
Gradient-Based Shape Optimization for Unsteady Turbulent Simulations Using
Field Inversion and Machine Learning

Krzysztof J. Fidkowski∗

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109

Abstract

This paper presents a method for gradient-based shape optimization using unsteady models of turbulent flowfields,

for which forward simulations are already expensive and adjoint calculations diverge or require costly regularization.

The proposed method targets an objective and constraints computed from the time-averaged flowfield and does not use

either an unsteady adjoint nor an input-to-output surrogate. The method relies on the field-inversion, machine-learning

(FIML) approach, in which a correction field modifies the production term in a Reynolds-averaged Navier-Stokes

(RANS) model of the flow. Steady, adjoint-based, field inversion yields this correction field, and a neural-network

model is trained, only from readily-available unsteady primal data, to reproduce the field from local flow quantities.

Gradient-based shape optimization is then performed using the corrected RANS model, which must include a lin-

earization of the correction field calculation for accurate gradients. The complete design optimization loop consists of

iterations of unsteady simulation, FIML, and steady adjoint-based optimization. Low and moderate Reynolds number

airfoil optimization problems demonstrate the performance of the proposed method, and comparisons to RANS-alone

designs illustrate the importance of accounting for the unsteady flow effects in the optimization.

Keywords: Unsteady Shape Optimization, Field Inversion, Machine Learning, Adjoint, Gradient-Based Method,

Neural Networks

1. Introduction

Turbulent flows exist in many fluid systems, including in the aerodynamics of aerospace vehicles. Many tech-

niques have been developed to simulate such flows, ranging from completely ignoring viscous effects, for example

through potential-flow or Euler equations, to resolving every turbulent scale via direct numerical simulation (DNS).

In between lie steady-state methods based on Reynolds averaging (RANS), and unsteady methods such as large-eddy

and detached-eddy simulations (LES, DES). Whereas steady-state methods are generally adequate for vehicles at

on-design conditions, high-fidelity simulations at off-design conditions, often characterized by regions of separated

∗Corresponding author
Email address: kfid@umich.edu (Krzysztof J. Fidkowski)

Preprint submitted to Aerospace Science and Technology August 19, 2022

flow, generally require unsteady methods. This latter class of flows provides the setting for the present work, which

addresses the design of aerodynamic shapes at off-design conditions.

Unsteady models of turbulent flow complicate shape optimization in at least two ways. First, the simulations

are much more expensive than steady models, so that each function evaluation, usually a statistic such as a time-

averaged scalar output of interest, requires orders of magnitude more computational time and resources. This limits

the applicability of many-query studies, such as optimization, particularly gradient-free methods that rely on numer-

ous function evaluations [1]. Second, the chaotic nature of unsteady turbulent simulations prevents the application

of linear sensitivity techniques for evaluation of gradients. In particular, adjoint methods, the hallmark of shape op-

timization [2, 3, 4, 5, 6], cannot be directly applied, except in special cases such as quasi-periodic flows [7], as the

unsteady adjoint equations are unstable in such systems [8] and require expensive regularization techniques to provide

meaningful answers [9, 10, 11, 12, 13, 14]. Furthermore, unsteady adjoints come with massive storage and computa-

tion requirements that become impractical for forward simulations, which already stress computational resources [15].

For these two reasons, the present work does not use unsteady adjoint methods.

Unsteady adjoints are useful when computing sensitivities of deterministic events, such as maneuvers, gust inter-

actions, or short-duration aeroelastic events [16, 17, 18, 19, 20, 21, 22, 23, 24]. However, for turbulent flows, they

provide perhaps too much information: the sensitivity of an output to a flow residual at a single point in space and time

loses significance when that particular state may not appear in another simulation that follows a different trajectory due

the chaotic nature of the flow [25]. In such systems, of engineering interest are generally statistical quantities, such

as time averages of outputs, and if a steady-state model were able to yield these quantities with sufficient accuracy, it

would be much more amenable to gradient-based optimization.

Many steady-state turbulence models exist, most based on Reynolds averaging of the Navier-Stokes equations.

However, as discussed previously, these models often do not provide sufficient accuracy relative to unsteady models

at off-design conditions. Indeed, the creation of a general turbulence model that is accurate across multiple flow

regimes continues to be an elusive quest [26]. Presently, we forego generality and create multiple steady-state models,

each specific to the unsteady case being considered. We only use the model to enable an efficient calculation of the

derivatives required for optimization, instead of trying to apply the model to vastly different flow regimes.

The turbulence modeling approach we take here is based on the idea of field inversion and machine learning

(FIML) [27, 28, 29, 30, 31, 32, 33]. The idea of FIML is to start with an existing steady-state model and to correct

it via a PDE-level correction factor on one or more of the turbulence modeling terms. The unsteady simulation, here

in lieu of experimental or other external data, provides the truth solution for the inverse problem for this correction

factor, and a machine-learning approach maps local flow features to the correction factor. The result is a corrected

steady-state model that can be used on different meshes or shapes. Whereas previous works have used FIML as a

general turbulence modeling strategy with mixed generalizability success [26], in this work we only rely on FIML’s

local accuracy, at/near the conditions for which it was trained. This relaxation of expectations then simplifies aspects

of the FIML approach, particularly the amount of training data, size of the machine learning neural network, and the

2

generality of the inputs.

We stress that the use of machine learning in this work is not to create a direct input-to-output surrogate of the

high-fidelity model, as has been done in many previous works [34, 35, 36, 37]. Instead, machine learning is only

used to provide a correction to what is already a high-fidelity model, RANS, so as to make it better represent an even

higher-fidelity model, unsteady turbulence. The corrected RANS model enables calculation of the objective gradient,

which is needed for gradient-based shape optimization.

The proposed unsteady optimization approach consists of iterative turbulence model calibration, through FIML

and a limited number of unsteady simulations, coupled with steady-state optimization using the corrected turbulence

models. The number of unsteady simulations required is much lower than the function evaluations demanded by

any gradient-free or even gradient-based method, since the optimization is offloaded to the steady-state model. The

unsteady simulations only provide model training data, and as the model is often accurate in the vicinity of training,

only a few unsteady evaluations (2-4 in the present results) are typically required. However, as will be shown in the

results, the accuracy improvements of the corrected model can make a difference in the optimized shapes, particularly

in cases where the uncorrected model loses applicability.

The outline for the remainder of this paper is as follows. Section 2 presents the numerical approach used in

this work, a discontinuous finite-element discretization for both the primal and adjoint problems. Section 3 presents

the design parametrization for airfoil shapes, and the gradient-based optimization method. Sections 4 and 5 discuss

the field-inversion and machine learning approaches, which are used in the unsteady optimization approach that is

summarized in Section 6. Finally, Section 7 presents results of several unsteady airfoil optimizations, and Section 8

concludes with a summary and a discussion of future directions.

2. Discretization

2.1. Governing Equations

We consider a system of unsteady partial differential equations in conservative form,

∂u
∂t

+ ∇ · ~F(u,∇u) + S(u,∇u) = 0, (1)

where u ∈ Rs is the s-component state vector, ~F ∈ Rdim×s is the flux vector, dim is the spatial dimension, and S ∈ Rs

is the source term arising from the turbulence model, in this work the Reynolds-averaged Navier-Stokes (RANS)

equations with the Spalart-Allmaras (SA) closure [38, 39]. A detailed exposition of the equations and closure relations

of the model as used presently can be found in previous work [40, 39, 41], which also includes code verification results.

The choice of the SA model is driven by its robustness, simplicity, and the target application of external aerodynamic

flows. The same strategy of a dynamic correction could be applied to other turbulence models, some of which may be

more appropriate to particular applications, such as internal flows or bluff bodies.

3

Relevant to this study is the eddy viscosity equation, which contains the turbulence production term that will be

modified through a multiplicative correction factor, β,

∂(ρν̃)
∂t

+ ∇ · (ρ~vν̃) −
1
σ
∇ ·

[
ρ(ν + ν̃ fn)∇ν̃

]
= −

1
σ

(ν + ν̃ fn)∇ρ · ∇ν̃ +
cb2

σ
ρ∇ν̃ · ∇ν̃ + β P − D. (2)

In this equation, ρ is the density, ~v is the velocity, ν̃ turbulence working variable, fn is a function that is active for

ν̃ < 0, cb2, σ are model constants, P is the turbulence production function, and D is the turbulence destruction function.

Scaling P by β affects the entire solution as the eddy viscosity equation is coupled to the conservation equations.

The SA model uses the distance, d, to the closest wall in several closure relations. Modifications to d, usually in

the form of limits on its maximum value, yield models for unsteady, detached-eddy simulations (DES) [42]. In the

present work, we implement a very simple DES model for unsteady high-Reynolds number simulations,

d = dmax tanh(d/dmax), (3)

where dmax is a prescribed distance, set to 2% of the chord length for airfoil simulations. In contrast to most DES

models, which relate the limits on d to the mesh size, this choice eliminates complications of grid size effects on

the unsteady solution. Moreover, we are not overly concerned with the model accuracy, as our simulations are at

present two-dimensional. Instead, the simple DES model brings in unsteadiness that is representative of the manner

in which actual three-dimensional DES models yield chaotic flow or limit-cycle oscillations that preclude an unsteady

adjoint solution for optimization. For the purpose of optimization, we assume that the simple-model DES solutions

are higher-fidelity than the steady RANS solutions.

2.2. The Discontinuous Galerkin Method

The unsteady optimization strategy presented in this work is not specific to the spatial or temporal discretization.

For the results, we use a discontinuous Galerkin (DG) finite-element spatial discretization [43, 44, 45, 46], with the

Roe [47] convective flux and the second form of Bassi and Rebay (BR2) [48] for the viscous treatment. The state

is approximated on an unstructured mesh of non-overlapping elements using polynomials of order p. Following a

finite-element weak formulation and a choice of polynomial basis, the semi-discretized form of the equations is

M
dU
dt

+ R(U) = 0, (4)

where U ∈ RN is the discrete state vector, N is the total number of unknowns, R(·) ∈ RN is the nonlinear spatial

residual, and M ∈ RN×N is the block-element sparse mass matrix. For steady simulations, the time derivative term

drops out, although pseudo-time continuation remains in the solver to drive the steady residual to the convergence

criterion [49], which is an L1 norm drop of eight orders of magnitude. The solver consists of a Newton-Raphson

method with the generalized minimum residual (GMRES) [50] linear solver, preconditioned by an element-line Jacobi

smoother with a coarse-level (p = 1) correction [45, 51]. For unsteady simulations, we use a third-order modified

extended backward difference formula [52] applied to the semi-discrete form.

