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ABSTRACT
We introduce a new theoretical derivation, evaluation meth-
ods, and extensive empirical analysis for an automatic query
expansion framework in which model estimation is cast as a
robust constrained optimization problem. This framework
provides a powerful method for modeling and solving com-
plex expansion problems, by allowing multiple sources of
domain knowledge or evidence to be encoded as simultane-
ous optimization constraints. Our robust optimization ap-
proach provides a clean theoretical way to model not only
expansion benefit, but also expansion risk, by optimizing
over uncertainty sets for the data. In addition, we introduce
risk-reward curves to visualize expansion algorithm perfor-
mance and analyze parameter sensitivity. We show that a
robust approach significantly reduces the number and mag-
nitude of expansion failures for a strong baseline algorithm,
with no loss in average gain. Our approach is implemented
as a highly efficient post-processing step that assumes little
about the baseline expansion method used as input, making
it easy to apply to existing expansion methods. We provide
analysis showing that this approach is a natural and effec-
tive way to do selective expansion, automatically reducing
or avoiding expansion in risky scenarios, and successfully
attenuating noise in poor baseline methods.

Categories and Subject Descriptors: H.3.3 [Informa-

tion Retrieval]: Retrieval Models
General Terms: Algorithms, Experimentation
Keywords: Query expansion, convex optimization

1 Introduction
Despite decades of research on automatic query expansion [12],
even state-of-the-art methods suffer from drawbacks that
have limited their deployment in real-world scenarios. One
example of this is their failure to account for the tradeoff
between risk and reward: current techniques are optimized
to perform well on average, but are unstable and have high
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variance across queries [10]. They are ineffective at avoiding
risk by operating selectively, reducing or avoiding expansion
when it is likely to dramatically decrease performance. In
addition, Web search engines must support an increasingly
complex decision environment in which potential enhance-
ments to a query may be influenced and constrained by mul-
tiple factors including personalization [26], implicit and ex-
plicit relevance information, and computation budgets. Ex-
pansion terms are usually selected individually, when the
correct approach should be to optimize over the entire so-
lution as a set. This is particularly problematic for Web
search, where the set of related words is forced to be very
small for speed and reliability reasons.

Existing closed-form term-weighting formulas for query
expansion find such scenarios difficult or impossible to han-
dle, and cannot easily balance risk and reward. For auto-
matic expansion algorithms to be widely used, is important
to find techniques that maintain the good average perfor-
mance of existing methods, but which are more general and
more reliable.

Convex optimization methods [3] are a special class of
optimization technique that includes well-known algorithms
such as least-squares, but with more general capabilities, so
that they can handle a much wider set of problems. They
provide an attractive starting point for several reasons. Their
ability to integrate different criteria for expansion, such as
risk and reward, as optimization constraints and objectives
allows us to express an extremely rich set of expansion sce-
narios in simple form. Convex programs also have unique,
globally optimal solutions and reliable, highly efficient so-
lution methods. For example, the quadratic programs we
develop below can now be solved in just tens of millisec-
onds for a few hundred variables. Finally, many widely-used
functions used in IR tasks, such as vector dot products and
KL-divergence, are convex functions, making it possible to
cast realistic IR problems as convex programs.

We contribute a new general formulation of query expan-
sion as a convex robust optimization problem that produces
more conservative solutions by optimizing with respect to
uncertainty sets defined around the observed data. Because
our goal is to mitigate the risk-reward tradeoff of expansion,
we introduce risk-reward curves as an evaluation tool. We
make a detailed study of algorithm constraints, and demon-
strate that ignoring risk leads to less stable expansion algo-
rithms. Our approach significantly reduces the number and
magnitude of expansion failures of a strong baseline method
with no loss in average gain, while successfully attenuating
noise when the baseline is poor quality.



2 Theoretical model
Our goal in this section is to show how query expansion can
be cast as a robust convex optimization problem. Instead
of deriving a term weighting formula in closed form, we will
define a set of objectives and constraints that good expan-
sion models would be expected to satisfy. We then give the
resulting convex program to a solver, which either finds an
optimal point x⋆ satisfying the constraints, or determines
that no solution is feasible, i.e. can satisfy all constraints.

We define a query expansion for a query Q of length K as
a set of weights x = (x1, . . . , xn) over terms in a vocabulary
V, with xi ∈ [0, 1]. Each xi represents a weight for term
wi ∈ V. If used with a rounding threshold, xi can also be
thought of as a soft decision to include or exclude the term
from the expansion1. We assume our observations are the
initial query Q, and a set of resulting top-ranked documents
for the query D.

For query expansion, the key idea is that we want to bal-
ance two criteria: reward and risk. The reward criterion for
a feasible expansion x, which we denote R(x), reflects the
selection of ‘good’ individual expansion terms, while the risk
criterion, denoted V (x) penalizes choices for which there is
greater uncertainty, both for individual terms and the entire
expansion set. We now develop these in more detail.

2.1 Reward objectives
In general, obtaining an appropriate objective function for
query expansion would seem to be very difficult, especially
since we want general-purpose methods that can be easily
applied to existing algorithms. We want to make few as-
sumptions about the nature of the retrieval model.

