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ABSTRACT
Ensuring equitable educational outcomes requires understanding
and addressing each student’s needs. Expert instructors achieve
this by effectively assessing student knowledge gaps through the
mistakes that they commit, employing varying degrees of subject-
matter, teaching and social knowledge. While wide-spread avail-
ability of online courses has greatly expanded equitable access to
educational resources internationally, effective student feedback is
still limited by instructor availability. With increasing class sizes
and higher student-teacher ratios, we need methods to scale up in-
structor expertise, and also give instructors better training and tools
for supporting students at scale. Large Language Models (LLMs)
are one tool that show promise in this direction. However, little is
known about how effectively LLMs can infer student needs from
their behaviors (e.g., test performance, questions asked) the way
some human teachers can, especially in arbitrary domains and social
situations. We motivate the task of identifying student’s knowl-
edge gaps as a form of educational Theory of Mind and provide a
literature synthesis of key papers from traditional and more recent
educational diagnostics and remediation. We discuss building on
this extensive prior work in order to create new, more general effec-
tive methods and datasets for assessing and optimizing educational
ToM capabilities of generative AI.

ACM Reference Format:
Sumit Asthana and Kevyn Collins Thompson. 2024. Towards Educational
Theory of Mind for Generative AI: A Review of Related Literature and
Future Opportunities. In Proceedings of Workshop on Theory of Mind in
Human-AI Interaction at CHI 2024 (ToMinHAI at CHI 2024). ACM, New York,
NY, USA, 5 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Understanding students’ knowledge gaps is essential to providing
them with individual personalized support in course learning en-
vironments [33]. Experienced instructors are able to assess their
students’ knowledge gaps from their class behaviors (e.g., question
asking patterns) and mistakes on test assessments [28]. However,
instructors may not have the time or bandwidth to address every
individual student’s knowledge gaps comprehensively, especially in
online environments where class sizes are large, and instruction is
remote [24]. With the increasing use of generative AI in education
to address the challenge of scale [2], it is important to understand
the ability and potential for generative models like LLMs to reliably
infer underlying knowledge states and suggest effective remedia-
tion actions based on observed student interactions. In social and
communicative situations, the ability to infer the intent and mental

ToMinHAI at CHI 2024, May 12th, Honolulu, Hawaii
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

states of listeners is a key component of people’s adaptive behavior
and is essential for artificial systems to navigate diverse social con-
texts [1, 11]. This capability is referred to as Theory of Mind (ToM)
in Cognitive Psychology [30].

Instructors in learning environments need to infer their students’
latent cognitive states based on their students’ observed behaviors
(e.g., using a student’s questions to better estimate the state of their
mental model and reasoning processes). Much of this inference is
implicit in their teaching activities. Designing tests for assessment
and activities for student discussions all aim to surface student un-
derstanding of concepts and their refinement through feedback. On
the other hand, artificial agents such as LLMs are not currently built
with explicit ToM capabilities [9], but research suggests that LLMs
can perform reasonably on at least a few ToM benchmarks [27]
even though they may lack higher-order reasoning necessary for
complex tasks [14].

In this work, we provide an overview of selected key papers from
the rich history of educational research from the lens of Theory of
Mind. In this context, we also discuss challenges and opportunities
for new forms of benchmark methods that could be used to evaluate
and optimize the educational Theory-of-Mind capabilities of LLMs.
Such advances would be crucial for key pedagogical tasks such as
supporting instructors in creating lesson plans, assessing student
preparedness, evaluating student knowledge gaps and progress over
time, and providing appropriate adaptive remediation in classroom
settings. We also discuss opportunities for leveraging education to
develop agents with a social theory of mind.

2 LITERATURE REVIEW
Our current research framework is informed by a rich, decades-long
history of work in education, particularly in mathematics education.
We provide a short literature review that ties together a broad set
of key papers from diverse fields as critical background on which
to build future ToM efforts involving generative AI.

A significant fraction of education research has focused on early
childhood development. A meta-study by Beaudoin et al. (2020)
provides a systematic inventory of existing ToM measures for
young children [7], resulting in the synthesis of a new taxonomy of
ToM sub-domains they called "Abilities in Theory of Mind Space"
(ATOMS). They enumerated seven ToM categories of mental states
and social situations: Intentions, Desires, Emotions, Knowledge,
Percepts, Beliefs, and mentalistic understanding of non-literal com-
munication, as well as an eighth meta-category "Comprehensive
ToM measures" that could include multiple subcategories. While
recognizing the potential importance of all of these categories in
a learning scenario, work involving educational ToM has tended
to focus most on the Knowledge ToM category, in which student
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reasoning errors and misconceptions are diagnosed, understood,
and even predicted. We describe that subfield in Sec. 2.3.

2.1 LLMs and theory of mind
In LLMs, exploration of Theory of Mind has relied on benchmarks
that explore social scenarios based on the criteria of information
asymmetry between parties in a social setting (e.g., a multi-party
conversation where some members are privy to more information
than others) [35]. LLMs are currently not constructed with suf-
ficient theory of mind capabilities [9] that would allow them to
reliably reason about social situations and take effective actions in
partnership with humans, including in educational scenarios. Rea-
soning about the other person’s mental state is essential for LLMs
as they are being used in social and dyadic interaction scenarios
that demand collaboration [50]. One recent example of this trend is
an attempt to increase robot navigation effectiveness by including
a ToM model [13], which helps the agent plan by reasoning about
a user’s actions [20]. LLMs, however, when applied to predict hu-
man perception of robot behaviors, were found to fail belief tests
through simple prompt perturbations [46]. Human-AI interaction
scenarios such as virtual assistants for tasks can also benefit from
inclusion of ToM models by allowing LLMs to efficiently leverage
context [8] and reducing interaction breakdowns [49].

