. The number of unsteady simulations required is much lower than the
function evaluations demanded by an iterative optimization or adaptation approach, as these itera-
tions are offloaded to the steady-state model. The unsteady simulations only provide model training
data, and as the model is often accurate in the vicinity of training, only a few unsteady evaluations
are typically required. However, as will be shown in the results, the accuracy improvements of the
corrected model make a marked difference in the optimized shapes and meshes, particularly in cases
where the uncorrected model looses applicability.

The outline for the remainder of this paper is as follows. Section 2 presents the numerical approach
used in this work, a discontinuous finite-element discretization for both the primal and adjoint prob-
lems. Section 3 presents the design parametrization for airfoil shapes, and the gradient-based opti-
mization method. Section 4 presents the field-inversion and machine-learning algorithm, with a novel
objective function geared for output error estimation. Sections 5 and 6 discuss the error estimation,
based on the adjoint-weighted residual, and the adaptation methods, which include both h and p
refinement. Finally, Section 7 presents optimization and adaptation results, and Section 8 concludes
with a summary and a discussion of future directions.

2 Discretization

2.1 Governing Equations

The Reynolds-averaged Navier-Stokes (RANS) equations can be written as

∂u
∂ t

+∇ ·~F(u,∇u)+S(u,∇u) = 0, (1)

where u∈Rs is the s-component state vector,~F∈Rdim×s is the flux vector, dim is the spatial dimension,
and S is the source term from from the turbulence model, in this work the Spalart-Allmaras (SA)
closure [3, 9]. A detailed exposition of the equations can be found in previous work [9, 17]. The
eddy viscosity equation contains the turbulence production term that in this work is modified through
a multiplicative correction factor, β ,

∂ (ρν̃)

∂ t
+∇ · (ρ~vν̃)− 1

σ
∇ · [ρ(ν + ν̃ fn)∇ν̃ ] =− 1

σ
(ν + ν̃ fn)∇ρ ·∇ν̃ +

cb2

σ
ρ∇ν̃ ·∇ν̃ + β P−D. (2)

In this equation, ρ is the density,~v is the velocity, ν̃ turbulence working variable, fn, cb2,σ are model
functions/constants, P is the turbulence production function, and D is the turbulence destruction func-
tion. Scaling P by β affects the entire solution as the eddy viscosity equation is coupled to the
conservation equations.

2.2 The Discontinuous Galerkin Method

We use a discontinuous Galerkin (DG) discretization [42, 11, 20, 13], with the Roe [43] convective
flux and the second form of Bassi and Rebay (BR2) [4] for the viscous treatment. The state is
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approximated on an unstructured mesh of non-overlapping elements using polynomials of order p.
The semi-discretized form of the equations is

M
dU
dt

+R(U) = 0, (3)

where U∈RN is the discrete state vector, N is the total number of unknowns, R(·)∈RN is the nonlinear
spatial residual, and M ∈ RN×N is the block-element sparse mass matrix. For steady simulations, the
time derivative term drops out. The implicit solver consists of a Newton-Raphson method with the
generalized minimum residual (GMRES) [45] linear solver, preconditioned by an iterative smoother,
and for unsteady simulations, we use a third-order modified extended backward difference formula [8]
applied to the semi-discrete form.

2.3 The Discrete Adjoint

For a scalar output computed from the state vector, J(U), the discrete steady adjoint vector, Ψ∈RN , is
the local sensitivity of J to perturbations in the steady residual, R [18]. It satisfies the adjoint equation,(

∂R
∂U

)T

Ψ+

(
∂J
∂U

)T

= 0, (4)

which is solved using the same method used in the primal solver. The adjoint vector can be used to
efficiently compute PDE-constrained sensitivities of the output with respect to parameters, x, of the
problem,

dJ
dx

=
∂J
∂x

+Ψ
T ∂R

∂x
. (5)

In this work, x consists of shape and operational parameters, and derivatives of J and R with respect
to x are evaluated using finite differences.

3 Design Optimization

We consider trimmed optimization problems, in which shape design parameters, xdes ∈Rndes , and trim
parameters, xtrim ∈ Rntrim , are concatenated into x = [xdes;xtrim] ∈ Rnpar . Formulated as a minimization
statement for a scalar output J, the problem reads

min
xdes

J(U,x)

s.t. R(U,x) = 0

Rtrim ≡ Jtrim(U,x)− J̄trim = 0

(6)

where Jtrim ∈ Rntrim is the vector of trim outputs, and J̄trim ∈ Rntrim is the vector of target trim values. In
this work, we consider ntrim = 1: the lift coefficient, c`, trimmed by angle of attack, α.