Our solution is to view query expansion in two phases:
the first step obtains initial candidate weights p = Φ(Q,D)
using a baseline expansion method Φ, that we treat as a
black box. The second step is a constrained optimization
phase applied to the initial candidates p to obtain the final
expansion solution x⋆. In that sense, our approach can be
seen as a general-purpose wrapper method. Note that we
do not assume the baseline method is ‘reasonable’: in fact,
we show in Section 4.6 that our approach can tolerate even
the most ill-behaved baselines.

With this view, choosing a reward objective becomes much
easier: we want to bias the solution toward those words with
the highest pi values. One simple, effective function is the
expected relevance of a solution x: the weighted sum R(x) =
p · x =

∑

kpkxk. Other choices for R(x) are certainly possi-
ble, although we do not explore them here. For example, if p
and x represent probability distributions over terms terms,
then we could choose KL-divergence R(x) = KL(p||x) as an
objective since it is convex.

For Indri’s language model-based expansion, we have Rel-
evance Model estimates p(w|R) over the highest-ranking k
documents, where the symbols R and N represent relevance
and non-relevance respectively. We can also estimate a non-
relevance model p(w|N) to approximate non-relevant doc-
uments using either the collection, or the bottom-ranked
k documents from the initial query Q. To set pi, we first
compute p(R | w) for each word w via Bayes Theorem,

p(R|w) = p(w|R)
p(w|R)+p(w|N)

assuming p(R) = p(N) = 1/2.

Then, using p(R|Q) and p(R|Q̄) to denote the probability
that any query word or non-query word respectively should

1Useful for search engines without term weighting operators.

be included in the expansion, the expected value is then

pi =

{

p(R|Q) + (1 − p(R|Q)) · p(R|wi) wi ∈ Q

p(R|Q̄) · p(R|wi) wi /∈ Q.
(1)

We choose p(R|Q) = 0.75 and p(R|Q̄) = 0.5.

2.2 Risk objectives
If reward were our only objective, maximizing the objective
R(x) would simply correspond to preferring the expansion
terms with highest pi values assigned by the baseline expan-
sion algorithm, given whatever constraints or other condi-
tions, such as sparsity, that were in force. These baseline
pi weights, however, are inherently uncertain, and the fi-
nal expansion solution may vary considerably for different
hypotheses about the ‘true’ pi values. To account for this
uncertainty, we invoke robust optimization methods. Robust
methods model uncertainty in p by defining an uncertainty
set U around p, and then applying a minimax approach –
that is, minimizing the worst-case solution over all possi-
ble expansions realized by p varying in its uncertainty set
U . The result is a more conservative algorithm that avoids
relying on data in directions of higher uncertainty.

2.2.1 Uncertainty in expansion term weights

We treat p as a random variable varying within an uncer-
tainty set U distributed with mean p and covariance Σ. We
define Uκ to be an ellipsoidal region around p

Uκ = {u ∈ R
n|(u − p)T Σ−1(u − p) ≤ κ2}. (2)

We set the covariance matrix entries Σij by choosing a term
similarity measure σ(wi, wj) and define Σij = d(wi, wj) =
exp(−η ·σ(wi, wj)), where the constant η is a normalization
factor that depends on the measure chosen for σ(wi, wj).
In this study, σ(wi, wj) was defined using a word similarity
measure based on query perturbations described in [6]. In
practice, however, we have also used simpler methods for
σ(wi, wj), such as the Jaccard similarity2 over the 2-by-2
contingency table of term frequencies for wi and wj in the
top-ranked documents, with only small reductions in effec-
tiveness.

The adjustable parameter κ represents our tolerance of
risk, with larger κ indicating a higher aversion to risk. When
κ = 0, the uncertainty set U0 is a single point, p, and we
have our original reward-only problem. If Σ = I , Uκ is the
ellipsoid of largest volume inside box B = {u | |ui−pi| ≤ κ}.
The key result we now use is the following theorem from
Ben-Tal & Nemirovski [2].

Theorem 1. The robust counterpart of an uncertain lin-
ear program with general ellipsoidal uncertainty can be con-
verted to a conic quadratic program.

As an example, applying this theorem to the very simple
reward-only linear program

minimize − pT x (3)

subject to 0 ≤ xi ≤ 1 (4)

2The Jaccard similarity is defined as σJ(wi, wj) =
M11/(M01 + M10 + M11) where the Mjk are the cells of the
contigency table containing total counts in the top-ranked
documents, and j, k are the binary variables indicating pres-
ence or absence of wi and wj respectively in a document.



results in the robust quadratic program version

minimize − pT x +
κ

2
xT Σx (5)

subject to 0 ≤ xi ≤ 1 (6)

when p varies within the uncertainty set Uκ as defined above.
We thus have our risk objective V (x) = κ

2
xT Σx. Combin-

ing risk and reward gives the bi-objective function U(x) =
−pT x + κ

2
xT Σx.