4

2.3. The Discrete Adjoint

For a scalar output computed from the state vector, J(U), the discrete steady adjoint vector, Ψ ∈ RN , is the local

sensitivity of J to perturbations in the steady residual, R [53]. Linearization of the residual and output shows that the

adjoint satisfies the following linear equation,(
∂R
∂U

)T

Ψ +

(
∂J
∂U

)T

= 0. (5)

This equation is solved using the same preconditioned GMRES method used in the primal solver. The adjoint vector

can be used to efficiently compute PDE-constrained sensitivities of the output with respect to parameters, x, of the

problem. In general, if both the residuals and the output depend on x, the PDE-constrained sensitivity of the output

with respect to the parameter vector is

dJ
dx

=
∂J
∂x

+ΨT ∂R
∂x

. (6)

In this work, x consists of shape and operational parameters, and derivatives of J and R with respect to x are evaluated

using finite-differences. This poses no computational bottleneck in the present study with a small number of param-

eters. For larger numbers of parameters, analytical or algorithmic differentiation methods can be applied to increase

the efficiency of this calculation.

3. Design Optimization

We consider trimmed optimization problems, in which we distinguish between shape design parameters, xdes ∈

Rndes , and trim parameters, xtrim ∈ Rntrim , concatenated into x = [xdes; xtrim] ∈ Rnpar . Formulated as a minimization

statement for a scalar output J, the problem reads

min
xdes

J(U, x)

s.t. R(U, x) = 0

Rtrim ≡ Jtrim(U, x) − J̄trim = 0

(7)

where Jtrim ∈ Rntrim is the vector of trim outputs, and J̄trim ∈ Rntrim is the vector of target trim values. In this work, we

consider ntrim = 1: the lift coefficient, c`, trimmed by angle of attack, α.

3.1. Shape Optimization with Concurrent Trimming

To optimize the design, we use a gradient-based method: the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [54]

algorithm with a backtracking line search. A notable feature of the implementation is concurrent trimming and

optimization with a constrained gradient calculation. A given initial design, xdes
0 , is first trimmed using multiple solver

iterations, where at each iteration the trim parameters are updated according to [55]

xtrim
k+1 = xtrim

k + ∆xtrim
k , ∆xtrim

k =

[
dJtrim

dxtrim

]−1

k

(
J̄trim − Jtrim(Uk, xk)

)
, (8)

5

The PDE-constrained sensitivity matrix dJtrim

dxtrim ∈ R
ntrim×ntrim is computed using adjoints of the trim outputs, and a user-

specified trim tolerance, δJtrim, serves as the termination criterion.

Following the initial trim, the shape optimization begins. Each design evaluation consists of a forward solution

for the state Uk, and adjoint solutions for the objective, J, and trim, Jtrim, outputs. The adjoints yield PDE-constrained

sensitivities of all outputs with respect to the design and trim parameters. The trimmed gradient of the objective with

respect to the design parameters is then

dJ
dxdes

∣∣∣∣∣∣
trim

=
dJ

dxdes +
dJ

dxtrim

dxtrim

dxdes ,
dxtrim

dxdes = −

[
dJtrim

dxtrim

]−1 dJtrim

dxdes , (9)

where the expression for dxtrim

dxdes follows from the requirement that changes in the design and trim parameters, δx, must

satisfy dJtrim

dx δx = 0. The gradient of the objective output as given in (9) is then used in the BFGS algorithm.

3.2. Line Search

During the BFGS line search, each objective function evaluation accounts for a linearized trim parameter change

and includes an off-trim correction. Let p be the design-space search direction, and µ the current line-search step

length. Prior to running the flow solver, the design and trim parameters are modified according to

xdes(µ) = xdes
k + ∆xdes, ∆xdes = µp, xtrim(µ) = xtrim

k +
dxtrim

dxdes ∆xdes, (10)

where the purpose of the xtrim modification is to maintain linearized trim conditions. The corresponding flow solu-

tion U(µ) may not be exactly trimmed, as the state and outputs can be nonlinear, while the trim modification arises

from linearizations about the zero step-length state and design. The objective calculation then includes an off-trim

correction,

J(µ) = J(U(µ), x(µ)) +
dJ

dxtrim

∣∣∣∣∣∣
U(µ),x(µ)

∆xtrim(µ), (11)

where the trim parameter change is computed from (8) using U(µ), x(µ).

The step length calculated from the line search, combined with the design-space search direction, determines the

change in the design parameters. In addition, following the line search, the trim parameters are modified according

to both (10), for the linear modification, and (8), for the nonlinear correction, with the latter using the trim sensitivity

matrix already available from the last line-search iteration.

3.3. Airfoil Parametrization

Many airfoil parametrizations have been developed for solving optimization problems [56, 57], and in this work

we only consider two simple approaches. The first is a continuous generalization of the 4-digit series from the National

Advisory Committee for Aeronautics (NACA), modified for zero trailing-edge gap, in which the camber and thickness

functions are

zc(x) =
zc,max

(1 − zc,loc)2

[
(1 − 2zc,loc) + 2zc,locx − x2

]
(x < zc,loc) +

zc,max

z2
c,loc

[
2zc,locx − x2

]
(x ≥ zc,loc), (12)

t(x) = tmax

(
0.2969

√
x − 0.126x − 0.3516x2 + 0.2843x3 − 0.1036x4

)
, (13)

6

where zc,max is the maximum camber, the first NACA series digit divided by 100, zc,loc is the location of maximum

camber, the second digit divided by 10, and tmax is the maximum thickness, the last two digits divided by 100. These

expressions assume a unit chord airfoil with 0 ≤ x ≤ c = 1. In the present study, we allow for continuous variation of

the airfoil parameters.

The second parametrization allows for more flexibility in the camber and thickness profiles. It consists of polyno-

mial expressions for both profiles, with bounding multiplicative envelopes,

zc(x) = x(1 − x)
[
c0 + c1x + . . . + cpc xpc

]
, (14)

t(x) = a abssmooth

{√
x(1 − x)

[
1 + t1x + . . . + tpt x

pt
]
, 0.2x(1 − x)

}
(15)

where ci are the coefficients of the order pc camber polynomial, ti are the coefficients of the order pt thickness

polynomial, and the smooth absolute value function is defined for positive b as

abssmooth(a, b) =

 |a| if |a| ≥ b

(a2 + b2)/(2b) otherwise
(16)

The coefficient a enforces a constant airfoil area, A,∫ 1

0
t(x) dx = A. (17)

3.4. Example Steady Optimization

To demonstrate the geometry parametrization and optimization algorithm, we consider the design of a minimum-

drag airfoil at transonic cruise conditions, Mach number M = 0.8, Reynolds number Re = 106, and lift coefficient

c` = 0.5. Five parameters define the camber and four define the thickness, according to (14) and (15). The airfoil area

is set to A = 0.06c2. An initial symmetrical airfoil shape is constructed by setting all 9 camber/thickness parameters

to 0. The computational mesh consists of 5390 quadrilaterals, curved to follow the geometry using an order q = 3

reference-to-global mapping. This airfoil is then trimmed to c` = 0.5 using an adjoint-based process [55] with a pitch

mesh deformation [20, 55] creating the angle of attack change. Artificial-viscosity shock capturing [58] prevents

spurious oscillations in the p = 2 solution. The optimization then proceeds using the concurrent optimization and

trimming algorithm described in Section 3.1.

Figure 1 shows the results of the optimization. The initial airfoil exhibits a strong shock on the upper surface at

approximately 55% chord. In the optimized design, this shock is virtually eliminated through a flattened upper surface

and increased camber near the trailing edge, resulting in a larger aft-loading characteristic of a supercritical airfoil.

The output and parameter history plots show that the minimum drag value is achieved rather quickly, even though the

shape and angle of attack keep changing as the load is redistributed on the airfoil. This occurs because after the first

few optimization iterations, the remaining shock is weak and its contribution to the drag is small.

7

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.0

0.5

0.0

0.5

1.0

1.5

pr
es

su
re

 c
oe

ffi
cie

nt

st
re

tc
h

initial
optimized

(a) shape and pressure coefficient

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
optimization iteration

0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

fo
rc

e
co

ef
fic

ie
nt

drag coefficient
lift coefficient error

0.75

1.00

1.25

1.50

1.75

2.00

2.25

an
gl

e
of

 a
tta

ck
 in

 d
eg

re
es

(b) output and parameter history

(c) Mach number contours, 0 − 1.3 (d) drag adjoint, x-momentum conservation component

Figure 1: Steady transonic airfoil shape optimization example: drag coefficient minimization at M = 0.8,Re = 106, c` = 0.5. Field plots at

optimized design.

8

4. Field Inversion

4.1. Unsteady Solution Averaging

Let Ū be a statistically-steady flow state computed as the time-average of the unsteady simulation after initial

transients,

Ū =
1

T f − Ti

∫ T f

Ti

U(t) dt, (18)

where Ti is the start time, taken sufficiently large to minimize startup transient effects, and T f is the final time,

taken sufficiently greater than Ti to yield an adequate statistical mean. The goal of field inversion is to determine

a correction field, which enters into the governing equations at the PDE level, to a steady-state model such that the

corrected steady-state solution reproduces Ū.

