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Aerodynamic shape optimization (ASO) requires a robust, accurate, and efficient flow solver.
The second-order finite volumemethod (FVM) has been shown to satisfy these constraints when
using a sufficiently finemesh. However, during aerodynamic shape optimization, there are large
geometry and flow solution changes that can lead to a decrease in solution accuracy over the
course of the optimization. If the solution loses accuracy, the optimizer can find a spurious
optimum. The discontinuous Galerkin (DG) method yields high-order accurate solutions that
have less discretization error. However, the higher accuracy comes at a higher computational
cost, so tha advantage of DG is not always clear. DG is suitable for both local order and mesh
refinement which can allow it to be more accurate per degree of freedom than the FVM. In this
work we show the benefits of using DG over FVM for optimization. We also develop a strategy
for p-adaptation during optimization that reduces computational cost and obtains the same
optimum as a fine-space solution.

I. Introduction

Aerodynamic shape optimization (ASO) in recent years has seen many advancements and is now quite mature. There
are many key components required to perform ASO, such as geometric parameterization and the computational

fluid dynamics (CFD) solver. The choice of the CFD solver is important as this solver has the highest percentage of
computational cost during optimization. Therefore, the solver must be efficient as there could be hundreds of flow
solutions required. Additionally, the CFD solver must be robust and able to provide a solution for shapes that a human
designer would not normally ask for. If the CFD solver cannot provide a solution to the optimizer, then the whole
optimization process could fail even if that design is nowhere close to the optimum. Finally, the solver must be accurate,
as numerical errors affect the design space and can lead to a spurious optimum. Second-order finite volume method
(FVM) CFD solvers have been shown to meet these criteria when using a sufficiently fine mesh. Additionally, high-order
methods, such as the discontinuous Galerkin (DG), have been shown to offer highly accurate solutions that can beat
low-order approximations in terms of both degrees of freedom, the number of unknowns for each state, and cost [1].
However, often to realize the benefits of high-order solutions, some form of adaptation is required to not waste degrees
of freedom in regions that do not affect the solution and to concentrate them in regions that do [2].

Controlling discretization error plays an important role in optimization. Using a very fine discretization can be
costly but necessary to find the “true” optimum. However, if using a fixed-fidelity approach computational, cost
is wasted during initial iterations during optimization. Therefore, a multi-fidelity approach is ideal to prevent over
optimizing a coarse mesh that leads to a spurious optimum and over refining designs that are not close to the optimum.
Multiple approaches have been taken on this topic. Wu et al. [3] used a sequential multi-fidelity approach where the
optimizer switched between multiple meshes and sets of governing equations during the optimization. Hicken and
Alonso [4] computed errors in gradient norms and used these as an adaptive indicator to control first-order optimality
error during the optimization. Chen and Fidkowski [5, 6] computed error in the objective function while accounting for
how discretization error in constraints affects the objective and use it to drive the optimization based on how much
the objective is changing. Brown and Nadararajah [7, 8] used adaptive tolerances for solving the residual and adjoint
equations during optimization based on first-order optimality convergence.

In this work we compare the performance and results of using finite volume and DG in the same optimization
framework. We also present an adaptation strategy that computes the Lagrangian error to account for constraint error in
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the objective and use this as our adaptive indicator. We use the optimality convergence to specify when to adapt to
meet a target error level at the end of the optimization and show that adaptation greatly reduces the computational cost
without sacrificing accuracy of the optimization.

II. Computation Framework
In this work we use the MACH-Aero framework for optimization. MACH-Aero is an open-source framework for

gradient-based ASO. It consists of various modules for geometric parameterization, mesh warping, CFD solver, and
optimizers.

A. Discontinuous Galerkin CFD Solver
CFD requires discretizing a set of governing equations that model the fluid. In this work we use the Reynolds-averaged

Navier Stokes (RANS) equations closed with the Spalart-Allmaras (SA) turbulence model [9]. The governing equations
are written as,

mu
mC
+ ∇ · ®F(u,∇u) + S(u,∇u) = 0, (1)

where u ∈ RB is the s-component state vector, ®F ∈ Rdim×B is the flux vector, dim is the number of spatial dimensions,
and S ∈ RB is the source term arising from the turbulence model. The CFD solver we use is xflow which discretizes the
governing equation by using the discontinuous Galerkin (DG) method with Roe [10] convective flux and the second
form of Bassi and Rebay (BR2) [11] for viscous treatment. The state is approximated with polynomials of order ? on an
unstructured mesh of non-overlapping elements. Following a finite-element weak formulation and choice of polynomial
basis functions, the semi-discrete form of the governing equations is,

M
3U
3C
+ R(U) = 0. (2)

Here U ∈ R# is the discrete state vector, # is the total number of unknowns, R(·) ∈ R# is the nonlinear spatial residual,
and M ∈ R#×# is the block-element sparse mass matrix. For steady simulations used in this work the time derivative
term drops out, although pseudo-time continuation [12] remains in the solver to converge the steady residual. The
non-linear solver uses the Newton-Raphson method with the generalized minimum residual (GMRES) [13] linear solver,
preconditioned by an element-line Jacobi smoother with coarse-level (? = 1) correction [14, 15].