2.2.2 Uncertainty in the covariance matrix Σ

We can make the solution even more conservative by defining
an uncertainty set for Σ itself. We do this using a simple
diagonal matrix W , with Wii reflecting uncertainty in the
estimate of Σii. To set Wii, we introduce the idea of term
centrality. Previous work [9][29] has shown that terms are
more reliable for expansion if they are related to multiple
query terms. We thus define Wii in terms of the vector di of
all similarities of wi with all query terms. This gives Wii =
‖di‖

2
2 =

∑

wq∈Q d2(wi, wq). It can be shown [15] that the

effect of this regularization is a modified covariance matrix
Σγ = Σ + γ−1 W , where γ controls the relative influence
of the diagonal W . Our joint reward and risk objective
becomes

U(x) = −pT x +
κ

2
xT (Σ + γ−1 W )x. (7)

We discuss the settings for κ and γ in Sec. 4.

2.3 Constraints for query expansion
We now add domain-specific constraints for query expan-
sion: aspect balance, aspect coverage, and query support.

Aspect balance. Intuitively, we want an expansion
that does not contain words that are all related to just one
part of a query. Instead, there should be a balance among
its component aspects. We assume a simplistic model where
each query term represents a different aspect of the user’s
information need. We represent each query term qk as a
vector φk(wi) = Σik of its similarities to all words in V. We
then form a matrix A with K rows Ak = φk. One way to
express a ‘balanced’ solution x with respect to the aspect
vectors φk is to require that the mean of the projection Ax
be within a tolerance ζµ of the centroid µ = 1/K

∑

φk, i.e.
Ax−µ � ζµ where � indicates component-wise comparison.
Query support. We also want the initial query terms qk

to have high weight in the optimal solution. We express
this mathematically with simple box constraints, requiring
xi to lie above a threshold threshold i for xi ∈ Q as well
as below the upper limit ui, which is 1 for all terms. Term-
specific values for li may also be desirable to reflect the rarity
or ambiguity of individual query terms. We note that we
could also implement query support using KL-divergence
KL(θQ||x) in a probabilistic model.

The role of query support constraints differs from inter-
polation using α in model-based feedback since constraining
feedback solutions to have high query support doesn’t pre-
clude significant expansion term support if there are many
strongly related terms. However, as Section 4 shows, our
risk framework is effective at finding expansion models that
are closer to the ideal in which the ‘right’ amount of empha-
sis on the initial query terms is determined automatically.
Our ultimate goal is to make model interpolation unneces-
sary, but we continue using it here to study the potential for
further improvements.

minimize − pT x +
κ

2
xT Σγx + λy Reward & risk (8)

subject to Ax − µ � ζµ Aspect balance (9)

gi
T x ≥ ζi, wi ∈ Q Aspect coverage (10)

li ≤ xi ≤ ui, wi ∈ Q Query support (11)

wT x ≤ y Budget/sparsity constraint (12)

0 � x � 1 Label consistency (13)

Figure 1: The basic constrained quadratic program REXP
used for query expansion.

Aspect coverage. This constraint is useful for retrieval
oriented toward recall: it controls the absolute number of
related words that are acceptable per query term. Similar
to aspect balance, we denote the set of distances to neigh-
boring words of query term qk by the vector gk = φk. The
projection gk

T x gives us the aspect coverage, or how well
the words selected by the solution x ‘cover’ term qk. The
more expansion terms near qk that are given higher weights,
the larger this value becomes. We want the aspect coverage
for each of the vectors gk to exceed a threshold ζk, resulting
in the constraint gk

T x ≥ ζk, for all query terms qk.
Putting together reward and risk objectives with the above

constraints we obtain the final quadratic program, which we
call REXP and is shown in Figure 1. To show the flexibil-
ity of our framework we give two useful extensions: setting
budget constraints and finding top-k expansions.

2.4 Budget constraints
Since every expansion term with non-zero weight adds run-
time cost for the search engine, we may prefer sparse solu-
tions that minimize the number of expansion terms (while
still respecting program constraints). More generally, some
terms, such as those with very high frequency, may have a
higher computation cost than rarer terms due to time re-
quired to load inverted lists from disk. All else being equal,
we prefer solutions with lower probable computation cost.
We handle such scenarios by introducing a weighted ℓ1-norm
penalty constraint with weight vector w. Non-zero entries
for xi will be discouraged when the corresponding wi value
is large. Since x ≥ 0 this leads to the budget constraint
wT x ≤ y. We can either set y to a fixed upper bound, or
we can add it as a ‘soft’ constraint in the updated objective
U(x) = R(x) + κV (x) + λy where λ controls the relative
importance of sparsity against risk and reward objectives.
Setting w = 1 gives a standard ℓ1-norm solution. We can
penalize common terms by setting wi ∝ f(ti), where f(t)
is some function of term frequency of t in the index. If
sparsity is critical, with more computation time we can use
reweighted ℓ1-norm minimization [13] to improve the initial
ℓ1 solution.