The proximity of the corrected solution to Ū is measured by the field-inversion error, E, which could be the error

in an engineering quantity such as lift or drag, a weighted combination of errors in scalar quantities, an L2 norm of the

entire state error, an L2 norm of a surface stress distribution error, etc. Presently, we consider the stress distribution

error,

E =
1
2

∫
airfoil
‖σ(U) · ~n − σ(Ū) · ~n‖2 ds, (19)

where σ is the stress tensor and ~n is the unit normal vector on the airfoil surface. We note that the entire time-

averaged flowfield is available and could also be used in the error definition. However, by focusing on the surface

stress distribution, we have observed better matching of force outputs and their sensitivities.

4.2. Correction-Field Inversion

In this work, the correction is a scalar field, β(~x), that multiplies the production term of the SA turbulence model.

The nominal value of this correction field is β = 1. The discrete representation of this field depends on the discretiza-

tion, and in this work, β(~x) is approximated by a p = 1 Lagrange DG basis on each element, even for p > 1 state

approximations. Higher approximation orders for β(~x) were found to increase the size of the inverse problem without

significantly improving accuracy. Let β be the vector of basis coefficients used in the approximation of β(~x), number-

ing 3Ne and 4Ne values for triangles and quadrilaterals, respectively. The use of a Lagrange basis makes the nominal

β a vector of all ones. The field inversion then becomes a discrete optimization problem,

min
β

Jinv ≡ E(U(β)) +
γ

2
(β − 1)T M(β − 1)

s.t. R(U,β) = 0
(20)

We have dropped the dependence of the residual on x, as the design and trim parameters remain fixed during inversion.

The additional term in the minimization problem is a continuous Tikhonov regularization that makes the inverse

problem well-posed by penalizing large deviations of the correction field from the nominal value of one. M is the

9

mass matrix from the spatial discretization, and γ is a small user-prescribed parameter that needs to be sufficiently

large to prevent ill-conditioning but not too large so as to affect the minimization of E. A broad range of values was

typically found to be acceptable, and for the normalized problems considered here, with O(1) units, γ = 10−7 was

used.

To solve (20), we use a simple steepest descent minimization algorithm, in which the PDE-constrained gradient

of the objective, Jinv, with respect to β is evaluated using an adjoint,

dJinv

dβ
=

(
ΨE

)T ∂R
∂β

+ γM(β − 1),
(
∂R
∂U

)T

ΨE +

(
∂E

∂U

)T

= 0. (21)

The linearization of the residual with respect to the correction, ∂R
∂β , is local to the elements: by virtue of the DG

discretization and the fact that the correction enters via a residual source term, coefficients of β for an element affect

the discrete residuals only on that element. Therefore, in this work, ∂R
∂β is evaluated efficiently using finite differences.

This requires only a small number of residual evaluations (e.g. 3 for triangles), as derivatives on all elements can be

calculated concurrently.

4.3. Example

To demonstrate the accuracy of the RANS correction, we consider a NACA 3412 airfoil at M = 0.2, Re = 104,

and angle of attack α = 0. This low Reynolds-number flow exhibits unsteady behavior that prevents the use of direct

unsteady adjoints for time-averaged outputs [59]. The case is solved using p = 2 solution approximation on a mesh

of 1978 q = 3 quadrilateral elements. A third-order modified backwards difference scheme (MEBDF) [52] is used to

advance the unsteady cases in time, using a time step of ∆t = .05c/U∞, where U∞ is the free-stream speed. After a

transient, a time horizon of T f − Ti = 30c/U∞ is used to calculate the average state according to (18).

RANS models are typically tuned for high Reynolds-number turbulent flows, so we should not expect good agree-

ment between unsteady results and a standard RANS result. This is indeed the case, as shown in Figure 2. The

uncorrected RANS solution exhibits a smaller wake and a different pressure distribution compared to the averaged

unsteady result. With the correction to the production term, however, the RANS model can be modified to quite-well

match the averaged unsteady result. Figure 2 shows that the Mach number profile and pressure distribution of the cor-

rected RANS result are nearly identical to the time-averaged unsteady result. The field inversion in this case is done

using the stress distribution error function, (19). The β(~x) plot indicates reduced turbulent production on the boundary

layer edges, particularly over the upper surface, and increased production towards the trailing edge and wake.

5. Machine Learning

5.1. Overview

The correction field obtained from the solution of the inverse problem presented in Section 4 makes the solution of

the corrected RANS equations match the unsteady average for a particular geometry and mesh. In design optimization,

10

(a) Instantaneous unsteady Mach number, 0 − 0.25 (b) Time-averaged state Mach number

(c) Uncorrected RANS Mach number (d) Corrected RANS Mach number

(e) Correction field, β(~x), 0.3 − 1.3

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.6

0.4

0.2

0.0

0.2

pr
es

su
re

 c
oe

ffi
cie

nt

Time-averaged state
Uncorrected RANS
Corrected RANS

(f) Surface pressure coefficient

Figure 2: Field-inversion results for unsteady flow around a NACA 3412 airfoil at M = 0.2,Re = 104, α = 0.

11

we would like to consider changes to the geometry and trim parameters, which lead to different meshes and states.

The correction field then also needs to change, in a manner generally beyond a simple mapping, as new geometry or

state features may require local changes to the correction.

One approach to realizing consistent changes to the correction field is to make this field a function of the state

and gradient, i.e. to create a model for β as a function of the local u and ∇u. As the correction enters the equations

at the residual level, propagation effects of convection-dominated systems can be modeled in this approach. For

example, a discrepancy in the location of separation can be resolved through changes in the turbulent production

at/before separation, where the boundary-layer profile can be controlled, instead of in the wake, where the largest

state discrepancies occur but where little control is possible.

The link between the state and the correction field can be made in the form of an analytical model [60], where

the coefficients of the model can be fit to features of the state. Alternatively, the analytical model can be replaced

altogether by a direct mapping from the state to the correction field, through an artificial neural network [61, 62]. This

idea forms the basis of the field-inversion machine-learning (FIML) approach to corrected turbulence modeling [27].

We note that the network plays a minor role in this method, in contrast to other approaches that use a network to

replace the entire turbulence model [63]. In FIML, the network could be replaced by other functional mappings or

closed form expressions [33].

FIML has seen success in making solutions of corrected turbulence models match unsteady or higher-fidelity data

for a variety of cases [28, 30, 31, 33]. The generality of this approach is still in debate [26], and it is possible that

FIML may never yield a general-purpose “new” turbulence model that performs better than existing analytical ones.

In addition, the identification and selection of the most physically relevant local state features for use as inputs into

the neural network has a high degree of arbitrariness [31].

These possible shortcomings of FIML do not affect our present work, which does not aim to derive a general-

purpose turbulence model. Our goal is to create a locally-valid corrected turbulence model that reproduces the behav-

ior of the unsteady system at geometries and conditions that are close in parameter space. The model is retrained as

the optimization progresses and more unsteady data become available. Furthermore, the fact that the model is specific

to the problem simplifies the network input selection. Instead of choosing, perhaps arbitrarily, non-dimensional, phys-

ically meaningful features, we take a more systematic approach and use the entire state vector, its spatial gradient, and

the wall distance as the network input.

5.2. Network Architecture and Training

The neural network maps local flowfield information to the scalar correction field. Figure 3 shows the structure of

the network used in this work, which is a single-hidden-layer perceptron. The hidden layer, x1, contains n1 neurons,

between the input layer, i.e. the features, x0, and the output layer, which consists of the scalar correction factor, β.

The map from the input to the hidden layer involves an entry-wise sigmoid activation function, σ(x) = 1/(1 + e−x),

whereas no activation function is used for the output layer calculation. The parameters associated with the network

12

x0

Input layer

β

x1

Hidden layer

∂u

∂x

∂u

∂y Output layer

d

u

x1 = σ(W1x0 + b1) β = Woutx1 + bout

Figure 3: Structure of the artificial neural networks used to predict the correction field.

consist of the weights and biases, Wi ∈ R
ni×ni−1 , bi ∈ R

ni , where ni is the number of neurons in layer i.

The input into the network consists of the state, u, its gradient, ∇u, and the wall distance, d, for a total of (1 +

dim)s + 1 neurons. After experimentation, the size of the hidden layer was set to n1 = 30 for the two-dimensional

problems considered here. The observed trade-off lies between over-fitting and high quadrature order requirements for

large n1 and a loss of accuracy for small n1. A fairly wide range of values, n1 ∈ [16, 50], showed similar performance,

so that the results are not overly sensitive to the precise value of n1.

The parameters associated with the network consist of all of the weights and biases. The values of these param-

eters are determined using an optimization procedure, the adaptive moment (Adam) estimation algorithm in Tensor-

Flow [64], that minimizes the mean squared error loss function between predicted and actual output-layer values. The

actual output-layer values, i.e. values of the correction field, come from the field inversion result for one particular

unsteady simulation. As β(x) is a field, each simulation yields ostensibly an infinite amount of training data. However,

the finite-dimensional representation of the state and β(x) means that not all of these data are independent or informa-

tive for training. In the present work, we sample the required fields (state, gradient, wall distance, correction) at the

quadrature points of each element. Each inversion result then yields an amount of training data that depends on the

mesh size and quadrature order.

The training data are broken into mini-batches of size 1000 for the optimizer, and the learning rate is set to .001.

Prior to training, the weights and biases are initialized randomly from a unit normal distribution. Experiments with

different learning rates, batch sizes, and initialization showed that the final results were not overly sensitive to these

choices. 500,000 optimization iterations are taken in each training session for all of the presented results, although

the mean-squared error typically stabilizes well before this number. Two to three orders of magnitude drop in the loss

are usually observed.

13

5.3. Implementation and Example

Once a network is trained, it is implemented as a physics model in the turbulence source calculation of the flow

simulation code. No changes to the inputs to this calculation are required, since the turbulent source already uses

the state, its gradient, and the wall distance function. All parts of the source calculation must be differentiated with

respect to the state and its gradient for the forward Newton solver and the discrete adjoint solver. This includes the

neural-network correction field calculation, the linearization of which is calculated using back-propagation [61]. For a

single-hidden layer network, the derivative of the scalar output with respect to the input vector is calculated as follows:

β = Woutσ(W1x0 + b1) + bout ⇒
∂β

∂x0
= W2 diag(σ′1) W1, (22)

whereσ′1 is the derivative of the activation function at the hidden layer values. For the sigmoid function, this derivative

is σ′ = σ(1 − σ), and hence its calculation only requires storing the hidden layer post-activation values. The chain

rule calculation in (22) extends systematically to multiple hidden layers. Due to the nonlinear nature of the network,

higher-order accurate quadrature rules are used for the corrected RANS model. Presently, an constant order increment

of 1 is added to the baseline 2p + 1 order requirement in the code.