B. Finite Volume CFD Solver
The second CFD solver used is ADflow [16], a second-order cell-centered finite volume flow solver for multiblock

and overset meshes. ADflow includes a discrete adjoint implementation [17] and a robust approximate Newton-Krylov
start up strategy [18].

C. Geometric Parameterization
To parameterize the geometry, we use the free-form deformation (FFD) approach [19] implemented using pyGeo [20].

The FFD approach uses a moveable control point box that embeds the baseline geometry. Moving the control points
results in movement of nodes on the geometry surface. This approach is efficient because it doesn’t directly parameterize
the shape of the geometry but instead parametrizes deformations. This allows the movement of all surface nodes
while also having far fewer design variables than surface nodes. pyGeo also includes modules for thickness and area
constraints.

D. Mesh Warping
Once surface nodes are deformed using pyGeo, the rest of the volume nodes need to be updated. To do this, we use

IDwarp [21], which uses an inverse-distance weighting method proposed in [22] to propagate deformations from the
surface to the rest of the volume. IDwarp works for both structured and unstructured meshes because volume nodes
are represented by a point cloud with no connectivity. However, connectivity is required on the surface and IDwarp
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does not support high-order meshes. Thus, high-order meshes are converted to linear meshes by linearly connecting all
high-order surface nodes.

E. Optimizer
We use pyOptSparse [23], an optimization framework designed for large-scale gradient based optimizations.

pyOptSparse provides wrappers for several optimization packages and in this work we use SNOPT [24].

III. Constrained Optimization
Aerodynamic shape optimization can be formulated as a constrained optimization [25] with design parameters,

x ∈ R=G , that minimize an objective function 5 (x) ∈ R1 subject to =ℎ equality constraints h(x) = 0, where h ∈ R=ℎ , and
=6 inequality constraints g(x) ≤ 0, where g ∈ R=6 , given as,

minimize 5 (x)
by varying G8
subject to 6 9 (x) ≤ 0

ℎ; (x) = 0.

(3)

To solve this problem, the objective function is combined with all the constraints into a Lagrangian function given as,

L = 5 (x) + ,) h(x) + 2) (g(x) + s � s), (4)

where , ∈ R=ℎ and 2 ∈ R=6 are Lagrange multipliers for the equality constraints and inequality constraints respectively,
and s ∈ R=6 is a slack variable to turn inequality constraints into equality constraints [26], and � represents element
wise multiplication.

Taking the derivative of the Lagrangian with respect the design variables, x, and Lagrange multipliers, , and 2, and
setting them equal to 0 gives the following set of equations.

∇GL = ∇G 5 + J)ℎ , + J)62 = 0, (5)
∇,L = h = 0, (6)

∇2L = g + s � s = 0, (7)
∇BL = f8B8 = 0, (8)

2 ≥ 0. (9)

These equations are known as the Karush-Kuhn-Tucker (KKT) conditions that need to be solved at the optimal point
which is a stationary point of the Lagrangian. Solving this system of equations requires values of both the objective and
constraints as well as gradients of the objective and constraints with respect to the design variables.

At the optimum point the first KKT condition is given as,

m 5

mx
= −2) m60

mx
− ,) mℎ

mx
, (10)

where 60 is the set of active inequality constraints. If we write the differential of the objective 35 = ( m 5
mx 3x) and

combine the active inequality constraints with equality constraints we can rewrite this equation as,

35 = −,) mℎ
mx
3x. (11)

This leads to the definition of the Lagrange multiplier _8 for constraint 8 to be

_8 = −
35

3ℎ8
. (12)

The Lagrange multipliers therefore represent a linearization of the objective with respect to the constraints. They show
how much the objective would change if the constraints were to be relaxed.
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A. Gradient Calculation
To perform gradient-based optimization the gradient of all objectives and constraints must be computed with respect

to all design variables. There are many ways to perform this calculation[25] such as: finite difference, complex step [27],
algorithmic differentiation [28], and the adjoint method [29]

In this work we use the adjoint method which performs well for large optimization problems as it scales with the
number of functions of interest and not the number of design variables. We compute the gradient of some function �
that is a function of both some state vector U and the design variables x,

� = � (U, x). (13)