2.5 Producing top-k candidate lists
In some applications, we may wish to find a set of the best k
alternatives, either for presenting alternative expansions to a
user, or as a measure of confidence in the optimal expansion:
if the sub-optimal expansion scores are far from the optimal
we have more confidence in our estimate.

To do this, given an optimal solution x⋆, we gather a set
of near-optimal points xη by varying a rounding threshold
η from 0 to 1 and setting entries with xη

i ≤ η to zero. We



then calculate the objective function U(xη) for each of these
alternate expansion solutions and sort by descending U(xη),
selecting the top k expansions from this list3.

3 Related work
Our work was initially inspired by the idea that query ex-
pansion can be viewed as a type of portfolio allocation prob-
lem under uncertainty, in which a set of financial securities
must be selected that maximizes the expected return of the
portfolio but also reduces risk by diversifying among dif-
ferent industry sectors [18]. Typically, there is the option
of buying a safe ‘risk-free’ asset whose return is fixed and
known in advance. Applied to IR, the user’s query (in the-
ory) represents the ‘risk-free asset’, and we can place bets on
expansion terms4. IR has different task-specific constraints
and estimating a ‘rate of return’ for the user’s query may be
problematic. Robust portfolio allocation methods are well-
developed in the computational finance community but we
have not seen much work in IR fully exploit this connection.

Our optimization constraints and objectives bring together
several previous studies on the nature and causes of query
drift [21][14]. Our constraint for aspect balance is based
on observations from the 2003 RIA Workshop [4]. The
empirically-derived Local Context Analysis (LCA) [29] in-
cludes a weighting factor preferring expansion terms that
co-occur with multiple query terms. This corresponds to
the term centrality criterion in our model. Downweight-
ing the contribution of correlated terms has been shown to
improve results [21], and our correlation matrix Σ plays a
similar role. Our query support constraint keeps the ex-
pansion model ‘close’ to the query model, a condition that
has been shown to be effective in other approaches [28][25].
The downside risk of query expansion has been noted for
decades [23]: recently this problem has started to get some
attention in evaluations [10][20][1] and we focus extensively
on it here.

Optimization methods have been used implicitly and ex-
plicitly for IR problems. Implicit use has been via the use
of machine learning techniques such as Support Vector Ma-
chines (SVM) Cao et al. [5] used an SVM to find good
individual expansion terms but did not optimize over the
expansion terms as a set, instead picking terms using a
threshold. Explicitly, unconstrained optimization has been
used for query expansion, typically using specialized code
for a specific objective. Tao & Zhai [25] used EM with a
non-convex, unconstrained likelihood objective to find a lo-
cally optimal expansion model, regularized using a prior that
preferred models close to the initial query. Related work
in smoothing [19] used gradient descent to smooth language
models by minimizing a graph-based quadratic objective. To
our knowledge, the use of robust optimization for IR-related
problems has been limited to text classification [15].

In previous work [7] we introduced an early version of
a Markowitz-type optimization framework for more reliable
query expansion based on portfolio theory. Our work here
greatly extends that initial study by providing the following
contributions:

• A novel theoretical derivation in terms of robust opti-
mization that allows us to define explicit uncertainty

3This problem has close connections to finding ambiguity
groups in fault detection [30].
4Naturally, the actual query may contain typos, misspellings
or verbal disagreement. Here we assume that alterations like
spelling correction have already been performed.

sets around variables of interest, including both indi-
vidual term relevance scores and the term covariance
matrix.

• New evaluation methods, including risk-reward curves
and R-Loss measures for quantifying and visualizing
risk-reward tradeoffs of query expansion algorithms.

• An extensive empirical evaluation, including general
IR performance, risk-reward analysis, and parameter
sensitivity, across 700 queries from six standard TREC
collections.

• Novel budget constraints for query expansion and an
algorithm for finding the k-best expansions.

More generally, an extensive development of risk-aware the-
oretical models, algorithms, and evaluation methods was
given in the author’s doctoral dissertation [8]. That work in-
troduced the risk framework for query expansion described
here and also discussed extensions to other areas of informa-
tion retrieval. Recently, we note that Wang [27] applied a
Markowitz-type mean-variance objective to balance risk and
reward for document ranking.

4 Evaluation
In this section we give an extensive analysis showing that
applying REXP to a strong, state-of-the-art baseline expan-
sion algorithm (Indri 2.2) not only consistently and substan-
tially reduces the worst-case performance (downside risk) of
the baseline expansion algorithm across queries, but does so
without reducing its strong average performance. In other
words, REXP greatly improves the stability of the baseline
expansion algorithm without hurting its overall effectiveness.
Moreover, we show that REXP is effective when applied
to alternate baseline expansion algorithms: most notably,
REXP is effective at attenuating noise when a very poor
quality baseline is used as input to REXP instead (Sec. 4.6).
Furthermore, we analyze the sensitivity of the algorithms’s
risk-reward profile to changes in the various parameters and
show that a single, consistent set of parameter settings for
REXP works well for all collections in the study (Sec. 4.5).

Because our approach is a post-process that assumes lit-
tle about the baseline expansion method used as input, we
emphasize that the key performance question here is not
how absolute expansion gain compares across other studies,
but how much relative improvement we gain from applying
REXP to an already strong baseline expansion algorithm.