To demonstrate the ability of the neural-network model to produce an accurate correction field, we extend the

example in Section 4.3 to multiple airfoils of varying camber. For five airfoils of cambers 0 to 5% of the chord,

unsteady simulations, field inversions, and neural network trainings are separately performed. The output of interest

is the lift coefficient and its sensitivity to camber changes.

Figure 4 shows the lift-coefficient results of the various simulations. The uncorrected RANS results show an

increasing lift coefficient with camber, and adjoint-based gradients that match the trend from the multiple simulations.

However, this trend disagrees with the time-averaged unsteady results, which show an initial decrease in the averaged

lift coefficient for small cambers, followed by an increase. The result is not surprising, as the RANS model is not

designed for such low Reynolds numbers.

Applying field inversion to each case and using the resulting correction field β(~x) in the turbulence model yields

data that track the time-averaged results well. More importantly, the neural-network model for β(~x) also performs

very well, as indicated by the “FIML” data points in Figure 4. These data correspond to simulations performed by

using the neural network model and not the inverted β(~x) field, which was used only for training. Furthermore, when

differentiated as part of the adjoint solver, the FIML result yields a reasonably-accurate PDE-constrained gradient of

the lift coefficient with respect to the camber. The ability to accurately predict the lift coefficient value and its gradient

with respect to shape parameters is important when using the FIML correction model in optimization.

Figure 5 shows the differences in the lift adjoint fields, the conservation of y momentum component, obtained from

the uncorrected RANS and the FIML solutions. These are shown on the same scale, and the differences are large,

particularly over the upper surface of the airfoil. The correction field, β(~x), is also shown, calculated using the neural

network at the converged FIML state. This field matches well with the inversion result shown in Figure 2. Finally, the

14

0.00 0.01 0.02 0.03 0.04 0.05
camber

0.00

0.05

0.10

0.15

lif
t c

oe
ffi

cie
nt

Unsteady NS
Field Inversion
FIML
FIML gradient
RANS
RANS gradient

Figure 4: Field-inversion and machine learning results for lift-coefficient calculations in unsteady flow around NACA X412 airfoils at M = 0.2,Re =

104, α = 0.

pressure distribution from the FIML state matches the averaged unsteady pressude distribution just as well as the field

inversion result.

(a) Uncorrected RANS lift adjoint: y-momentum (b) FIML lift adjoint: y-momentum

(c) Neural-network correction field, 0.3 − 1.3

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.6

0.4

0.2

0.0

0.2

pr
es

su
re

 c
oe

ffi
cie

nt

Time-averaged state
Uncorrected RANS
FIML

(d) Surface pressure coefficient

Figure 5: FIML and RANS contour plots for unsteady flow around a NACA 3412 airfoil at M = 0.2,Re = 104, α = 0.

15

6. Unsteady Optimization

The objective of the unsteady optimization problem is to determine the airfoil shape that minimizes a given time-

averaged cost function, possibly subject to certain constraints. For example, we may be interested in minimizing the

time-averaged drag coefficient subject to a fixed time-averaged lift coefficient and geometrical constraints such as

airfoil area and minimum thickness. Our chosen airfoil parametrization automatically enforces shape constraints of

the latter form, and output constraints are handled via concurrent trimming.

In trimmed simulations, the trim conditions are enforced in steady mode prior to and then concurrently with the

optimization, as described in Section 3.1. In unsteady mode, trimming with one parameter is performed by averaging

the trimming output (e.g. lift coefficient) over a prescribed time range and adjusting the trim parameter (e.g. angle

of attack) at discrete intervals to achieve the target output. The sensitivities required for the parameter change are

computed from a finite-difference of the previous two output and parameter values. The initial sensitivity comes from

an adjoint-based derivative about the average state. A prescribed “burn” window, during which no averaging is per-

formed, follows each parameter change and the initial time. Figure 6 summarizes this unsteady trimming procedure.

0 10 20 30 40 50 60

time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lif
t

co
effi

ci
en

t

Averaging window Burn window

Target c`

Figure 6: Unsteady trimming of the lift coefficient using the angle of attack, taken from a simulation of the airfoil studied in Section 7.1.

The proposed unsteady optimization approach consists of the following steps:

1. Run the unsteady simulation, with trimming if needed, and save the average state.

2. Perform field inversion using the RANS model at the same geometry and free-stream conditions to determine

the correction field, β(~x).

3. Train the neural network model to compute the correction as a function of the state, gradient, and wall distance,

β(~x)→ β(u,∇u, d).

4. Optimize the geometry in steady mode using the correction model, i.e. FIML.

5. Return to step 1.

Each cycle through these steps constitutes an unsteady optimization iteration. The initial airfoil shape for the first

unsteady simulation could be based on default parameters or it could be the result of a steady-state optimization. The

latter is generally more efficient, although we present both approaches in the results.

16

7. Results

This section presents a sequence of three numerical results that demonstrate the unsteady optimization method

introduced in this work. The computational meshes in each case consist of q = 3 curved quadrilaterals generated

by a script according to the specified shape parameters. Anisotropic elements resolve the boundary layer through a

non-uniform airfoil-normal spacing chosen a priori based on the Reynolds number. Figure 7 shows the meshes, at

the optimized geometries, for the three cases considered. The angle of attack is imposed through a static arbitrary

Lagrangian-Eulerian pitch deformation centered at the airfoil mid-chord and blended to zero 20 airfoil chord lengths

away from the center.

(a) Re = 104, c` = 0.4: 1978 elements (b) Re = 106, c` = 2.4: 2816 elements

(c) Re = 104,max(c`): 2112 elements

Figure 7: Meshes used in the three results cases, shown for the final optimized geometries.

17

7.1. Fixed-Lift Drag Minimization, Re = 104

As a first example, we consider a drag minimization problem for an airfoil at a prescribed lift coefficient of

c` = 0.4, and M = 0.2, Re = 104. No turbulence model is used in the unsteady simulations at this low Reynolds

number. The area of the airfoil is constrained to A = .06c2 via (17). Three camber parameters, c0, c1, c2 in (14), and

two thickness parameters, t1, t2 in (15), dictate the shape of the airfoil. All five of these parameters are set to zero to

obtain the initial shape.

In this case, we first trim the initial airfoil in unsteady mode to determine the lift coefficient that attains the

prescribed average lift coefficient. Figure 8(a) shows the lift coefficient time history for a portion of the trimmed

condition, along with a snapshot of the x-momentum contour field. The initial airfoil exhibits large oscillations in the

lift coefficient, in the approximate range c` ∈ [0.2, 0.6] and frequency of 1c/U∞, where U∞ is the freestream speed.

174 176 178 180 182 184 186

time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lif
t

co
effi

ci
en

t

c̄d = .0305

(a) Unsteady solution

Correction Field, β, [0.2,1.3]

x−momentum contours

(b) Field inversion

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.5

1.0

0.5

0.0

0.5

1.0

1.5

pr
es

su
re

 c
oe

ffi
cie

nt

st
re

tc
h

initial
optimized

(c) FIML Optimization

Figure 8: First FIML optimization iteration for minimizing drag on an airfoil at M = 0.2,Re = 104, c` = 0.4.

The oscillatory flowfield and outputs prevent the application of standard unsteady adjoint techniques for computing

18

gradients [65, 66, 59]. Figure 9 shows the backward-in-time growth of the adjoint solution norm for a time-integral

lift output, along with snapshots of the instantaneous adjoint. In addition to this instability, a full unsteady adjoint

solution is also expensive in storage and computational overhead of the reverse time-marching solution, rendering it

impractical for unsteady turbulent flows. We stress that the present approach does not require unsteady adjoints, as it

creates a tailored steady-state model for the time-averaged solution and optimizes using this model.

40 50 60 70 80

time

100

101

102

103

104

L
2

ad
jo

in
t

no
rm

Figure 9: Instability in the unsteady lift-integral adjoint for the initial airfoil in the constrained-lift drag minimization at M = 0.2,Re = 104, c` = 0.4.

Field plots show the conservation of x momentum adjoint. Time is measured in units of the airfoil chord divided by the freestream speed.

The time-averaged state and outputs for the initial airfoil were obtained using 20c/U∞ time units of the trimmed

unsteady simulation. The average values were used as targets in the field inversion process, as described in Section 4.

In particular, 50 steepest-descent iterations were taken to determine the β(~x) field that minimized the error in the

airfoil surface stress distribution. Figure 8(b) show the resulting correction field and x-momentum contours from

the corrected RANS simulation. Note that the correction field calls for a general decrease of turbulent production

at the edge of the upper-surface boundary layer, which leads to earlier separation and higher drag compared to an

uncorrected-RANS simulation.

Data from this correction field were used to train a neural network, with one hidden layer of 30 neurons, to predict

β from the local state, gradient, and wall-distance function. The RANS equations together with the network-based

correction field constitute the FIML model, which is used in a steady shape optimization. Figure 8(c) shows the result

of 50 BFGS optimization iterations using this first FIML model. The optimized shape exhibits a reduced suction peak,

a higher aft-loading redistribution of the lift, and a shift of area from the aft the front of the airfoil.

The combination of unsteady simulation, field inversion, and corrected steady optimization constitutes one FIML

optimization iteration. This process is repeated with the optimized airfoil, and Figure 10 shows the results of the

second FIML optimization iteration, which parallel those of Figure 8.