The states are solved for by driving a discrete residual vector, R, to 0 for a given set of design variables,

R(U, x) = 0. (14)

The gradient of the function � is computed first by applying the chain rule

3�

3x
=
m�

mx
+ m�
mU

3U
3x
. (15)

The term 3U
3x can be solved for by applying the chain rule to the residual R and computing the total derivative of the

residual with respect to the design variables. This gradient is always 0 as the residual is driven to 0 at each design point,

3R
3x

=
mR
mx
+ mR
mU

3U
3x

= 0, (16)

3U
3x

= −
( mR
mU

)−1 mR
mx
. (17)

The expression for 3U
3x can then be plugged into Equation (15),

3�

3x
=
m�

mx
− m�

mU

( mR
mU

)−1 mR
mx
. (18)

This equation can be solved naively by solving the linear system
(
mR
mU

)−1
mR
mx . This is known as the direct method and

requires solving a linear system for each design variable. Instead, we can define the adjoint vector as,

	 = −
( mR
mU

) )−1 m�

mU

)

. (19)

This linear system does not scale with the number of design variables but instead scales with the number of functions of
interest. From here we can write the gradient of the function as,

3�

3x
=
m�

mx
+	) mR

mx
. (20)

The remaining partial derivatives on the right-hand side can be computed easily as they do not require solving the
residual equations again. In both ADflow and xflow the adjoint is computed using analytic derivatives. However there is
a difference in how the remaining partial derivatives are computed which affects performance of the optimization. In
ADflow these partial terms are calculated through algorithmic differentiation. This leads to exact gradients that have
been verified with complex step [17]. In xflow we compute these partial derivatives using finite differences. We perturb
each design variable and compute the residual vector and output at the perturbed state and use a forward difference
approximation. This leads to a larger cost to compute the gradient as we need to warp the mesh for each shape design
variable. It also leads to less accurate gradients which cause the optimizer to take more major iterations for the same
optimality and feasibility tolerances.

4



IV. Error Estimation and Adaptive Indicators
When solving solving a discretized PDE on a coarse-space �, discretization error that affects the outputs of interest.

In practice, it is not possible to compute the amount of discretization error relative to the exact solution of the PDE, but
it is possible to compute the error relative to a finer space ℎ which can be used in place of the exact PDE,

output error: X� = �� (U� ) − �ℎ (Uℎ). (21)

Here � represents some output of interest which can be the objective value or a constraint. In this work to obtain the
fine-space, ℎ, we increment each elements’ approximation order, ?4, to ?4 + 1. The output on the fine-space is not
solved for directly instead we use the adjoint-weighted residual method [2, 30, 31] to compute the output error estimate.
The fine-space adjoint solution 	ℎ , linearized about U�

ℎ
, which is the coarse-space solution injected into the fine-space.

The output error comes from perturbations in the state which lead to perturbations in the residual, as follows:

X� = �� (U� ) − �ℎ (Uℎ),

= � (U�ℎ ) − �ℎ (Uℎ) =
m�ℎ

mUℎ
XU,

= −	)ℎ XRℎ = −	)ℎ (Rℎ (U
�
ℎ ) − Rℎ (Uℎ)),

= −	)ℎRℎ (U�ℎ ).

(22)

Here Uℎ is the state associated with the solution to the fine-space problem which leads to Rℎ (Uℎ) = 0. This derivation
relies on the assumption that the injection into the fine-space does not change the output of interest, �ℎ (U�ℎ ) = �� (U� ).

The error estimate can be thought of as the sum of the error on each element written as,

X� = = �� (U� ) − �ℎ (Uℎ),
= −	)ℎRℎ (U�ℎ ),

= −
=4∑
4=1

	)ℎ,4Rℎ,4 (U
�
ℎ ).

(23)

A common approach to determine which elements should be adapted is to compute the discretization error caused by
each element and take the absolute value,

n4 ≡
���	)ℎ,4Rℎ,4 (U�ℎ )��� (24)

A. Output estimation during optimization
The derivation above shows how the output error for a single function of interest is computed. However, in

optimization problems, discretization errors in the constraints also affect the objective value. For example, when
trimming an airfoil to a given lift coefficient, 2ℓ , under predicting lift in the coarse space would under-predict drag in the
fine-space when the airfoil is trimmed. To account for this, we estimate the error of the Lagrangian, which relates the
effects of errors or changes in constraints to the objective function,

XL = L� (U� ) − Lℎ (Uℎ)
= X 5 + ,) Xh + 2) Xg.

(25)

Here the discretization error is computed for the objective and each constraint. For most aerodynamic optimization
problems the number of outputs and constraints from the CFD solver is low so only a few fine-space adjoint solutions are
needed. Other constraints not computed from the CFD solver are not affected by the discretization level and therefore,
the associated discretization errors are 0.