We report results using standard retrieval measures, ro-
bustness histograms, and risk-reward curves. Our evalua-
tion uses six TREC topic sets, totaling 700 unique queries:
TREC 1&2 (topics 51–200), TREC 7 (topics 351–400), TREC
8 (topics 401–450), wt10g (topics 451–550), robust2004 (top-
ics 301-450, 601–700), and gov2 (topics 701–850). We chose
these corpora for their varied content and document proper-
ties. Indexing and retrieval were performed using the Indri
system in the Lemur toolkit [24][17]. Our queries were de-
rived from the title field of the TREC topics and phrases
were not used. We wrapped the initial query terms with In-
dri’s #combine operator, performed Krovetz stemming, and
used a stoplist of 419 common English words.

For our baseline expansion method, we used the default
expansion method in Indri 2.2, which first selects terms using
a log-odds calculation, then assigns final term weights using
the Relevance Model [16]: document models were Dirichlet-
smoothed with µ = 1000. We chose this baseline for its



consistently strong average performance: for example, in a
TREC evaluation using the GOV2 corpus [11], the Indri ex-
pansion method gave a 19.8% gain in MAP over unexpanded
queries, and achieved an average MAP gain of 14.4% over
the six collections in this study. Indri’s feedback model is lin-
early interpolated with the original query model weighted by
a parameter α. By default we used the top 50 documents for
feedback and the top 20 expansion terms, with the feedback
interpolation parameter α = 0.5 unless otherwise stated.

We set the inputs to REXP as follows. For efficiency,
we limited our vocabulary V to the top n = 100 expansion
term candidates based on their Relevance Model probability.
With these Indri term scores, the entries of the vector p
were set using Eq. 1. The matrices Σ, A, and gi were also
calculated dynamically for each query using the definitions
given in Section 2. The entries of Σ and gi are determined
by the definition of the distance function d(wi, wj), which in
turn is defined in terms of the similarity function σ(wi, wj).
Here, experiments used the perturbation kernel measure [6],
but as discussed earlier a simpler method such as the Jaccard
similarity may also be used. The matrix A is a |Q| × K
matrix, with each row being the feature vector φ(qi) for
query term qi. There is one vector gi for each query term
qi ∈ Q, as defined in Sec. 2.3. We set κ = 1.0 and γ = 0.75
after experimenting with a subset of queries from the TREC
1&2 and TREC 7&8 collections: in general, a unified set of
parameters appears to work well across all collections in this
study, and this is discussed further in Section 4.5.

4.1 Risk-reward performance
Informally, a reward measure reflects the quality or relevance
of results for a given query, in a way that is appropriate for
the task5. Because we are interested in ad-hoc retrieval we
use Average Precision (AP) as our default reward measure.
We call an expansion failure a case where the reward mea-
sure from applying expansion to a query is worse than the
reward from the initial query results. Mathematically, we
denote RI(Q) as the initial reward obtained with the query
Q with no expansion, and RF (Q) as the final reward ob-
tained when a query expansion algorithm is applied to Q.

The key aspects of a risk measure are: 1) that it captures
variance or related negative aspect of retrieval performance
across queries and 2) this variance/risk is based on the un-
derlying ‘reward’ measure chosen. To evaluate expansion
algorithms, we assume the results from the initial query rep-
resent our minimal acceptable retrieval performance: we do
not want to obtain worse results than the initial query6. We
are particularly interested in the downside risk of an algo-
rithm, which we define as the reduction in reward due to
expansion failures. Then the downside risk FFAIL(Q) for
query Q is simply

FFAIL(Q) =

{

RI(Q) − RF (Q) if RI(Q) − RF (Q) > 0

0 otherwise.

When the reward measure is precision at the top k docu-
ments (P@k) we define R-Loss at k as the net loss of relevant
documents in the top-k due to failure. When the reward
measure RI(Q) is average precision we refer to this simply
as R-Loss, setting k to the size of the retrieved document

5For example, Web search might use the average relevance
of the top-ranked document (P1) while legal applications
may focus on Recall.
6Hypothetically, if we could reliably estimate the quality of
the initial results, we could modify this assumption.

set (k = 1000 unless otherwise specified). Just as AP gives a
combined picture of precision results averaged over multiple
values of k, so the R-Loss measure gives an averaged net loss
of relevant documents due to failure7. We use R-Loss as our
default risk measure in this study.

4.2 Risk-reward curves
A risk-reward curve is generated by plotting a risk measure
on the x axis, and a reward measure on the y axis, so that we
can view how they trade off as the amount of expansion, con-
trolled by the interpolation parameter α, is increased from
α = 0 (no expansion at the origin) to α = 1 (all expansion,
no initial query). The x-axis summarizes downside risk with
R-Loss, the net loss in relevant documents lost due to ex-
pansion failures. To emphasize the difference over using no
expansion, the y-axis summarizes the change in reward aver-
aged over all queries, that is the percentage MAP gain over
using no expansion, so that all curves start at the origin
(α = 0). We will typically plot in α increments of 0.1.