The flowfield remains unsteady for the optimized airfoil, but the unsteady trimming time history in Figure 10(a)

shows a reduced amplitude of the lift coefficient variation, by almost a factor of two compared to Figure 8(a). Field

19

174 176 178 180 182 184 186

time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lif
t

co
effi

ci
en

t

c̄d = .0256

(a) Unsteady solution

Correction Field, β, [0.2,1.3]

x−momentum contours

(b) Field inversion

0.0 0.2 0.4 0.6 0.8 1.0
x/c

1.5

1.0

0.5

0.0

0.5

1.0

1.5

pr
es

su
re

 c
oe

ffi
cie

nt

st
re

tc
h

first iteration
second iteration

(c) FIML Optimization

Figure 10: Second FIML optimization iteration for minimizing drag on an airfoil at M = 0.2,Re = 104, c` = 0.4.

20

inversion was then performed using the time-averaged surface stress distribution as a target and the same parameters

as in the first iteration. Figure 10(b) shows the resulting correction field and x-momentum contours. The dominant

feature of the correction field is again a suppression of turbulent production on the upper surface. A similar but lower-

magnitude suppression now also appears on the lower surface due to the adverse pressure gradient brought about by

the increased aft camber.

A new neural network is constructed from the second correction field, and the resulting FIML model is used to

re-optimize the airfoil shape. Figure 10(c) shows the shape and pressure distribution of the second FIML optimization

iteration. The changes in the shape compared to the first FIML optimization are not large: a slight flattening of the

upper surface and reduction in overall camber, except for the aft portion.

0.0 0.2 0.4 0.6 0.8 1.0

x/c

−0.06

−0.04

−0.02

0.00

0.02

0.04

z/
c

initial

RANS optimized

FIML optimized

(a) Airfoil shapes (b) RANS airfoil steady Mach contours (0-.27)

(c) RANS airfoil time-averaged Mach contours (0-.27) (d) FIML airfoil time-averaged Mach contours (0-.27)

Figure 11: Comparison of RANS and FIML optimized airfoil shapes and time-averaged Mach number contours at M = 0.2,Re = 104, c` = 0.4.

Two additional FIML optimizations were performed, each with a separate unsteady simulation, inversion, and

steady optimization. Figure 11 shows the final FIML-optimized airfoil shape, along with a comparison to the

uncorrected-RANS optimization result. The latter shape, referred to simply as the RANS airfoil, exhibits a rounder

upper surface and a more aggressive thickness decrease along the chord, which leads to a larger-magnitude adverse

pressure gradient. An uncorrected RANS analysis of this airfoil yields the Mach number contours shown in Fig-

ure 11(b): the flow remains attached on the upper and lower surfaces. However, an unsteady analysis without the

RANS model results in a different picture. Figure 11(c) shows the Mach number from the time-averaged state, and

the wake is much larger due to separated flow on the upper surface. In contrast, the FIML-optimized airfoil yields

a time-averaged state with a smaller wake due to, on average, later separation enabled by a less adverse pressure

gradient.

Table 1 summarizes the optimization results in terms of the average drag coefficient from a trimmed unsteady

simulation of the various airfoils. RANS-alone optimization yields a drag reduction by almost 50 counts compared

21

to the chosen initial airfoil. This is similar to the result from the first iteration of the FIML optimization. However,

subsequent FIML optimizations further reduce the average drag by over 40 drag counts.

Table 1: Time-averaged drag coefficients of initial and optimized airfoils at M = 0.2,Re = 104, c` = 0.4.

Airfoil Average drag coefficient

Initial airfoil shape 0.0305

RANS-optimization 0.0259

FIML-optimization, 1st iteration 0.0256

FIML-optimization, 2nd iteration 0.0241

FIML-optimization, 3rd iteration 0.0215

FIML-optimization, 4th iteration 0.0212

To verify the importance of the correction model on the optimal shape, the final FIML-optimized airfoil was used

as the initial airfoil in an uncorrected-RANS optimization. The result of this optimization was the same RANS-

alone optimized result obtained from the original initial airfoil, shown in Figure 11. This indicates that the FIML

correction-field model is responsible for the additional over 40 counts of drag reduction compared to an uncorrected

RANS optimization.

7.2. Fixed-Lift Drag Minimization, Re = 106

We next consider a drag minimization problem at a higher lift coefficient, c` = 2.4 and Reynolds number, Re = 106.

The free-stream Mach number remains M = 0.2, but the airfoil is thicker, with area constrained to A = 0.1c2. Four

camber parameters, c0, c1, c2, c4 in (14), and three thickness parameters, t1, t2, t3 in (15), dictate the shape of the airfoil.

In this case, we first optimize the airfoil using the standard, uncorrected RANS equations. The resulting shape,

termed the RANS airfoil, is then trimmed in unsteady mode, using the simple DES model described in Section 2.1,

with dmax = .02c. The time-averaged state and output from the trimmed unsteady simulation provide the target data

for field inversion, machine learning, and the follow-up FIML optimization. We refer to the resulting airfoil as the

FIML airfoil, and we compare its performance to that of the RANS airfoil.

Figure 12 shows the unsteady lift coefficient time histories, after trimming, of both the RANS and the FIML

airfoils. These are similar and exhibit small variations about the target mean. The flow develops unsteadiness in the

wake of the upper surface, as shown by the accompanying entropy contours.

The optimized airfoil shapes, shown more clearly in the subsequent figures, exhibit a couple of interesting features.

First, the aft portion of the airfoil is very thin. The thickness constraint is active, as most of the required airfoil area

is placed towards the front of the airfoil. The aft portion is also highly cambered, and thus responsible for much

of the lift generation as well as the unsteadiness due to separation. However, as this is a small region, the resulting

unsteadiness does not dominate the flowfield the flow remains attached over the majority of the airfoil.

22

58 60 62 64 66

time

2.30

2.32

2.34

2.36

2.38

2.40

2.42

lif
t

co
effi

ci
en

t

c̄d = .0321

entropy contours

(a) RANS airfoil

58 60 62 64 66

time

2.30

2.32

2.34

2.36

2.38

2.40

2.42

lif
t

co
effi

ci
en

t

c̄d = .0308

entropy contours

(b) FIML airfoil

Figure 12: Unsteady analyses of RANS and FIML airfoils optimized for minimizing drag at M = 0.2,Re = 106, c` = 2.4.

Figure 13(a) compares the RANS and FIML airfoil shapes. We see that the shapes are quite similar, with the

FIML airfoil redistributing some of the thickness from the front of the airfoil over a larger portion of the chord. The

FIML airfoil also has a slightly sharper leading edge. The correction field obtained after field inversion, shown in

Figure 13(b), shows a thin region of suppression of turbulence production over the upper surface, which is responsible

for boundary layer thickening and an earlier point of separation. The correction is largely inactive over the lower

surface but flares up in the wake, shortly behind the trailing edge, in the form of a confined region of suppression of

turbulent production. This suppression reduces mixing in the shear layer between the lower and upper surface flows.

Finally, Figure 13 also shows the Mach number contours from both the steady and the time-averaged unsteady

flowfields of the RANS and FIML airfoils, respectively. The high Reynolds number of this flow makes the differences

difficult to discern, but both the upper-surface boundary layer and the wake are thicker in the time-averaged FIML-

airfoil case than in the steady RANS airfoil case. These differences impact the outputs: the steady RANS analysis

predicts a drag coefficient that is 46 counts lower than the time-averaged result.

Table 2 summarizes the drag coefficient results for the two airfoils. The RANS airfoil is a result of a steady

optimization using the standard RANS equations. It is analyzed both in steady and unsteady, DES, modes. The

first two lines of Table 2 show the differences in the trimmed-state drag coefficients between these two analyses of

the RANS airfoil: 45 counts higher for the unsteady analysis. The time-averaged unsteady analysis of the RANS

airfoil provides the target data for the field inversion and training of the FIML model, an optimization of which yields

the FIML airfoil. The parametrization remains the same: seven shape parameters and the angle of attack as the trim

parameter. The last line of Table 2 shows the unsteady-analysis drag coefficient result for the FIML airfoil: a reduction

of 13 drag counts relative to the RANS airfoil. As in the previous case, the shape difference between the two airfoils

was tested for persistence: an uncorrected RANS optimization starting with the FIML airfoil reverts back to the RANS

23

0.0 0.2 0.4 0.6 0.8 1.0

x/c−0.05

0.00

0.05

0.10

0.15

z/
c

RANS optimized

FIML optimized

(a) Airfoil shapes (b) Correction field, β, (0.2-1.3)

(c) RANS airfoil steady Mach contours (0-.5) (d) FIML airfoil time-averaged Mach contours (0-.5)

Figure 13: Comparison of RANS and FIML airfoil shapes, the correction field, and Mach number contours for drag minimization at M = 0.2,Re =

106, c` = 2.4.

airfoil.

Table 2: Drag coefficients of optimized airfoils at M = 0.2,Re = 106, c` = 2.4.

Airfoil Drag coefficient

RANS airfoil, steady analysis 0.0275

RANS airfoil, unsteady analysis 0.0321

FIML airfoil, unsteady analysis 0.0308

Although the primal flowfields of the RANS and FIML airfoils are similar, differences in the adjoint solutions

are more pronounced. Figure 14 compares the drag adjoints obtained from the uncorrected RANS equations and the

RANS equations with the FIML correction, referred to as the FIML equations. Both fields are shown on the same

shape, the RANS airfoil, and the adjoint component shown corresponds to the conservation of x-momentum equation.

We see that for the FIML equations, the drag is more sensitive to residual perturbations along the upper surface, close

to the airfoil, particularly in the acceleration region over the front of the airfoil and the high-camber aft portion. These

differences in the adjoint arise from differences in both the primal state and the residual Jacobian matrix. The latter is

caused by the linearization of the neural-network model for the correction field, which affects the matrix of the adjoint

linear system.

24

(a) RANS-equation adjoint (b) FIML-equation adjoint

Figure 14: Field plots of the conservation of x-momentum component of the drag adjoint for the RANS-optimized airfoil, using both the RANS

equations and the corrected, FIML equations at M = 0.2,Re = 106, c` = 2.4.

7.3. Lift Maximization, Re = 104

As a final example, we consider the maximization of the lift produced by an airfoil at free-stream M = 0.2 and

Re = 104. The airfoil has an area constraint of A = 0.06c2, and the design parameters consist of the same seven

shape parameters as in the previous example, Section 7.2, augmented by the angle of attack. No trim parameters are

necessary for this unconstrained maximization problem.