When adapting on the error of the Lagrangian, we take the element wise contribution of error but also include the
Lagrange multipliers in the absolute value. This leads to a more conservative approach and adapts elements even when
errors in constraints could further reduce the output.

n4 =
��X 54�� + ���,) Xh��� + ���2) Xg��� . (26)
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V. Adaptation Strategy
During the optimization process, it is important for the discretization error at the optimum to be low to avoid

spurious optima while not wasting degrees of freedom early in the optimization process, when the design is changing
rapidly. To do this, we use an an adaptation strategy based on the optimality value from SNOPT which represents a
measure of the first KKT condition given in Equation (5).

Brown and Nadararajah derived a relationship between between residual from solving PDE constraints and their
adjoint equations to the first order optimality condition [7, 8]. They showed that adapting how tightly the PDE is
solved during the optimization reduces the total optimization time. Their algorithm looks at the relative convergence of
the optimality and adapts the relative convergence of the PDE to be a multiplicative factor of the convergence of the
optimality.

We take a similar approach but, instead of changing residual tolerances based on optimality, we adapt by changing
output error tolerances. Consider the case of an airfoil in supersonic flow. Large residuals downstream of the airfoil
have no effect on outputs calculated on the surface of the airfoil. Therefore, it is not always necessary to drive all PDE
residuals tolerances to zero. Instead we look at which residuals directly affect the output through the adjoint-weighted
residual error estimate in Equation (22). From here, we can directly follow their approach and drive constraint errors
down to a specified tolerance as we optimize. Instead, we take one further step and look at the error in the Lagrangian
and drive this down to a specified tolerance by the end of the optimization process, looking at the optimality condition
to tell us when to adapt. We also do not compute the error on the Lagrangian every iteration; instead we compute it in a
lagged fashion. After the initial stages of the optimization, the design does not change rapidly between iterations and on
a fixed mesh the discretization error is not changing significantly. So instead we only compute the error estimate after
adaptation and then every =adapt iterations which is a user defined parameter. This saves computational cost by reducing
the frequency that the fine space adjoint is required. Additionally, no adaptation takes place during the line search of the
optimization to avoid introducing extra noise that could slow down the optimization. The updated optimization process
is shown in Algorithm 1.

We modify the MACH-Aero framework so Lagrange multipliers are passed from the optimizer to the CFD solver
and so the discretization error is passed to the optimizer. The extended design matrix (XDSM) diagram [32] is shown in
Figure 1.

Baseline design

Optimized design
Optimizer:

pyOptSparse

Geometric

parameters

Flight

conditions

and Lagrange multipliers

Geometry

parameterization:

pyGeo

Updated surface

coordinates

Updated surface

coordinates

Geometric constraints

and derivatives

Geometric

constraints:

pyGeo

Volume mesh

deformation:

IDWarp

Updated mesh

Aerodynamic functions and derivatives,

and discretization error

CFD solver:

xflow

Fig. 1 Modified MACH-Aero XDSM diagram showing how discretization error and Lagrange multipliers are
passed between the CFD solver and the optimizer.
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Algorithm 1 Optimization with error estimation and adaptation

gtolopt, g
tol
feas ⊲ Optimality and Feasibility Tolerance

G8 = G0 ⊲ Set initial design
n tolL ⊲ Desired final error tolerance
adaptFlag← False ⊲ Initialize flag for CFD solver to adapt solution to false
errorFlag← False ⊲ Initialize flag for CFD solver to compute discretization error to false
=adapt ⊲ Initialize =adapt
= = 0 ⊲ Initialize number of major iterations since last adaptation
while gopt > gtolopt AND gfeas > g

tol
feas do ⊲While optimality and feasibily criteria not met

if CFD SOLVER then ⊲ CFD Solver portion of optimization iteration
Compute 5 , g, h,∇ 5 ,∇g,∇h and ⊲ Compute objective, constraint values and their gradients
if adaptFlag then

Adapt solution order of elements with highest discretization error
Re-compute Lagrangian error estimate, XL

end if
if errorFlag then

Re-compute Lagrangian error estimate
end if

end if
if Optimizer then

Compute _, f ⊲ Compute Lagrange Multipliers
Update G8+1 ⊲ Update Design
Update gopt and gfeas
if End of Major Iteration then

=+ = 1
if = > =adapt then ⊲ If its been too many major iterations next time compute error estimate

errorFlag← True
= = 0

end if
if XL > max( gopt

gtolopt×10 , 1) × n
tol
L then

adaptFlag← True ⊲ If error is too high based on optimality adapt next iteration
end if

end if
end if

end while
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VI. Drag Minimization of Subsonic Turbulent NACA 0012 Airfoil
For our first test problem, we minimize drag for a NACA 0012 airfoil at a Mach number of " = 0.5 and Reynolds

number of 1 × 106. We impose a lift constraints of 2ℓ = 1.0, an area constraint � ≥ �0 where the area of the airfoil
cannot be less than the baseline NACA 0012, and impose thickness constraint, C/2 ≥ 0.3C0/2, where the thickness
cannot be less than 30% of the original thickness at any location along the chord. We also impose FFD constraints at the
leading and trailing edge to ensure the airfoil does not rotate and only the angle of attack variable, U, changes the angle
of attack. The optimization problem is summarized in Table 1.