To solve Eqn. 6, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [24] algorithm with a back-
tracking line search. A notable feature of the implementation is concurrent trimming and optimization
with a constrained gradient calculation. A given initial design, xdes

0 , is first trimmed using multiple
solver iterations, where at each iteration the trim parameters are updated according to [44]

xtrim
k+1 = xtrim

k +∆xtrim
k , ∆xtrim

k =

[
dJtrim

dxtrim

]−1

k

(
J̄trim−Jtrim(Uk,xk)

)
, (7)

The PDE-constrained sensitivity matrix dJtrim

dxtrim ∈ Rntrim×ntrim is computed using adjoints of the trim out-
puts, and a user-specified trim tolerance, δJtrim, serves as the termination criterion. Following the
initial trim, the shape optimization begins, where at each iteration, the trimmed gradient of the objec-
tive with respect to the design parameters is

dJ
dxdes

∣∣∣∣∣
trim

=
dJ

dxdes +
dJ

dxtrim
dxtrim

dxdes ,
dxtrim

dxdes =−
[

dJtrim

dxtrim

]−1 dJtrim

dxdes , (8)
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The gradient of the objective output as given in Eqn. 8 is then used in the BFGS algorithm. During
the BFGS line search, each objective function evaluation accounts for a linearized trim parameter
change and includes an off-trim correction, calculated from the trim and output adjoints.

We optimize airfoils with camber and thickness profiles parametrized via polynomial expressions with
bounding multiplicative envelopes,

zc(x) = x(1− x) [c0 + c1x+ . . .+ cpcx
pc ] , (9)

t(x) = a abssmooth
{√

x(1− x) [1+ t1x+ . . .+ tpt x
pt ] , 0.2x(1− x)

}
(10)

where ci are the coefficients of the order pc camber polynomial, ti are the coefficients of the order pt

thickness polynomial, and the smooth absolute value function is defined for positive b as

abssmooth(a,b) =
{
|a| if |a| ≥ b
(a2 +b2)/(2b) otherwise

(11)

The coefficient a enforces a constant airfoil area, A,∫ 1

0
t(x)dx = A. (12)

4 Field Inversion and Machine Learning

From an unsteady simulation, we compute a time-average state

Ū =
1

Tf −Ti

∫ Tf

Ti

U(t)dt, (13)

with initial time Ti chosen after transients, and final time Tf sufficiently long to ensure adequate statis-
tics. The goal in field inversion and machine learning (FIML) is to solve an inverse problem for a
correction field that makes the corrected turbulence model solution close to Ū, and to train a machine-
learning model to calculate the correction field as a function of local state information.

4.1 Field Inversion

The scalar correction field, β (~x), with a nominal value of 1, multiplies the production term in the eddy-
viscosity transport equation of the SA turbulence model. Approximating the field using a Lagrange
DG basis, here p = 1, field inversion can be written as a constrained discrete minimization problem,

min
β

Jinv ≡F (U(β ))+
γ

2
(β −1)T M(β −1)

s.t. R(U,β ) = 0
(14)

where F (U, Ū) measures the error in the solution relative to the unsteady average and is supple-
mented by a regularization term, here with γ = 10−7.

The baseline field inversion error measure is an integral of the surface stress distribution error,

F dist(U, Ū) =
1
2

∫
airfoil
‖σ(U) ·~n−σ(Ū) ·~n‖2 ds, (15)

where σ is the stress tensor and ~n is the unit normal vector on the airfoil surface. In output-based
error estimation, we also use a measure that mimics the adjoint-weighted residual,

F AWR(U, Ū) = ∑
e

1
2
(
WT

e (Ue(β )− Ūe)
)2 WT

e ≡Ψ
T
e

∂Re

∂Ue
. (16)

Using either of the two error measures, 15 or 16, the inverse problem is solved using a limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [30], with a history of 10 updates
for approximating the inverse Hessian. The required gradient of Jinv with respect to β is evaluated
using an adjoint, while the residual linearization with respect to β is calculated using a small number
of inexpensive finite differences.