As in the previous example, we first optimize the airfoil using the uncorrected RANS equations, starting from a

baseline airfoil in which all shape parameters are zero,and this optimization yields the RANS airfoil. An unsteady

analysis of the RANS airfoil is then performed, and time-averaged state and output information from the unsteady

analysis of the RANS airfoil provide the target data for field inversion and machine learning. The resulting FIML

model is used to re-optimize the airfoil with unsteady information, using the same optimization technique as for the

steady RANS case. The combination of unsteady analysis and FIML optimization constitutes one FIML optimization

iteration, and a total of three such iterations (requiring three unsteady analyses) are performed to obtain the FIML

airfoil. We note that the RANS and the FIML airfoils also each come with their optimized angle of attack.

Figure 15 shows the geometries of the two airfoils. Both are highly cambered, with a smooth, near right-angle flow

deflection at the trailing edge, starting at approximately 75% of the chord. However, the airfoils do have noticeable

differences. The FIML airfoil has a smaller radius of curvature at the leading edge and is thinner for the first 25% of

the chord. Its thickness then gradually increases over the middle before tapering off at the trailing edge. In contrast,

the RANS airfoil starts out thicker and maintains a relatively constant thickness distribution from 25% to 70% of the

chord. Its upper surface is also flatter than that of the FIML airfoil. The optimum angles of attack for the two airfoils

are not too different: 22.92◦ for the RANS airfoil and 23.41◦ for the FIML airfoil. These large values align the flow

with the direction of the first portion of the airfoil, so that the last 25% of the chord constitutes an effective smooth

flap.

Table 3 presents the lift coefficient results for the optimized airfoils. It shows values from a steady-state RANS

analysis and an unsteady analysis (time-averaged value), for both airfoils. Simulations for each airfoil are performed

at the airfoil’s optimized angle of attack. We see that each airfoil has the higher lift coefficient in the analysis that

25

0.0 0.2 0.4 0.6 0.8 1.0

x/c−0.05

0.05

0.15

0.25

0.35

z/
c

RANS airfoil

FIML airfoil

Figure 15: Airfoils optimized for maximum lift at M = 0.2,Re = 104.

matches the optimization. The RANS airfoil has the higher lift coefficient in the steady analysis, as expected from the

steady optimization. The FIML airfoil has the higher lift coefficient in the unsteady analysis, by over 8.5%, which

indicates that the FIML model is accounting for the unsteady effects of the flow. We also note that the unsteady

analyses predict much higher lift coefficients than steady RANS, by 40% to 60%.

Table 3: Lift coefficient results for lift maximization at M = 0.2,Re = 104.

Airfoil Angle of attack Analysis Lift coefficient

RANS airfoil 22.92◦ Steady 1.93

RANS airfoil 22.92◦ Unsteady 2.71

FIML airfoil 23.41◦ Steady 1.85

FIML airfoil 23.41◦ Unsteady 2.94

Figure 16 shows the lift coefficient time histories from the unsteady analyses of the two airfoils. Both histories

show a high degree of unsteadiness, but the range of lift coefficient variation is smaller in the FIML airfoil case:

between 2.5 and 3.5 compared to 1.75 and 3.25 in the RANS airfoil. The time history of the RANS airfoil lift

coefficient is punctuated by large drops in the lift coefficient, which correspond to large vortex shedding events off the

leading edge. These are not present for the FIML airfoil. In addition, the overall lower average lift coefficient for the

RANS airfoil is discernible from the time histories.

Figure 17 compares Mach number snapshots of the unsteady flowfields for both airfoils. The large degree of

unsteadiness in the flowfield is apparent, with vortices that start shortly after the leading edge on the upper surface.

The flat front portion of the RANS airfoil leads to a larger region of leading-edge separation, in contrast to the more

cambered FIML airfoil front portion that allows for reattachment. In both airfoils, the high effective flap angle leads

to large shed vortices in the wake.

Figure 18 shows the time-averaged Mach number contours for both cases, computed from the unsteady analyses.

We see that a region of separated flow on the upper surface starts almost immediately at the leading edge in both

26

0 20 40 60 80 100 120 140
time

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

lif
t c

oe
ffi

cie
nt

RANS airfoil
FIML airfoil

Figure 16: Lift coefficient time histories for lift maximization at M = 0.2,Re = 104.

(a) RANS airfoil (b) FIML airfoil

Figure 17: Instantaneous Mach number contours (0-.5) of airfoils optimized for lift maximization at M = 0.2,Re = 104.

27

airfoils, but that it re-attaches by the start of the flap in the FIML airfoil. This then leads to more flow turning on the

upper surface and hence larger lift generation. In the RANS airfoil case, the flow does not re-attach, leading to a larger

wake, less flow turning and hence less lift.

(a) RANS airfoil (b) FIML airfoil

Figure 18: Time-averaged Mach number contours (0-.5) of airfoils optimized for lift maximization at M = 0.2,Re = 104.

Finally, to test the performance of the airfoils off-design, and to verify the angles of attack determined from the

optimization, we perform an angle of attack sweep of both airfoils. For the unsteady analyses, this involves running a

separate unsteady simulation at each angle of attack and computing the time-averaged lift coefficient. Figure 19 shows

the resulting lift coefficient curves. In addition to the two unsteady analyses, we also include a steady analysis result

of the RANS airfoil. The optimal angles of attack for the unsteady FIML airfoil analysis and the steady RANS airfoil

analysis are indeed correctly predicted by the optimization, as indicated by the large symbols. The unsteady angle of

attack sweep of the RANS airfoil shows that the maximum time-averaged lift actually occurs at an angle of attack that

is lower, about α = 21◦, than the 22.92◦ angle predicted by the steady analysis. In contrast, the FIML optimization

correctly predicts the angle of attack at maximum time-averaged lift.

8. Summary and Discussion

8.1. Methods Summary

This paper introduces a gradient-based approach for optimizing shapes of airfoils in unsteady turbulent flows.

The most challenging aspect of this problem is the calculation of the gradient, which is the sensitivity of the output

with respect to the shape parameters. Whereas adjoint-based methods enable efficient gradient calculations, their

application to unsteady turbulent flows is hampered by the fact that for problems exhibiting chaotic or limit-cycle

oscillations, a direct unsteady adjoint solution is unstable. Furthermore, unsteady adjoint solutions are inherently

expensive, becoming impractical for large simulations in which only a few forward primal solutions can be afforded.

The gradient calculation proposed in this work does not rely on an unsteady adjoint. Instead, a steady-state model

is first created from the unsteady simulation data, and the adjoint method is applied to the steady-state model. The

28

19 20 21 22 23 24 25
angle of attack [deg]

1.8

2.0

2.2

2.4

2.6

2.8

lif
t c

oe
ffi

cie
nt

FIML airfoil (unsteady analysis)
RANS airfoil (unsteady analysis)
RANS airfoil (steady analysis)

Figure 19: Lift coefficient versus angle of attack for the optimized airfoils for lift maximization at M = 0.2,Re = 104. Large symbols indicate the

angle of attack determined from the optimization.

steady-state model is based on the Reynolds-averaged Navier-Stokes equations, to which a correction is applied via

a multiplicative factor on the production term. The correction factor is a field quantity that is computed from the

unsteady simulation data by solving an inverse problem. The unsteady simulation provides the target data for this

inversion.

Following the field inversion, a neural network model is trained to produce the correction factor from local flow

data. The single corrected RANS solution provides a large quantity of training data, as the correction factor is mea-

sured at the quadrature points of each element. The local data consist simply of the state, its spatial gradient, and the

wall distance. No effort is made to form non-dimensional inputs, as the network does not need to be generalizable

across different flow regimes or vastly-different geometries. Instead, the network is used only for a single steady-

state optimization. The network must be linearized for accurate adjoint calculations. After shape and trim parameter

changes, a new unsteady run follows, and a new network is trained. Thus, the goal of the machine learning as used in

this work is not to create a new turbulence model, but to enable the calculation of an adjoint for an unsteady flow.

The discretization used in this work is a discontinuous Galerkin (DG) finite-element method with implicit time

stepping. DG allows for a high-order solution representation that can be more efficient at resolving the smooth

unsteady flows considered here, with features at multiple length and time scales. However, the unsteady optimization

approach is not tied to DG and could be used with other discretizations, such as finite-volume or finite-difference

methods. Similarly, the method is not tied to the unsteady model, which here is the Navier-Stokes equations with

a very simple DES at large Reynolds numbers. Indeed, as the method is not intrusive into the unsteady simulation,

independent “black-box” unsteady solvers could be used, with various levels of fidelity, including DES or LES. Only

average flowfield statistics are required for the inversion and training. Finally, the approach is not tied to the specific

steady-state optimization method, as long as it is gradient-based. This work uses the BFGS method with concurrent

29

trimming, and a polynomial-based parametrization of the airfoil camber and thickness. Other, more sophisticated

optimization approaches could also be used.

8.2. Discussion and Conclusions

The ideal application of the presented unsteady optimization approach is ostensibly to turbulent flows that are

unsteady but reasonably well-approximated by the baseline steady turbulence model. However, we have shown cases

that span a range of unsteadiness level, from small-scale to massive separation. These include drag minimization and

lift maximization, at low and high Reynolds numbers. In all cases, unsteady optimization yields improved designs.

For the high Reynolds number case, we observe a drag reduction of over 4% over a standard RANS optimization. This

is a modest gain, as RANS is already a decent model for high Reynolds number flows with small-scale unsteadiness.

More interesting is the low-Reynolds number, fixed-lift drag minimization at Re = 104. In this case, the RANS

model by itself is not accurate, as it predicts attached flow whereas the averaged unsteady flowfield has a high propen-

sity for separation. With a correction, primarily suppression of turbulent production, the FIML model is able to very

well approximate the averaged unsteady flowfield and outputs. Moreover, the gradients computed from the FIML

model also match reasonably well with the unsteady flowfield gradients. As a result, optimization with the FIML

model leads to a design that has an 18% lower averaged drag coefficient compared to the RANS optimization, when

both are analyzed using the unsteady Navier-Stokes equations.