Table 1 Optimization Problem for Subsonic NACA 0012 drag minimization

Category Name Quantity Lower Upper
Objective 23 1 — —
Variable y 20 -0.05 0.05

U 1 0 10
Constraints 2ℓ 1 1.0 1.0

� 1 �initial —
HLE,lower = −HLE,upper 1 0.0 0.0
HTE,lower = −HTE,upper 1 0.0 0.0
t/c 400 0.3 —

The optimality and feasibility tolerances in SNOPT were both set to 1 × 10−6 for all optimizations in this section.
We run the optimization on the family of meshes with ADflow. In xflow we use the !2 mesh, detailed in Table 2, and
run at a fixed resolution with different solution approximation orders of ? = 3, ? = 2, ? = 1. At ? = 3 using tensor
product quad-Lagrange basis functions there are 72, 960 degrees of freedom which is equal to the number of degrees of
freedom when running ADflow on the !0 mesh.

After each optimization, we reanalyze the design and re-trim the 2ℓ to a tolerance of 1 × 10−8 in both xflow and
ADflow. In xflow we use the !1 mesh modified with curved @ = 3 elements with a solution order of ? = 3 with a total
of 291, 840 degrees of freedom. In ADflow we use the !00 mesh which has 291, 840 degrees of freedom. The FFD
points used are shown with the !0 mesh in Figure 2

Fig. 2 !0 mesh for NACA 0012 Airfoil with 20 FFD points used for optimization.
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A. NACA 0012 Meshes
We generated a family of O topology meshes around the NACA 0012 airfoil to study the different flow solvers on the

same mesh. We created 4 meshes summarized in Table 2.

Table 2 NACA 0012 O-Grid Mesh Family Summary

Name Cells On Wall Total Cells
!00 480 291840
!0 240 72960
!1 120 18240
!2 60 4560

High-order methods require meshes that are curved around the geometry. Once we generated the family of meshes
we took the !2 mesh and added geometric nodes on the wall to make each cell cubic, @ = 3, and used linear-elasticity to
curve the mesh.

B. Finite Volume NACA 0012 Optimization
We ran the optimization in ADflow 4 times on the !2, !1, !0, and !00 meshes. Table 3 summarizes optimized

final drag and optimization time.

Table 3 NACA 0012 optimization with ADflow summary

Mesh DoFs Time (hr) Optimized 23 × 104 xflow True 23 × 104 ADflow True 23 × 104

!00 291,840 14.4 137.59 136.91 137.59
!0 72,960 0.712 138.48 137.04 137.66
!1 18,240 0.078 140.89 137.38 137.98
!2 4,560 0.025 153.28 138.06 138.81

The “true" final drag of each of the optimizations are all within 1 drag count (23 = 104) when reanalyzing with both
xflow and ADflow even though the geometries are all different. The final geometries and 2? distributions generated
from the “true” xflow cross analysis are shown in Figure 3. The upper surface of these airfoils is very similar but there
are noticeable differences around the leading edge on the lower surface. As the mesh is refined, the airfoils’ nose gets
thinner and more area is concentrated towards the back. The coefficient of pressure plots show as the mesh is refined the
optimized design tries to increase pressure on the lower surface around the leading edge where the geometry gets thinner.

C. Fixed Resolution Discontinuous Galerkin NACA 0012 Optimization
For our DG results at a fixed resolution we used the !2 mesh curved with @ = 3 cubic quad elements and solution

order ? = 1, ? = 2, and ? = 3. The results are summarized in Table 4.