4
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4.2 Machine Learning

While field inversion produces a correction field for a particular mesh and shape, adaptation and
optimization require corrections over different meshes and geometries. The second step therefore
consists of training a local model to produce the correction from the average solution. In FIML,
this model is an artificial neural network that maps local states and geometry information to the
correction field [40]. Figure 1 shows the structure of the network used in this work, a single-hidden-
layer perceptron that maps the feature vector, x0 ∈Rn0 , to the correction scalar, β , through the hidden
layer, x1 ∈ Rn1 . The parameters associated with the network consist of the weights and biases,

     

x0

Input layer

β

x1

Hidden layer

∂u
∂x

∂u
∂y Output layer

d

u

x1 = σ(W1x0 + b1) β =Woutx1 + bout

Figure 1 – Structure of the artificial neural networks used to predict the correction field.

Wi ∈ Rni×ni−1 , bi ∈ Rni , where ni is the number of neurons in layer i. An entry-wise sigmoid activation
function, σ(x) = 1/(1+ e−x), is applied to the map from the input layer to the hidden layer. The size
of the input layer is n0 = (1+dim)s+1 neurons (state, its gradient, wall distance), and the size of the
hidden layer is set to n1 = 30 for the two-dimensional problems considered in this work.

The network parameters are optimized using an adaptive moment (Adam) estimation algorithm in
TensorFlow [1], with a mean squared error loss between the predicted and actual output-layer values,
measured at quadrature points of each element. The network is then implemented as a physics
model in the turbulence source calculation, which affects the residual and hence the primal and
adjoint solutions. The network is linearized in the calculation of the residual Jacobian matrix for the
Newton and discrete-adjoint solvers.

5 Output-Based Error Estimation

For a time-averaged output computed from the unsteady discrete state,

J̄ ≡ 1
Tf −Ti

∫ Tf

Ti

J(U(t))dt, (17)

the unsteady adjoint, Ψ(t), is the sensitivity of J̄ to residual perturbations, which here are assumed to
be predominantly spatial. Decomposing the adjoint and residual perturbation into time-averaged and
time-varying components, and assuming that the adjoint and residual are not strongly correlated in
time, we obtain an adjoint-weighted residual error estimate [13, 31, 16],

δ J̄ ≈ Ψ̄
T
δ R̄, (18)

where ·̄ denotes time averaging. The solution of the augmented (corrected) steady-state system
yields an approximation of the time-averaged adjoint, whereas the residual perturbation is computed
by time-averaging the spatial residual error between a coarse (H) and a fine (h) space. The output
error estimate therefore reads

δ J̄h ≈ δ Ψ̄
T
h δ R̄h, δ R̄h ≡

1
Tf −Ti

∫ Tf

Ti

δRh(t)dt, δRh(t) =−Rh(UH
h (t))+MhIH

h M−1
H RH(UH(t)), (19)

5
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where UH
h (t) = IH

h UH(t) the prolongation of the discrete coarse unsteady state UH(t) into the fine
space. The error estimate uses adjoint perturbation instead of the fine-space adjoint itself in order to
reduce errors arising from lack of strict Galerkin orthogonality in the residuals [27].

The error estimate requires the solution of the augmented system, here obtained from the FIML
approach. The field inversion and machine-learning rely on an unsteady simulation for the training
data, which is the expensive part of the process, but it is only a primal solution. An unsteady adjoint
is not required for the error estimate.

6 Mesh Adaptation

The error estimate in Eqn. 19 is calculated after an unsteady simulation, which provides the time-
averaged residual and FIML training data. In order to adapt, the error estimate is localized to ele-
ments,

Ee ≡
∣∣δΨ

T
heδRhe

∣∣, δJcons ≡∑
e

Ee, (20)

where the subscript e denotes degrees of freedom associated with element e. The above equation
also defines a conservative error estimate, δJcons, as the sum of the error indicators.

In this work, three adaptive strategies are considered: output-based p-adaptation, residual-based
p-adaptation, and output-based mesh optimization. The first two rely solely on an elemental error in-
dicator and follow a fixed-fraction strategy. The third is mesh optimization through error sampling and
synthesis, MOESS [54, 53, 15], which optimizes the mesh using anisotropic metric-based adaptation,
by minimizing the output error at a prescribed computational cost. With the latter, even by taking just
one MOESS adaptation iteration per unsteady run, rapid convergence to the optimal mesh has been
observed, so that only 3-4 unsteady simulations are typically required.