Risk-reward curves for both the Indri expansion baseline
and the robust REXP algorithm are shown in Figure 2 for
all six collections, using MAP as the reward measure with
percentage MAP gain on the y-axis. The dashed line is the
curve given by the strong baseline Indri expansion algorithm.
The solid line is the curve of the resulting robust expansion
after REXP is applied to the strong baseline Indri expansion
algorithm. We enlarge the point at α = 0.5 since this is
our default setting. As discussed further in Section 4.5, all
results use the same unified set of parameters that was found
to work well across all collections.

We say that a tradeoff curve A dominates a second curve
B if A is higher and to the left of B. An algorithm with
a dominant curve gives the same or better reward for any
given level of risk. It is evident that, except for one brief
segment at the end of the Robust2004 curve, the REXP
tradeoff curve dominates the corresponding baseline curve
for every topic set. For α = 0.5, the robust algorithm loses
fewer relevant documents for all collections, while achieving
comparable or higher MAP gain compared to the baseline.
Also, the optimal MAP gain for REXP is always higher than
the corresponding optimal baseline MAP gain.

For an alternate perspective, the risk-reward curves using
Precision at 20 (P20) as reward measure instead of MAP are
shown in Figure 3 for the same collections and algorithms.
Note that while the baseline algorithm significantly hurts
performance (negative P20 gain) for values of α close to 1
on five out of six collections, applying REXP results in a
far more reliable expansion model that virtually never hurts
P20 at any setting of α – only on TREC 7, at the extreme
α = 1, does it give a very small loss. Overall, applying
REXP consistently (and sometimes dramatically) improves
the P20 risk-reward tradeoff across all values of α for five
out of six collections.

4.3 General retrieval measures
As a general summary statistic for robustness we employ a
very simple measure called the robustness index (RI). For
a set of queries Q, the RI measure is defined as: RI(Q) =
(n+−n−)/|Q| where n+ is the number of queries helped (i.e.
with positive AP gain after expansion) n− is the number of
queries hurt, and |Q| the total number of queries.

7This weights relevant documents equally, giving more
weight to queries with more relevant documents. As with
micro/macro-averaging, we could also define a normalized
variant of R-Loss to weight all queries equally.
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Figure 2: Risk-reward tradeoff curves for six TREC topic sets, showing how the robust REXP optimization step consistently
improves the entire risk-reward profile for a strong baseline query expansion method (Indri 2.2). The dashed curve gives the
risk-reward profile for the original strong baseline expansion method, and the solid curve shows the resulting robust REXP
version. Tradeoff curves that are higher and to the left are better. Points are plotted in α-increments of 0.1, starting with
α = 0 at the origin and increasing to α = 1.0. The point at the widely-used setting α = 0.5 is show enlarged on both curves
for comparison.

Collection NoExp Base-FB REXP-FB
(α = 0.5) (α = 0.5)

TREC 1&2
MAP 0.1762 0.2317 (+31.9%) N 0.2346 (+33.2%) N,E

P20 0.4217 0.4483 (+6.94%) N 0.4945 (+17.3%) N,E

R-Loss@20 0/366 117/366 27/366 (-76.9%)
RI 0 0.4844 0.5859

TREC 7
MAP 0.1830 0.2079 (+13.8%) N 0.2106 (+15.1%) N

P20 0.3456 0.3467 (+0.3%) 0.3689 (+6.8%) N,E

R-Loss@20 0/57 23/57 12/57 (-47.8%)
RI 0 0.4146 0.5610

TREC 8
MAP 0.1920 0.2220 (+15.5%) N 0.2199 (+14.5%) N

P20 0.3213 0.3585 (+11.8%) N 0.3660 (+13.9%) N

R-Loss@20 0/76 29/76 19/76 (-34.5%)
RI 0 0.4286 0.4286

wt10g
MAP 0.1747 0.1830 (+5.2%) 0.1990 (+14.0%) N,E

P20 0.2228 0.2340 (+5.4%) 0.2512 (+12.7%) N,E

R-Loss@20 0/158 59/158 29/158 (-50.8%)
RI 0 -0.0270 0.2703

robust2004
MAP 0.2152 0.2441 (+13.5%) N 0.2451 (+13.9%) N,E

P20 0.3252 0.3397 (+4.5%) N 0.3458 (+6.3%) N

R-Loss@20 0/394 124/394 98/394 (-21.0%)
RI 0 0.3364 0.3773

gov2
(2004–
2006)