Pushing the algorithm to a flowfield with even more unsteadiness, we optimize an airfoil at Re = 104 purely for

maximum lift, without regard to drag. Both RANS and FIML airfoil shapes attempt to turn the flow as much as

possible in this case, leading to massive separation off the top surface and many vortex shedding events. However,

camber and thickness differences in the front portion of the airfoil are responsible for the FIML airfoil exhibiting

re-attachment before the beginning of the downward flap deflection, leading to increased flow turning and lift. The

improvement is 8.5% over the RANS airfoil in unsteady analysis, whereas the steady RANS analysis severely under-

predicts the lift. This result shows that the unsteady optimization approach can be applied to cases in which the

original RANS model would not be deemed appropriate. Extending the FIML/RANS combination to more off-design

conditions, including bluff bodies, and to multidisciplinary design optimization problems is the subject of future work.

References

[1] H. R. Karbasian, B. C. Vermeire, Gradient-free aerodynamic shape optimization using large eddy simulation, Computers and Fluids 232

(2022) 105185. doi:https://doi.org/10.1016/j.compfluid.2021.105185.

[2] O. Pironneau, On optimum design in fluid mechanics, Journal of Fluid Mechanics 64 (1974) 97–110. doi:https://doi.org/10.1017/

S0022112074002023.

[3] S. K. Nadarajah, A. Jameson, A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization, AIAA

Paper 2000-0667 (2000). doi:https://doi.org/10.2514/6.2000-667.

[4] J. R. R. A. Martins, A. B. Lambe, Multidisciplinary design optimization: a survey of architectures, AIAA Journal 51 (9) (2013) 2049–2075.

doi:https://doi.org/10.2514/1.J051895.

30

http://dx.doi.org/https://doi.org/10.1016/j.compfluid.2021.105185
http://dx.doi.org/https://doi.org/10.1017/S0022112074002023
http://dx.doi.org/https://doi.org/10.1017/S0022112074002023
http://dx.doi.org/https://doi.org/10.2514/6.2000-667
http://dx.doi.org/https://doi.org/10.2514/1.J051895

[5] T. D. Economon, F. Palacios, J. J. Alonso, Unsteady continuous adjoint approach for aerodynamic design on dynamic meshes, AIAA Journal

53 (9) (2015) 2437–2453. doi:https://doi.org/10.2514/1.J053763.

[6] G. Chen, K. J. Fidkowski, Discretization error control for constrained aerodynamic shape optimization, Journal of Computational Physics

387 (2019) 163–185. doi:10.1016/j.jcp.2019.02.038.

[7] A. Rubino, S. Vitale, P. Colonna, M. Pini, Fully-turbulent adjoint method for the unsteady shape optimization of multi-row turbomachinery,

Aerospace Science and Technology 106 (2020) 106132. doi:10.1016/j.ast.2020.106132.

[8] C. Johnson, On computability and error control in CFD, International Journal for Numerical Methods in Fluids 20 (1995) 777–788. doi:

https://doi.org/10.1002/fld.1650200806.

[9] Q. Wang, Forward and adjoint sensitivity computation of chaotic dynamical systems, Journal of Computational Physics 235 (2013) 1–13.

doi:https://doi.org/10.1016/j.jcp.2012.09.007.

[10] Q. Wang, R. Hu, P. Blonigan, Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations, Journal of Computational

Physics 267 (2014) 210–224. doi:https://doi.org/10.1016/j.jcp.2014.03.002.

[11] Q. Wang, Convergence of the least squares shadowing method for computing derivative of ergodic averages, SIAM Journal on Numerical

Analysis 52 (1) (2014) 156–170. doi:https://doi.org/10.1137/130917065.

[12] P. J. Blonigan, S. A. Gomez, Q. Wang, Least squares shadowing for sensitivity analysis of turbulent fluid flows, AIAA Paper 2014–1426

(2014). doi:https://doi.org/10.2514/6.2014-1426.

[13] A. Ni, Q. Wang, Sensitivity analysis on chaotic dynamical systems by non-intrusive least squares shadowing (NILSS), Journal of Computa-

tional Physics 347 (2017) 56–77. doi:10.1016/j.jcp.2017.06.033.

[14] A. Ni, Q. Wang, P. Fernández, C. Talnikar, Sensitivity analysis on chaotic dynamical systems by finite difference non-intrusive least squares

shadowing (FD-NILSS), Journal of Computational Physics 394 (2019) 615–631. doi:doi.org/10.1016/j.jcp.2019.06.004.

[15] A. Griewank, A. Walther, Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,

ACM Transactions on Mathematical Software 26 (1) (2000) 19–45. doi:https://doi.org/10.1145/347837.347846.

[16] D. Meidner, B. Vexler, Adaptive space-time finite element methods for parabolic optimization problems, SIAM Journal on Control Optimiza-

tion 46 (1) (2007) 116–142. doi:https://doi.org/10.1137/060648994.

[17] K. Mani, D. J. Mavriplis, Error estimation and adaptation for functional outputs in time-dependent flow problems, Journal of Computational

Physics 229 (2010) 415–440. doi:https://doi.org/10.1016/j.jcp.2009.09.034.

[18] K. J. Fidkowski, Y. Luo, Output-based space-time mesh adaptation for the compressible Navier-Stokes equations, Journal of Computational

Physics 230 (2011) 5753–5773. doi:10.1016/j.jcp.2011.03.059.

[19] K. J. Fidkowski, An output-based dynamic order refinement strategy for unsteady aerodynamics, AIAA Paper 2012-77 (2012). doi:10.

2514/6.2012-77.

[20] S. M. Kast, K. J. Fidkowski, Output-based mesh adaptation for high order Navier-Stokes simulations on deformable domains, Journal of

Computational Physics 252 (1) (2013) 468–494. doi:10.1016/j.jcp.2013.06.007.

[21] K. J. Fidkowski, Output-based space-time mesh optimization for unsteady flows using continuous-in-time adjoints, Journal of Computational

Physics 341 (15) (2017) 258–277. doi:10.1016/j.jcp.2017.04.005.

[22] V. Ojha, K. J. Fidkowski, C. E. S. Cesnik, Adaptive mesh refinement for fluid-structure interaction simulations, AIAA Paper 2021–0731

(2021). doi:10.2514/6.2021-0731.

[23] A. Belme, A. Dervieux, F. Alauzet, Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, Journal of Computational

Physics 231 (19) (2012) 6323–6348. doi:10.1016/j.jcp.2012.05.003.

[24] F. Alauzet, A. Loseille, G. Olivier, Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows, Journal of Computational

Physics 373 (15) (2018) 28–63. doi:10.1016/j.jcp.2018.06.043.

[25] J. Larsson, Q. Wang, The prospect of using large eddy and detached eddy simulations in engineering design, and the research required to get

there, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 372 (2022) (2014)

20130329. doi:https://doi.org/10.1098/rsta.2013.0329.

31

http://dx.doi.org/https://doi.org/10.2514/1.J053763
http://dx.doi.org/10.1016/j.jcp.2019.02.038
http://dx.doi.org/10.1016/j.ast.2020.106132
http://dx.doi.org/https://doi.org/10.1002/fld.1650200806
http://dx.doi.org/https://doi.org/10.1002/fld.1650200806
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2012.09.007
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2014.03.002
http://dx.doi.org/https://doi.org/10.1137/130917065
http://dx.doi.org/https://doi.org/10.2514/6.2014-1426
http://dx.doi.org/10.1016/j.jcp.2017.06.033
http://dx.doi.org/doi.org/10.1016/j.jcp.2019.06.004
http://dx.doi.org/https://doi.org/10.1145/347837.347846
http://dx.doi.org/https://doi.org/10.1137/060648994
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2009.09.034
http://dx.doi.org/10.1016/j.jcp.2011.03.059
http://dx.doi.org/10.2514/6.2012-77
http://dx.doi.org/10.2514/6.2012-77
http://dx.doi.org/10.1016/j.jcp.2013.06.007
http://dx.doi.org/10.1016/j.jcp.2017.04.005
http://dx.doi.org/10.2514/6.2021-0731
http://dx.doi.org/10.1016/j.jcp.2012.05.003
http://dx.doi.org/10.1016/j.jcp.2018.06.043
http://dx.doi.org/https://doi.org/10.1098/rsta.2013.0329

[26] C. Rumsey, G. Coleman, L.Wang, In search of data-driven improvements to RANS models applied to separated flows, AIAA Paper 2022–

0937 (2022). doi:10.2514/6.2022-0937.

[27] E. J. Parish, K. Duraisamy, A paradigm for data-driven predictive modeling using field inversion and machine learning, Journal of Computa-

tional Physics 305 (2016) 758–774. doi:10.1016/j.jcp.2015.11.012.

URL https://www.sciencedirect.com/science/article/pii/S0021999115007524

[28] A. P. Singh, S. Medida, K. Duraisamy, Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils, AIAA

Journal 55 (7) (2017) 2215–2227. doi:10.2514/1.j055595.

[29] A. P. Singh, S. Pan, K. Duraisamy, Characterizing and improving predictive accuracy in shock-turbulent boundary layer interactions using

data-driven models, AIAA Paper 2017–0314 (2017). doi:10.2514/6.2017-0314.

[30] J. R. Holland, J. D. Baeder, K. Duraisamy, Towards integrated field inversion and machine learning with embedded neural networks for RANS

modeling, AIAA Paper 2019-1884 (2019). doi:10.2514/6.2019-1884.

[31] J. Ho, A. West, Field inversion and machine learning for turbulence modelling applied to three-dimensional separated flows, AIAA Paper

2021–2903 (2021). doi:https://doi.org/10.2514/6.2021-2903.

[32] C. Yan, H. Li, Y. Zhang, H. Chen, Data-driven turbulence modeling in separated flows considering physical mechanism analysis (2021).