Figure 2 illustrates the unsteady adaptation loop, which starts with a given mesh/order distribution
from a steady adaptation/optimization using the augmented but uncorrected model. An unsteady
simulation on the current mesh provides the output and target data for field inversion. Machine
learning converts the correction field, β (~x), into a neural network model for β in terms of the state,
its gradient, and the wall distance, which is then used in the corrected-model simulation. The adjoint
from this simulation is used together with the time-averaged residual to calculate the output-error
estimate and adaptive indicator, which then drive mesh adaptation. The process repeats with an
unsteady simulation on the adapted mesh.

7 Results

This section presents an optimization result and an adaptation result for two unsteady aerodynamics
problems. Discrete solutions are obtained using p = 2 approximation, except for the p-refinement
study. Both problems are two-dimensional but share features of more complex, and expensive, three-
dimensional turbulent simulations.

7.1 Mesh Adaptation: NACA 0012 Airfoil at α = 7◦, Re = 10,000

This adaptive result focuses on efficacy of the error estimate and the convergence of the time-
averaged outputs with respect to cost, as measured by spatial degrees of freedom. The temporal
discretization remains fixed at a high resolution, determined empirically such that temporal errors do
not pollute the results relative to spatial errors. For clarity, the adopted naming convention for the
adaptive strategies is as follows: FIML MOESS [AWR] is mesh optimization at a given target dof
using the FIML-based approach for the adjoint and field-inversion objective F dist (default) or F AWR

(AWR); RANS MOESS is mesh optimization at a given target dof using the baseline, uncorrected
RANS model; FIML p-adapt [output] is p refinement at a fixed fraction f adapt using the FIML adjoint
and error estimate E1; p-adapt residual is p refinement using the unweighted unsteady residual.

The example considers flow governed by the compressible Navier-Stokes equations over a NACA
0012 airfoil, at Mach number M = 0.2, angle of attack α = 7◦, and a relatively low Reynolds number

6
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δR̃

starting mesh

β(~x)

Ψ̃

Ũ

δR̄

β(u,∇u, d)

unsteady simulation

field inversion

error estimation
augmented primal/adjoint solutions

mesh adaptation

εe

machine learning

Ū, J̄

Figure 2 – Flowchart of the unsteady mesh-adaptation process.

Re = 104. The computational domain is meshed with unstructured triangles that are curved at the
airfoil surface using a cubic mapping. The flow consists of a thin laminar boundary layer on the lower
surface and a thicker layer on the upper surface that breaks down into unsteady vortices. Figure 3
shows instantaneous snapshosts of the solution. This figure also shows the time-averaged Mach
contours, which exhibit a large separation bubble structure on the upper surface. The uncorrected
RANS solution, also shown in the figure, fails to predict this structure and instead exhibits a thinner,
mostly attached boundary layer. In contrast, the corrected RANS fields, obtained using FIML, more
closely represent the time-averaged state. A difference also exists between the field inversion error
measures: F AWR yields a more accurate fowfield compared to F dist, due to the former’s accounting
of errors arising from the domain interior. Figure 3 also compares the lift adjoint fields for RANS
versus FIML: these differ because they are based on a different baseline flow state, and because the
residual Jacobian matrix includes a linearization of the machine-learning model.

Figure 4 shows the results of the adaptations, plotted as the output of interest, the average lift coeffi-
cient in this case, versus spatial degrees of freedom, which is the cost measure. The error estimates
are obtained using the conservative sum of indicators, Eqn. 20. These are shown as shaded bands
around the outputs, at ±δJcons. The exact solution is obtained from a p = 3 simulation on a uniformly-
refined version of the finest lift-adapted mesh.

From Figure 4, we see that uncorrected RANS converges quickly but severely under-predicts the
lift output. On the other hand, the unsteady output-adaptive approaches perform much better. In
particular, mesh optimization yields very good results, even with coarse meshes: e.g. at 3000dof,
the meshes contain only 500 elements. The only other adaptive approach that comes close is lift-
based p refinement, which eventually jumps close to the correct average value by the third adaptive
iteration. However, local p refinement cannot be done haphazardly, as demonstrated by the poor
performance of the unweighted residual-based indicator, which does not get close to the correct
output due to its preoccupation with large residuals in areas that minimally impact the lift output.
In addition, p refinement is sensitive to the initial mesh, which in this case already has reasonable
refinement in areas such as the leading and trailing edge.