MAP 0.2736 0.2907 (+6.5%) N 0.3004 (+9.8%) N,E

P20 0.5214 0.5214 (+0.0%) 0.5524 (+6.0%) N,E

R-Loss@20 0/575 171/575 116/575 (-32.2%)
RI 0 0.0922 0.2624

Table 1: Performance comparison of baseline (Base-FB) and robust (REXP-FB) feedback. Precision improvement shown for
both the Indri expansion baseline Base-FB and the robust version of the expansion baseline REXP-FB is relative to the initial
query performance. R-Loss change for REXP is relative to baseline expansion (negative change is good). For Robustness
Index (RI), higher is better. Significant differences at the 0.05 level using the Wilcoxon signed-rank test are marked by N

and E superscripts, for improvement over NoExp and Base-FB respectively.
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Figure 3: Risk-reward tradeoff curves for the same six TREC topic sets as Fig. 2 above, but using R-Loss@20 as the risk
measure on the x-axis, and percentage gain in precision at 20 (P@20) on the y-axis as the reward measure instead of percentage
MAP gain. As in Fig. 2, the point at the widely-used interpolation setting α = 0.5 is enlarged for comparison on both curves:
higher and to the left is better.
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Figure 4: The sensitivity of risk-reward tradeoff curves to varying different optimization parameters: aspect coverage (AC:
ζi), aspect balance (AB: ζµ), covariance (COV: γ), query support (QT: li). For space reasons, two representative corpora are
shown: TREC 1&2 (left) and wt10g (right). The baseline expansion tradeoff curve is also shown (dotted line).
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Figure 5: Histograms combining results for all six TREC
collections, showing the robust REXP version hurts signifi-
cantly fewer queries, seen by the greatly reduced tail on the
left half (queries hurt). (Recall that MAP performance of
REXP is also as good or better than the strong expansion
baseline.) The histograms show counts of queries, binned
by percent change in MAP, for the REXP algorithm (dark)
and baseline (lighter).

Table 1 compares average precision, R-Loss, and RI statis-
tics for the initial, baseline, and REXP feedback methods for
specific choices of α = 0.5 (the standard setting). For all six
collections, at α = 0.5 the average precision and P20 for
REXP are statistically equal or superior to the Indri base-
line expansion, while REXP also reduces the number of rel-
evant documents in the top 20 lost to failures (R-Loss@20)
by amounts ranging from 34.5% (TREC 8) to 76.9% (TREC
1& 2). (Note that R-Loss is relative to initial retrieval and
thus always zero for the no-expansion case.) The total num-
ber of relevant documents is shown in the denominator of
the R-Loss fraction. Looking at the simple fraction of net
queries helped using the Robustness Index (RI), REXP at
α = 0.5 outperforms the baseline at α = 0.5 on 5 out of 6
collections, and has equal performance for TREC 8.

4.4 Robustness histograms
Robustness histograms provide a more detailed look at how
badly queries were hurt and helped by an expansion algo-
rithm. Figure 5 gives the combined robustness histogram
across the six topic sets for REXP (dark) and the baseline
(light). The worst failures – cases where a query’s average
precision was hurt by more than 60% – have been virtu-
ally eliminated by the REXP algorithm, while the upside
gain distribution remains very similar to the baseline gains.
The most noticeable differences in gains are a reduction in
the highest category (more than 100% AP gain) and an in-
crease in the lowest gains (0 to 10%). Both of these are
due to the selective expansion mechanism of the REXP al-
gorithm: queries that are deemed too risky to expand are
not expanded, resulting in a zero AP gain.

4.5 Parameter and constraint sensitivity
Because the REXP program uses several parameters, we
provide a detailed study of how different choices in this
parameter space affect performance and how sensitive the
quality of the expansion solution is to changes in the param-
eters. We also show that there is a single, consistent choice
of parameters that works well for all six collections we tried.

Figure 4 summarizes the sensitivity of tradeoff curves to
different constraint parameter values. The most dominant
tradeoff curves were obtained using an intermediate mix of
risk and reward objectives, with all constraints active. Some

QMOD trec12: rocchio/tfidf

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500

R-Loss

P
e

rc
e

n
t 

M
A

P
 G

a
in

QMOD tf idf

base tf idf

(a) TREC 1& 2

QMOD wt10g: rocchio/tfidf

-25

-20

-15

-10

-5

0

5

10

15

0 1000 2000 3000 4000 5000 6000

R-Loss

P
e

rc
e

n
t 

M
A

P
 G

a
in

QMOD tf idf

base tf idf

(b) wt10g

Figure 6: The effect on risk-reward tradeoff curves of ap-
plying REXP (solid line) to a Rocchio-style expansion algo-
rithm (dotted line) instead of the default Relevance model
baseline. Tradeoff curves that are higher and to the left are
better. Points are plotted in α-increments of 0.1, starting
with α = 0 at the origin and increasing to α = 1.0.
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Figure 7: Risk-reward tradeoff curves for two representative
TREC topic sets, showing the much greater tolerance of the
convex REXP algorithm (solid) to noise from a poor baseline
expansion algorithm (dashed). The point corresponding to
α = 0.5 for each method is enlarged for visibility. Results
for other collections are similar.

constraints had a more dramatic effect on the tradeoff curve
than others. Query support (li) was a highly influential con-
straint: it had a strong effect on MAP gain, but little effect
on risk. Conversely, the use of off-diagonal Σij covariance
entries (γ) had a larger effect on risk reduction (and a weaker
effect on MAP). Activating both of these together resulted in
most of the improvement in the REXP tradeoff curve. Other
constraints such as the aspect balance constraint ζµ were less
critical but acted to further shrink the risk of the tradeoff
curve with little reduction in MAP. Increasing the aspect
coverage parameter ζk also acted to increase the conserva-
tivism of the solution. The role of κ is similar to that of the
interpolation α, controlling the mix between a solution close
to the original query and one using all expansion terms. We
used a setting for REXP parameter values that is effective
on all collections: high query support (i = 0.95), moderately
relaxed aspect balance (ζµ = 2.0), minimal aspect coverage
constraint (ζk = 0.1 for all qk), medium covariance regular-
ization (γ = 0.75) and equal objective weighting (κ = 1.0).