Table 4 NACA 0012 optimization with xflow summary

Solution Order DoFs Time (hr) Optimized 23 × 104 xflow True 23 × 104 ADflow True 23 × 104

3 72,960 6.6 137.21 136.90 137.62
2 41,040 2.0 137.65 136.90 137.60
1 18,240 0.2 142.10 137.10 137.84

The optimized airfoil geometries and “true” 2? distributions from xflow are shown in Figure 4. The geometries
obtained using DG are all very similar and the ? = 2 geometry almost directly matches the ? = 3 geometry. The airfoils’
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Fig. 3 Optimized airfoils using ADflow using different mesh resolutions show as the mesh is refined the leading
edge gets more pinched. 2? plots generated from “true” xflow cross analysis.
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Fig. 4 Optimized airfoils using xflow using different solution orders all achieve pinched leading edge. 2? plots
generated from “true” xflow cross analysis.
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leading edge gets thinner at all solution orders and is almost identical unlike when using finite-volume where as the
resolution was increased the leading edge got noticeably thinner. The airfoil optimized using ? = 1 has an upper surface
and lower surface slightly moved up from the airfoils optimized using ? = 2 and ? = 3 and the bump at around 20%
chord is not as pronounced which is shown by the lower pressure in that region in the 2? plot. The ? = 2 results match
almost identically with the ? = 3 results which is also shown when looking at the “True” 23 values. The minimum 2?
on the airfoil optimized with ? = 1 is not get as low on the upper surface or as high around the bump at around 20%
chord. However, it is slightly lower on the upper surface from 20% to 60% chord moving the lift distribution from the
front to the back.

When using a fixed resolution DG vs finite volume we see that per degree of freedom DG is able to outperform
finite volume. The ? = 2 design when analyzed with both xflow and ADflow for the “True” solution is identical to the
? = 3 solution and outperforms all airfoils optimized using ADflow except the airfoil optimized using the !00 mesh.
The airfoil optimized in ADflow with the !00 mesh has almost identical drag values but in terms of both time and
number of degrees of freedom the optimization performs worse. Per degree of freedom finite volume is faster but the
optimized airfoil is worse than the optimized airfoil using DG.

D. p-Adaptive Discontinuous Galerkin NACA 0012 Optimization
To improve the DG performance we use p-adaptation and set a tolerance of the Lagrangian error to be 0.5 drag

counts (5 × 10−5) at an optimality of 1 × 10−5. This ensures the last order of convergence is on the most accurate
solution space to avoid getting stuck at a spurious optimum. We start on the !1 mesh with ? = 1 elements and set a
maximum solution order of ? = 3 and a minimum order of ? = 1. At each adaptation iteration we increase the order of
the elements with the top 7.5% of the error and reduce the order fo the elements with the lowest 2.5% of error. We also
clip the order so the maximum order any element can have is ? = 3 and the lowest order an element can have is ? = 1.
Additionally, we compute the error on the Lagrangian every 5 major iterations. The results are summarized in Table 5.

Table 5 NACA 0012 optimization with adaptive DG summary

Solution Order final DoFs Time (hr) Optimized 23 × 104 xflow True 23 × 104 ADflow True 23 × 104

1/2/3 30,758 1.8 137.50 136.90 137.61

Figure 5 shows the number of degrees of freedom, optimality, and 23 at each major iteration. Each time the
optimality drops below the adaptation tolerance the number of degrees of freedom increases and the optimality increases
because the new discretization creates a different design space. The first two adaptation iteration show a noticeable drop
in 23 which is due to the finer space removing numerical diffusion.
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Fig. 5 Optimization history for p-adaptive NACA 0012 optimization

The geometry and 2? of the optimized airfoil with adaptation are compared to the finest fixed-fidelity optimizations
in both xflow and ADflow in Figure 6.
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Fig. 6 Comparison of optimized airfoil with DG p-adaptation, DG fixed fidelity, and FVM shows the designs
from DG are identical and the FVM airfoil is very similar. 2? distributions from “true” xflow results.

The airfoil optimized with p-adaptation performs identically to the airfoil optimized at ? = 2 and ? = 3. The
geometry and 2? distribution is the same as the airfoil optimized with ? = 3 while the !00 airfoil is quite different. The
difference comes from the fact that the optimizer is able to reduce drag from numerical diffusion in each solver. Finite
volume methods have more diffusion than high-order methods and that is why at even lower degrees of freedom, the
airfoils optimized with DG all have similar geometries while the airfoils optimized with finite volume vary as the mesh
is refined. As the mesh for finite volume is refined, the optimized airfoil nose gets thinner and approaches the design
achieved by the DG optimization.