7
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(a) Instantaneous entropy (b) Instantaneous Mach

(c) Time-averaged Mach (d) RANS Mach

(e) FIML F AWR Mach (f) FIML F dist Mach

(g) FIML x-momentum adjoint (h) RANS x-momentum adjoint

Figure 3 – Instantaneous and time-averaged entropy, Mach number, and adjoint contours for flow
over a NACA 0012 airfoil at M = 0.2,Re = 1×104,α = 7◦.
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Figure 4 – Lift coefficient convergence histories for various adaptive methods applied to the NACA
0012 airfoil at M = 0.2,Re = 104,α = 7◦.
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Figure 5 shows the output history for lift-based p-adaptation applied to this case. The multiple un-
steady runs are shown sequentially, so that the horizontal axis indicates the total unsteady run time,
as measured in simulation units, where one time unit is the airfoil chord divided by the freestream
speed. Each unsteady run includes a “burn” time followed by a time-averaging window. At the ini-
tial p = 1 uniform order, the approximation space is too coarse to resolve any unsteady behavior,
and hence the initial flat output history. Note that the initial mesh only has 1133 elements. The
green bars at the end of each unsteady run represent the ±δJcons error estimates, obtained using
the adjoint-weighted residual. The estimates are reasonably accurate, and adaptation improves the
average output with only localized high-order refinement. In comparison to lift-based p-adaptation,
residual-based p-adaptation does not perform very well, as residuals remain large away from the
airfoil, particularly on the larger elements.

50 75 100 125 150 175 200 225
time

0.2

0.4

0.6

0.8

1.0

lif
t c

oe
ffi

cie
nt

Figure 5 – p-adaptation history for the NACA 0012 airfoil at M = 0.2,Re = 104,α = 7◦. The order field
range is p = 1 (blue) to p = 5 (red). Red lines denote time-average outputs, and the green bars are

error estimates at ±δJcons.

Turning to FIML MOESS, Figure 6 shows the output history for lift adaptation at 6000dof. The start-
ing mesh is the RANS mesh, also at 6000dof. The unsteady output is severely under-predicted by
an unsteady simulation on the initial RANS mesh, even though the resolution does not appear egre-
giously incorrect in any area. In just one unsteady adaptation iteration, however, a redistribution of
the mesh resolution dramatically improves the unsteady output, and additional iterations bring about
smaller changes. The error estimate under-predicts the actual error on the coarse mesh, which may
be of insufficient resolution to obtain accurate errors. On subsequent iterations, the error estimates
become accurate.

Table 1 presents the outputs, error estimates, and actual errors for various FIML MOESS adaptive
simulations. The outputs and error estimates were obtained by averaging the results of the latter
half of the MOESS iterations. We see a general trend of decreasing actual errors and improved
error estimate efficacy with increasing degrees of freedom. Comparing the two FIML inversion error
measures, using F AWR leads to tighter error estimates, although the actual errors do not change
much from the baseline F dist case. The tighter error estimates could be due to improved FIML
domain-interior solutions with F AWR producing a more accurate adjoint field.

Finally, Figure 7 compares four adapted meshes, each at the final MOESS iteration. The distribution
of mesh resolution and anisotropy reflects some of the solution features shown in Figure 3. First, the
RANS-adapted mesh contains elements of relatively high anisotropy along the upper surface, mostly
close to the surface and at the edge of the boundary layer. In contrast, meshes obtained using
MOESS driven by the presented unsteady error estimates exhibit thicker boundary-layer adaptation,
with more isotropic elements and localized refinement approximately half-way down the chord on the
upper surface. In this region, the laminar flow off the leading edge begins to break down into unsteady
vortices. The output-adaptive approaches tag this region as important for an accurate average force
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Figure 6 – FIML MOESS adaptation history using 6000dof for the NACA 0012 airfoil at
M = 0.2,Re = 104,α = 7◦. Red lines denote time-averaged outputs, and the green bars are error

estimates at ±δJcons.