[33] F. Jäckel, A closed-form correction for the Spalart-Allmaras turbulence model for separated flow, AIAA Paper 2022–0462 (2022). doi:

10.2514/6.2022-0462.

[34] J. Tao, G. Sun, Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization, Aerospace

Science and Technology 92 (2019) 722–737. doi:10.1016/j.ast.2019.07.002.

[35] X. Yan, J. Zhu, M. Kuang, X. Wang, Aerodynamic shape optimization using a novel optimizer based on machine learning techniques,

Aerospace Science and Technology 86 (2021) 826–835. doi:10.1016/j.ast.2019.02.003.

[36] S. A. Renganathan, R. Maulik, J. Ahuja, Enhanced data efficiency using deep neural networks and Gaussian processes for aerodynamic design

optimization, Aerospace Science and Technology 111 (2021) 106522. doi:10.1016/j.ast.2021.106522.

[37] Y. Wang, T. Liu, D. Zhang, Y. Xie, Dual-convolutional neural network based aerodynamic prediction and multi-objective optimization of a

compact turbine rotor, Aerospace Science and Technology 116 (2021) 106869. doi:https://doi.org/10.1016/j.ast.2021.106869.

[38] S. Allmaras, F. Johnson, P. Spalart, Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model, Seventh

International Conference on Computational Fluid Dynamics (ICCFD7) 1902 (2012).

[39] M. A. Ceze, K. J. Fidkowski, High-order output-based adaptive simulations of turbulent flow in two dimensions, AIAA Paper 2015–1532

(2015). doi:10.2514/6.2015-1532.

[40] M. A. Ceze, K. J. Fidkowski, Drag prediction using adaptive discontinuous finite elements, AIAA Paper 2013-0051 (2013). doi:10.2514/

6.2013-51.

[41] K. J. Fidkowski, Three-dimensional benchmark RANS computations using discontinuous finite elements on solution-adapted meshes, AIAA

Paper 2018–1104 (2018). doi:10.2514/6.2018-1104.

[42] P. R. Spalart, Detached-eddy simulation, Annual Review of Fluid Mechanics 41 (2009) 181 – 202. doi:10.1146/annurev.fluid.

010908.165130.

[43] W. Reed, T. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory Technical Report LA-UR-

73-479 (1973).

[44] B. Cockburn, C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of Scientific Computing

16 (3) (2001) 173–261. doi:https://doi.org/10.1023/A:1012873910884.

[45] K. J. Fidkowski, T. A. Oliver, J. Lu, D. L. Darmofal, p-Multigrid solution of high–order discontinuous Galerkin discretizations of the com-

pressible Navier-Stokes equations, Journal of Computational Physics 207 (2005) 92–113. doi:10.1016/j.jcp.2005.01.005.

[46] K. J. Fidkowski, Output error estimation strategies for discontinuous Galerkin discretizations of unsteady convection-dominated flows, Inter-

national Journal for Numerical Methods in Engineering 88 (12) (2011) 1297–1322. doi:10.1002/nme.3224.

[47] P. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics 43 (1981) 357–372.

32

http://dx.doi.org/10.2514/6.2022-0937
https://www.sciencedirect.com/science/article/pii/ S0021999115007524
http://dx.doi.org/10.1016/j.jcp.2015.11.012
https://www.sciencedirect.com/science/article/pii/ S0021999115007524
http://dx.doi.org/10.2514/1.j055595
http://dx.doi.org/10.2514/6.2017-0314
http://dx.doi.org/10.2514/6.2019-1884
http://dx.doi.org/https://doi.org/10.2514/6.2021-2903
http://dx.doi.org/10.2514/6.2022-0462
http://dx.doi.org/10.2514/6.2022-0462
http://dx.doi.org/10.1016/j.ast.2019.07.002
http://dx.doi.org/10.1016/j.ast.2019.02.003
http://dx.doi.org/10.1016/j.ast.2021.106522
http://dx.doi.org/https://doi.org/10.1016/j.ast.2021.106869
http://dx.doi.org/10.2514/6.2015-1532
http://dx.doi.org/10.2514/6.2013-51
http://dx.doi.org/10.2514/6.2013-51
http://dx.doi.org/10.2514/6.2018-1104
http://dx.doi.org/10.1146/annurev.fluid.010908.165130
http://dx.doi.org/10.1146/annurev.fluid.010908.165130
http://dx.doi.org/https://doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.1016/j.jcp.2005.01.005
http://dx.doi.org/10.1002/nme.3224

doi:https://doi.org/10.1016/0021-9991(81)90128-5.

[48] F. Bassi, S. Rebay, Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations, International

Journal for Numerical Methods in Fluids 40 (2002) 197–207. doi:https://doi.org/10.1002/fld.338.

[49] M. A. Ceze, K. J. Fidkowski, Constrained pseudo-transient continuation, International Journal for Numerical Methods in Engineering 102

(2015) 1683–1703. doi:10.1002/nme.4858.

[50] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM Journal on

Scientific Computing 7 (3) (1986) 856–869. doi:https://doi.org/10.1137/0907058.

[51] P.-O. Persson, J. Peraire, Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations, SIAM

Journal on Scientific Computing 30 (6) (2008) 2709–2733. doi:https://doi.org/10.1137/070692108.

[52] J. Cash, The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae, Computers &

mathematics with applications 9 (5) (1983) 645–657. doi:https://doi.org/10.1016/0898-1221(83)90122-0.

[53] K. J. Fidkowski, D. L. Darmofal, Review of output-based error estimation and mesh adaptation in computational fluid dynamics, AIAA

Journal 49 (4) (2011) 673–694. doi:10.2514/1.J050073.

[54] J. J. E. Dennis, J. J. More, Quasi-newton methods, motivation and theory, Society for Industrial and Applied Mathematics Review 19 (1977)

359 – 372. doi:10.1137/1019005.

[55] B. A. Rothacker, M. A. Ceze, K. J. Fidkowski, Adjoint-based error estimation and mesh adaptation for problems with output constraints,

AIAA Paper 2014–2576 (2014). doi:10.2514/6.2014-2576.

[56] R. M. Hicks, P. A. Henne, Wing design by numerical optimization, Journal of Aircraft 15 (7) (1978) 407–412.

[57] T. tian Zhang, Z. guo Wang, W. Huang, L. Yan, A review of parametric approaches specific to aerodynamic design process, Acta Astronautica

145 (2018) 319–331.

[58] P.-O. Persson, J. Peraire., Sub-cell shock capturing for discontinuous Galerkin methods, AIAA Paper 2006-112 (2006). doi:https://doi.

org/10.2514/6.2006-112.

[59] Y. S. Shimizu, K. J. Fidkowski, Output error estimation for chaotic flows, AIAA Paper 2016-3806 (2016). doi:https://doi.org/10.

2514/6.2016-3806.

[60] P. Spalart, M. L. Shur, On the sensitization of turbulence models to rotation and curvature, Aerospace Science and Technology 1 (5) (1997)

297–302. doi:10.1016/S1270-9638(97)90051-1.

[61] P. Werbos, Beyond regression: New tools for prediction and analysis in the behavioral science, Ph.D. thesis, Harvard University (1974).

[62] A. R. Barron, Approximation and estimation bounds for artificial neural networks, Machine Learning 14 (1) (1994) 115–133. doi:https:

//doi.org/10.1007/BF00993164.

[63] L. Zhu, W. Zhang, X. Sun, Y. Liu, X. Yuan, Turbulence closure for high Reynolds number airfoil flows by deep neural networks, Aerospace

Science and Technology 110 (2021) 106452. doi:10.1016/j.ast.2020.106452.

[64] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, software available from

tensorflow.org (2015).

URL http://tensorflow.org/

[65] J. A. Krakos, D. L. Darmofal, Effect of small-scale unsteadiness on adjoint-based output sensitivity, AIAA Paper 2009-4274 (2009). doi:

https://doi.org/10.2514/6.2009-4274.

[66] J. A. Krakos, Q. Wang, S. R. Hall, D. L. Darmofal, Sensitivity analysis of limit cycle oscillations, Journal of Computational Physics 231 (8)

(2012) 3228–3245. doi:https://doi.org/10.1016/j.jcp.2012.01.001.

33

http://dx.doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/https://doi.org/10.1002/fld.338
http://dx.doi.org/10.1002/nme.4858
http://dx.doi.org/https://doi.org/10.1137/0907058
http://dx.doi.org/https://doi.org/10.1137/070692108
http://dx.doi.org/https://doi.org/10.1016/0898-1221(83)90122-0
http://dx.doi.org/10.2514/1.J050073
http://dx.doi.org/10.1137/1019005
http://dx.doi.org/10.2514/6.2014-2576
http://dx.doi.org/https://doi.org/10.2514/6.2006-112
http://dx.doi.org/https://doi.org/10.2514/6.2006-112
http://dx.doi.org/https://doi.org/10.2514/6.2016-3806
http://dx.doi.org/https://doi.org/10.2514/6.2016-3806
http://dx.doi.org/10.1016/S1270-9638(97)90051-1
http://dx.doi.org/https://doi.org/10.1007/BF00993164
http://dx.doi.org/https://doi.org/10.1007/BF00993164
http://dx.doi.org/10.1016/j.ast.2020.106452
http://tensorflow.org/
http://tensorflow.org/
http://dx.doi.org/https://doi.org/10.2514/6.2009-4274
http://dx.doi.org/https://doi.org/10.2514/6.2009-4274
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2012.01.001

	Introduction
	Discretization
	Governing Equations
	The Discontinuous Galerkin Method
	The Discrete Adjoint

	Design Optimization
	Shape Optimization with Concurrent Trimming
	Line Search
	Airfoil Parametrization
	Example Steady Optimization

	Field Inversion
	Unsteady Solution Averaging
	Correction-Field Inversion
	Example

	Machine Learning
	Overview
	Network Architecture and Training
	Implementation and Example

	Unsteady Optimization
	Results
	Fixed-Lift Drag Minimization, Re = 104
	Fixed-Lift Drag Minimization, Re = 106
	Lift Maximization, Re = 104

	redSummary and Discussion
	redMethods Summary
	redDiscussion and Conclusions