For this problem DG is able to take advantage of the smooth solution space and optimize the airfoil to a lower
drag using fewer degrees of freedom when compared to using finite volume CFD. While DG takes longer than all but
the optimization on the !00 mesh, it is more accurate and adaptation is able to reduce the time relative to the ? = 3
optimization by 70% and 10% relative to the ? = 2 optimization.
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VII. Transonic Turbulent Airfoil
The second test case we ran was a viscous transonic airfoil optimization of the RAE 2822 airfoil defined by the

second test case of the Aerodynamic Design Optimization Discussion Group (ADODG). This test case is a drag
minimization of the RAE2822 airfoil subject to a lift, pitching moment, and area constraints at a Mach number of
" = 0.734 and Reynolds number of '4 = 6.5 × 106. We parameterize the airfoil with 20 FFD points 10 points in
the chord-wise direction along the upper and lower surface. Additionally we add thickness constraints such that the
thickness at any chord-wise location is greater than 10% of the original thickness at that location. This ensures that the
airfoil top and bottom surfaces never cross although for all optimizations no thickness constraint is ever at the bounds.
Finally there are constraints on the FFD pairs at the leading and trailing edge to prevent geometric rotation and an angle
of attack design variable U is added to trim the airfoil. The problem is summarized below in Table 6.

Table 6 Optimization Problem for Transonic RAE 2822 drag minimization

Category Name Quantity Lower Upper
Objective 23 1 — —
Variable y 20 -0.05 0.05

U 1 0 10
Constraints 2ℓ 1 1.0 1.0

2< 1 -0.092 —
� 1 �initial —
HLE,lower = −HLE,upper 1 0.0 0.0
HTE,lower = −HTE,upper 1 0.0 0.0
t/c 400 0.3 —

The !0 mesh used in ADflow along with the 20 FFD points used for all optimizations are shown in Figure 7.

Fig. 7 !0 mesh for RAE 0012 Airfoil with 20 FFD points used for optimization.
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A. RAE 2822 Meshes
Optimizations using xflow use a C-topology mesh to conform to the sharp trailing edge of the geometry. The mesh

uses cubic elements, @ = 3, and 150 elements on the airfoil and 20 elements in the wake with 24 elements in the normal
wall normal direction. In ADflow however, we use a family of O-topology meshes to be consistent with previous studies
for the RAE2822 airfoil [33]. We generated a family of O-topology meshes, summarized in Table 7, with the finest,
!00, having 291, 840 cells and the coarsest mesh, !2, with 4, 560 cells.

Table 7 RAE 2822 O-Topology Mesh Family Summary

Name Cells On Wall Total Cells
!00 480 291,840
!0 240 72,960
!1 120 18,240
!2 60 4,560

B. ADflow Results
The optimization in ADflow was run on the !0, !1, and !2 meshes and the final drag results are summarized below

in Table 8. The “True” values for the drag come from taking each design and reanalyzing it in xflow at ? = 3 on
C-topology mesh described above and again in ADflow on the !00 mesh.

Table 8 RAE 2822 optimization with ADflow summary

Mesh DoFs Time (hr) Optimized 23 × 104 xflow True 23 × 104 ADflow True 23 × 104

!0 72,960 5.4 105.86 104.93 105.24
!1 18,240 0.078 111.00 111.01 106.86
!2 4,560 0.025 134.47 111.79 112.21

The “true” drag coefficient, in both xflow and ADflow, for each design goes down as the mesh on which the
optimization is done is refined. This is due to the optimizer taking advantage of discretization error to smooth out the
shock rather than geometric features. The shocks come back when analyzed in both xflow and in ADflow on the !00.
This is shown in Figure 8 where the !2 mesh design has the largest pressure drop and the !0 mesh design has a very
weak shock on the upper surface.

These plots shows that each mesh level causes the optimized shape to be noticeably different. As the mesh gets
more refined the lower surface towards the front of the airfoil gets pulled down more and the upper surface along the
whole chord moves to lower H/2 values.

C. xflow Results
We ran the same problem again in xflow on the a fixed C-topology mesh described above in Section VII.A. We tested

a fixed-fidelity optimization running with solution orders of ? = 3, ? = 2, and ? = 1. Finally, we tested an adaptive
fidelity with a final tolerance on the Lagrangian discretization error of 5 × 10−5 and started all elements ? = 1. We used
a fixed fraction p-adaptation approach where 12.5% of elements with the highest error were refined and and the 2.5% of
elements with the lowest error were coarsened and limited the approximation order to be between 1 and 3. We compute
the error estimate used to decide when to adapt every 10 major iterations. This is because for this problem we require 3
fine-space adjoint solutions that if calculated every major iteration will add significant computational cost. Results for
the DG optimizations are shown in Table 9.
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Fig. 8 Optimized airfoil geometries using ADflow with various mesh resolution shows the leading edge gets
thicker as the mesh gets finer. 2? distributions generated from xflow “true” solution.