Table 1 – Averaged lift coefficient and error estimates for FIML MOESS adaptive runs for the NACA
0012 airfoil at M = 0.2,Re = 104,α = 7◦.

Target dof FIML objective Output Error Estimate
∣∣Actual Error

∣∣
3000 F dist 0.7186 0.1309 0.0214
3000 F AWR 0.7040 0.0645 0.0360
6000 F dist 0.7288 0.0099 0.0112
6000 F AWR 0.7294 0.0087 0.0106
9000 F dist 0.7355 0.0057 0.0045
9000 F AWR 0.7353 0.0051 0.0047
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prediction on the airfoil. In addition, the output-adapted meshes contain more refinement close to the
upper aft surface of the airfoil, likely due to the importance of capturing the interaction of the vortices
and the boundary layer. The output adaptation also heavily targets the edge of the laminar region
coming off the front of the airfoil, as the location of this feature dictates the outer flow over the airfoil,
which strongly affects the lift.

(a) RANS MOESS (b) FIML MOESS

(c) FIML MOESS AWR

Figure 7 – Various adapted meshes at 9000dof for the NACA 0012 airfoil at
M = 0.2,Re = 104,α = 7◦.

7.2 Shape Optimization: Drag minimization at constant lift, Re = 10,000

We now consider a drag minimization problem at a prescribed lift coefficient of c` = 0.4, and M = 0.2,
Re = 104. No turbulence model is used in the unsteady simulations at this low Reynolds number.
The area of the airfoil is constrained to A = .06c2 via Eqn. 12. Three camber parameters, c0,c1,c2 in
Eqn. 9, and two thickness parameters, t1, t2 in Eqn. 10, dictate the shape of the airfoil. All five of these
parameters are set to zero to obtain the initial shape.

We first trim the initial airfoil in unsteady mode to determine the lift coefficient that attains the pre-
scribed average lift coefficient. Figure 8(a) shows the lift coefficient time history for a portion of the
trimmed condition, along with a snapshot of the x-momentum contour field. The initial airfoil exhibits
large oscillations in the lift coefficient, in the approximate range c` ∈ [0.2,0.6] and frequency of 1c/U∞,
where U∞ is the freestream speed.

The oscillatory flowfield and outputs prevent the application of standard unsteady adjoint techniques
for computing gradients [28, 46]. In addition to this instability, a full unsteady adjoint solution is also
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Figure 8 – First FIML optimization iteration for minimizing drag on an airfoil at
M = 0.2,Re = 104,c` = 0.4.
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expensive in storage an computational overhead of the reverse time-marching solution, rendering
it impractical for unsteady turbulent flows. We stress that the present approach does not require
unsteady adjoints, as it creates a tailored steady-state model for the time-averaged solution and
optimizes using this model.

The time-average state and outputs for the initial airfoil were obtained using 20c/U∞ time units of the
trimmed unsteady simulation. The average values were used as targets in the field inversion process,
as described in Section 4. Figure 8(b) show the resulting correction field and x-momentum contours
from the corrected RANS simulation. Note that the correction field calls for a general decrease of
turbulent production at the edge of the upper-surface boundary layer, which leads to earlier separation
and higher drag compared to an uncorrected-RANS simulation.

Data from this correction field were used to train a neural network model, which is then used in a
steady shape optimization. Figure 8(c) shows the result of 50 BFGS optimization iterations using
this first FIML model. The optimized shape exhibits a reduced suction peak, a higher aft-loading
redistribution of the lift, and a shift of area from the aft the front of the airfoil.

The combination of unsteady simulation, field inversion, and corrected steady optimization constitutes
one FIML optimization iteration. This process is repeated with the optimized airfoil, and Figure 9
shows the results of the second FIML optimization iteration, which parallel those of Figure 8.
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Figure 9 – Second FIML optimization iteration for minimizing drag on an airfoil at
M = 0.2,Re = 104,c` = 0.4.

The flowfield remains unsteady for the optimized airfoil, but the unsteady trimming time history in
Figure 9(a) shows a reduced amplitude of the lift coefficient variation, by almost a factor of two
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compared to Figure 8(a). Field inversion was then performed using the time-averaged surface stress
distribution as a target and the same parameters as in the first iteration. Figure 9(b) shows the
resulting correction field and x-momentum contours. The dominant feature of the correction field is
again a suppression of turbulent production on the upper surface. A similar but lower-magnitude
suppression now also appears on the lower surface due to the adverse pressure gradient brought
about by the increased aft camber.