4.6 Alternative expansion baselines
To show the generality of REXP’s black-box approach and
its tolerance to noise, we replaced the Indri baseline algo-
rithm with a strong Rocchio-type method [22] based on a
vector-space model, and a noisy idf-only version.



Rocchio-type. We used a Rocchio-style vector space
baseline in which the top k document vectors were given
equal weight and used a tf.idf representation. For space
reasons the tradeoff curves for two representative collections
are shown in Figure 6: others are similar. As it did with
the Relevance model baseline, REXP dominates the Roc-
chio tf.idf baseline for wt10g. It also reduces R-Loss for
trec12, while keeping average MAP gain comparable.
High-noise Rocchio. When faced with a poor-quality ex-
pansion baseline, a good selective algorithm should usually
avoid expansion altogether and revert to the original query:
REXP does indeed behave exactly this way. This baseline
method is a noisy version of the Rocchio scheme that ignores
term frequency (tf) and uses only idf in the term weight-
ing, which results in a noisy expansion model dominated by
rare terms that are poor discriminators for relevance. The
results for the same two representative collections, TREC 7
and wt10g, are shown in Figure 7. This idf -only baseline has
terrible performance, with MAP loss at α = 1.0 worse than -
80%. However, REXP using this baseline almost completely
attenuates the damage by scaling back to very conservative
expansion. At α = 0.5, for TREC 7a, MAP loss is reduced
from -11.8% to almost zero (0.88%) with reduction in R-
Loss from 1136 to 390. For wt10g, MAP loss is reduced
from -35.1% to -6.1% with reduction in R-Loss from 5485 to
1703. The other four standard collections have similar re-
sults: REXP MAP loss at α = 0.5 is between 0% and -5%,
versus baseline MAP loss of -20% to -40%.

5 Discussion
Based on our evaluation and observations, we believe there
are three distinct capabilities that any expansion algorithm
should have to be both reliable and effective. First, uncer-
tainty in the data should be captured and applied to adjust
the conservativeness of the solution from query-to-query. In
our model this done via the robust problem’s uncertainty set

U . Second, a ŚhardŠ selection process should eliminate im-
plausible models completely: if necessary, all hypotheses ex-
cept the observed query may be rejected. We implement this
property by defining a feasible set using hard constraints,
such as query support. Such constraints are very effective
in attenuating noise when the baseline expansion model is
very poor. With sparsity or budget constraints included,
this dynamically chooses the number of top-k final expan-
sion terms (including zero terms), rather than forcing us to
choose a fixed k in advance. Third, a final process searches
for the optimal model based on the objective function over
the remaining good (feasible) models, effectively performing
a kind of model combination over the space of feasible so-
lutions. Current algorithms implement some of these, but
beyond the present work, no existing algorithms that we are
aware of effectively address all three requirements at once.
The result of combining them is a reliable, selective, effective
expansion algorithm.

6 Conclusions
This paper contributes fundamental new tools for the devel-
opment and evaluation of query expansion algorithms. By
applying concepts from computational finance to cast query
expansion as a robust constrained convex optimization prob-
lem, we can bring the full power of this technology to bear
on expansion problems in order to tradeoff risk and reward
and handle domain constraints that would be difficult or im-
possible using traditional expansion methods. We showed

how we can model our uncertainty in important constraints
by defining uncertainty sets and minimizing the optimal loss
over the uncertainty set. This leads to conservative solutions
by using robust optimization versions of the basic program,
which turn out to have a simple, efficient analytical form.
While most proposed improvements to query expansion only
apply to a particular retrieval model, our algorithms treat
the retrieval model as a black box which could be imple-
mented using vector space models, inference networks, sta-
tistical language modeling, or other approaches. Thus, the
approach we have described is broadly applicable.

We also introduced risk-reward tradeoff curves, which we
believe should be a standard evaluation method for query
expansion algorithms. With these curves and other evalua-
tion measures, we showed how the downside risk of existing
algorithms can be significantly improved, with no loss of
average upside gain. Furthermore, we showed that our ro-
bust optimization method almost completely attenuates the
damage caused by a poor baseline algorithm.

We also described extensions such as budget constraints
and k-best expansions that fit easily into this framework.
This work opens new research directions to explore fur-
ther constraints and objectives, such as biasing expansions
with personalization models or implicit and explicit rele-
vance feedback. Finally, further gains may be possible with
data-driven learning of constraints or objective parameters.
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