17



Table 9 RAE 2822 optimization with xflow summary

Solution Order DoFs Time (hr) Optimized 23 × 104 xflow True 23 × 104 ADflow True 23 × 104

3 72,960 39.88 104.34 104.34 105.53
2 41,040 7.56 106.69 105.48 106.35
1 18,240 1.04 147.48 146.57 115.12
1/2/3 41,041 20.75 104.58 104.34 105.57

The geometries and 2? plots, generated in xflow at ? = 3, are shown in Figure 9. The airfoil optimized at ? = 1 is
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Fig. 9 Optimized airfoil geometries from fixed fidelity and p-adapted DG optimizations show p-adaption
achieves the same result as ? = 3. 2? generated from “true” xflow result.

very different than all other optimized airfoils. This is due to large discretization error that the optimizer uses to reduce
drag. When this design is reanalyzed in xflow, the drag is very similar but the flow field is very different shown in
Figure 10. A double shock shows up on the upper surface when analyzing this design at ? = 3 but at ? = 1 the airfoil is
shock free. The double shock counteracts the numerical drag from the ? = 1 discretization error so that the final drag
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counts are very similar. When looking at this design in ADflow two shocks are on the upper surface but are weaker.
There is also less numerical drag so that the final drag coefficient is lower than in xflow at ? = 1 and at ? = 3.

(a) xflow at ? = 1. (b) xflow at ? = 3. (c) ADflow on !00 mesh.

Fig. 10 Mach contours (0 to 1.3) on optimized airfoil from xflow with ? = 1 in different solvers.

In the case of fixed-fidelity DG, ? = 3 gets the lowest drag optimized design. The airfoil optimized at ? = 2 is 1
drag count higher from the airfoil optimized at ? = 3 due to the shock reappearing.

Using adaptation, the final number of degrees of freedom is nearly the same as the ? = 2 solution but the final design
matches the ? = 3 design to .01 drag counts using fewer degrees of freedom and is almost 50% faster. This is shown
when looking at the geometries and 2? plots the adapted case and ? = 3 are both right on top of each other while the
? = 2 is close but offset in some regions. However, even though the adaptation case uses the same number of degrees of
freedom, the total optimization time takes much longer due to the extra fine-space adjoint solutions needed for both
computing the error estimates and the adaptation indicators. Additionally, when adapting, the optimizer gets “kicked”
off a spurious optimum: a shock appears that must be smoothed out.

When comparing to the designs from the optimizations using ADflow, even though the !0 mesh has the same
number of degrees of freedom as ? = 3, the drag is 0.6 counts higher. Additionally, once we adapt, xflow is able to
perform even better using fewer degrees of freedom but when time is a constraint ADflow is much faster. This is due
to ADflow being a code that takes advantage of structured meshes for more efficient memory access and the code
being optimized for optimization problems. xflow on the other hand is and unstructured code that was developed for
research purposes to be modular and easy to develop rather than being fast. Additionally, ADflow has fully analytic
derivatives while in xflow there is an analytic adjoint but partial terms required for total derivatives are computed using
finite difference which takes longer and is less accurate. The less accurate derivatives cause the optimizer to take more
iterations to find the optimum.

VIII. Conclusion
When doing aerodynamic shape optimization the CFD solver plays a key role in the overall computational cost

and accuracy of the final design. During ASO, there could be hundreds of primal and adjoint CFD solutions that are
required. Additionally, during initial iterations the optimizer might request a solution on an obscure geometry on which
the CFD solver needs to find a solution. Finally, discretization error in CFD can lead to the optimizer finding spurious
optima by prioritizing lowering numerical drag. These factors leads to the necessity of having a efficient, robust, and
accurate CFD solution.

In this work we presented a direct comparison of aerodynamic shape optimization using both finite volume and
high-order discontinuous Galerkin CFD. We added our DG solver, xflow, into the existing MACH-Aero gradient based
optimization framework. Additionally, we modified the framework to pass additional information between the optimizer
and CFD solver to perform error estimation on the and p-adaptation during the optimization. The adaptation was
automated based on a final desired error tolerance and scheduling based on the KKT conditions.

In both test cases studied here, we showed that using DG in optimization is able to find the same optimum as FVM
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using fewer degrees of freedom. In the finite volume cases, refining a mesh showed drastic design differences at the
optimum indicating that the coarser meshes found a spurious optimum due to the numerical error. In DG when on a
fixed coarse mesh, increasing the order everywhere showed less design changes, indicating that even on a coarse mesh
high-order solutions are able to converge faster. Additionally, with our adaptation strategy we were able to find the same
optimum as when using the finest CFD solution with fewer degrees of freedom and time. While in this work the time for
finite volume was still much faster than using DG, a direct comparison between the two had multiple factors that favored
the specific finite volume solver chosen. If a DG solver is developed with ASO in mind, the time could be drastically
reduced. While this work only used p-adaptation to easily plug into the current MACH-Aero framework, using mesh
refinement or optimization could further improve the number of degrees of freedom and time required to reach the
optimum at a desired error tolerance.
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