A new neural network is constructed from the second correction field, and the resulting FIML model
is used to re-optimize the airfoil shape. Figure 9(c) shows the shape and pressure distribution of the
second FIML optimization iteration. The changes in the shape compared to the first FIML optimization
are not large: a slight flattening of the upper surface and reduction in overall camber, except for the
aft portion.
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Figure 10 – Comparison of RANS and FIML optimized airfoil shapes and time-averaged Mach
number contours at M = 0.2,Re = 104,c` = 0.4.

Two additional FIML optimizations were performed, each with a separate unsteady simulation, inver-
sion, and steady optimization. Figure 10 shows the final FIML-optimized airfoil shape, along with a
comparison to the uncorrected-RANS optimization result. The latter shape, referred to simply as the
RANS airfoil, exhibits a rounder upper surface and a more aggressive thickness decrease along the
chord, which leads to a larger-magnitude adverse pressure gradient. An uncorrected RANS analysis
of this airfoil yields the Mach number contours shown in Figure 10(b): the flow remains attached on
the upper and lower surfaces. However, an unsteady analysis without the RANS model results in a
different picture. Figure 10(c) shows the Mach number from the time-averaged state, and the wake
is much larger due to separated flow on the upper surface. In contrast, the FIML-optimized airfoil
yields a time-averaged state with a smaller wake due to, on average, later separation enabled by a
less adverse pressure gradient.

Table 2 summarizes the optimization results in terms of the average drag coefficient from a trimmed
unsteady simulation of the various airfoils. RANS-alone optimization does result in a drag reduction
by almost 50 counts compared to the chosen initial airfoil. This is similar to the result from the
first iteration of the FIML optimization. However, subsequent FIML optimizations further reduce the
average drag by over 40 counts.

To verify the importance of the correction model on the optimal shape, the final FIML-optimized airfoil
was used as the initial airfoil in an uncorrected-RANS optimization. The result of this optimization was
the same RANS-alone optimized result obtained from the original initial airfoil, shown in Figure 10.
This indicates that the FIML correction-field model is responsible for the additional over 40 counts of
drag reduction compared to an uncorrected RANS optimization.
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Table 2 – Time-averaged drag coefficients of initial and optimized airfoils at M = 0.2,Re = 104,c` = 0.4.

Airfoil Average drag coefficient
Initial airfoil shape 0.0305
RANS-optimization 0.0259
FIML-optimization, 1st iteration 0.0256
FIML-optimization, 2nd iteration 0.0241
FIML-optimization, 3rd iteration 0.0215
FIML-optimization, 4th iteration 0.0212

8 Conclusions

This paper introduces a gradient-based approach for optimizing shapes and adapting meshes in un-
steady turbulent flows. The most challenging aspect of this problem is the calculation of an adjoint,
which is the sensitivity of the output with respect to residuals. The application of adjoint methods to
unsteady turbulent flows is hampered by the fact that they are unstable for problems exhibiting chaotic
or limit-cycle oscillations. Furthermore, unsteady adjoint solutions are inherently expensive, becom-
ing impractical for large simulations in which only a few forward primal solutions can be afforded.

The adjoint calculation proposed in this work is instead based on a corrected RANS model obtained
from unsteady simulation data. Following field inversion for the correction, a neural network model
is trained to produce the correction factor from local flow data. The single corrected RANS solution
provides a large quantity of training data, as the correction factor is measured at the quadrature points
of each element. The local data consist simply of the state, its spatial gradient, and the wall distance.
The network must be linearized for accurate adjoint calculations and is used only for a single iteration
of adaptation or optimization.

The results show the ability of the adjoint from the corrected model to accurately predict residual
sensitivities in the unsteady flows, leading to both optimal adapted meshes and shapes. These
contrast with RANS-alone meshes and shapes, which yield sub-optimal performance. As the method
is not intrusive into the unsteady simulation, independent “black-box” unsteady solvers could be used,
with various levels of fidelity, including detached or large eddy simulations. Only average forward
flowfield statistics are required for the inversion and training. Future work will investigate pushing the
envelope of the FIML/RANS combination to stalled conditions and bluff-bodies.
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