2.2 Pedagogical content knowledge
Subject matter knowledge (SMK) is a necessary requirement for
teaching. However, while subject matter knowledge allows us to
apply the knowledge correctly, it does not indicate the different
ways in which learners with insufficient subject knowledge may
approach problems. Understanding how students may incorrectly
apply knowledge in tests and real-world scenarios is crucial to pro-
viding them with relevant feedback to address those gaps. Shulman
et al. described this knowledge as pedagogical content knowledge
(PCK) [39]. It allows teachers to connect their teaching experience
with subject matter expertise to present their instruction. It was
later revised to have more emphasis on knowing and understanding
subject and teaching matter as active processes [10]. It encompasses
several dimensions of knowledge, such as using the right language
for complex concepts [47], ordering concept presentation in the
right hierarchy [34], the right difficulty of content for effective
recall [6], and managing the cognitive overload by strategizing
concept presentation [44]. We also note that Minsky argued that in
modeling expertise, we must also consider negative knowledge [31]:
in this case, an additional category of learner ‘error’ in their mental
model would be lack of knowledge about what not to do. Related
to pedagogical knowledge, teacher’s beliefs and attitudes also de-
termines the student learning experience. Ernst et. al [15] discusses
how teachers belief of mathematics as ‘a set of rules and facts’ or
‘as a dynamic problem-driven field of enqiury’ can determine the
learning activities they employ, and how they impart knowledge
to students. Artificial educational support tools like LLMs need to
be aware of such values to better support and align with teaching
activities (e.g., creating lesson plans) [26]. To our knowledge, these
aspects of LLMs have so far been little explored or evaluated.

2.3 Diagnosis of misconceptions and
reasoning errors

Foundational work in mathematics education by Brown, Burton [5]
and VanLehn [4] originated Repair Theory, which was an attempt
to explain how people learn procedural skills, and especially how
and why they make mistakes in acquiring and applying those skills.
This view decomposed complex basic math tasks such as subtract-
ing two three-digit numbers into all of its conceptual procedures
(subroutines) using a procedural network. Notably, the authors also
introduced a chatbot-based game called BUGGY [5] that simulated
a student with a particular knowledge ‘bug’. BUGGY was used as a
training and validation process in which a human teacher had to
discover the underlying misconception by providing strategic test
problems. While BUGGY used a hand-created procedural network,
we believe a compelling and timely update to this idea would be to
use recent advances in conversational generative AI to implement
a more general advanced version of BUGGY that could extract a
more general form of knowledge network and operate in any do-
main, using a hybrid model that merges LLMs with more traditional
student knowledge models. In that scenario, the computer could
also serve in an arbiter mode, in which a teacher must describe the
student’s error in words and also simulate the error by answering
the same way a student would. Our research focus also includes a
scenario where the roles of the LLM student and human teacher
are exchanged so that an AI teacher could attempt to make correct
inferences about errors and provide correct guidance for a human
student.

The utility of well-defined design methods for diagnostic tests
that go beyond just factual correct or incorrect responses has long
been recognized. A report by Herman andWebb (1983) on assessing
student understanding of science [21] provided a comprehensive
landscape of past work in diagnostic assessment. The authors em-
phasize the need to go beyond summary scores and overall accu-
racy, with a strong need to identify specific misconceptions (e.g.,
‘molecular’-level mistakes instead of more ‘global’ mistakes). They
describe the ideal goal of identifying all possible error types. Since a
teacher cannot trackmisconceptions for all students and curriculum
areas, let alone tailor instruction, a more realistic goal is to improve
the power of diagnostic instruments, ‘so they provide more precise
but practical information’. A successful diagnostic test should be
able to isolate specific errors of reasoning by which consistency
could be diagnosed using a rational choice of distractors. In this
way, assessments would enable instructors to examine differen-
tial patterns of error at different levels of comprehension through
orderly structuring of items by the complexity of item content.

Traditionally, diagnostic assessments have started with a com-
prehensive analysis and definition of the space of possible errors.
The work of Brown & Skow (2016) is an excellent representative
example that focuses on multiplication but gives a clear, general
framework for how to conduct an error analysis [23]. In their words,
an error analysis helps a teacher to (1) Identify which steps the
student is able to perform correctly (as opposed to simply marking
answers either correct or incorrect, something that might mask
what it is that the student is doing right); (2) Determine what type(s)
of errors a student is making ; (3) Determine whether an error is a
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one-time miscalculation or a persistent issue that indicates an im-
portant misunderstanding of a mathematics concept or procedure;
and (4) Select an effective instructional approach to address the
student’s misconceptions and to teach the correct concept, strategy,
or procedure.

To date, creating new diagnostic assessments of error types in a
specific domain has been labor-intensive, with a relatively inflexible
result. By retaining domain experts in the loop, but augmenting
the assessment generation and selection process using generative
AI, we believe there are significant opportunities for efficiently
generalizing these traditional educational methodologies to several
new domains and populations. By leveraging their ability to syn-
thesize and summarize large amounts of existing literature, LLMs
could help systematically explore the error category space in a
domain and, in collaboration with an expert, generate an appropri-
ate domain-specific error framework and corresponding diagnostic
tests (e.g., appropriate multiple-choice question distractors), for
review by experienced teachers. This could be paired with online
experimental methods [36] that conduct assessments dynamically
for specific students or populations to maximize the information
gain from student interaction.

2.4 Social contexts of learning
Another representative point of reference from math education
is a study summarizing the reflections of teacher candidates on
how they respond to student errors [17]. The authors note the
connection with social classroom issues, such as public collective
learning, e.g., public discussion of other students’ errors, vs. pri-
vate individual learning. Their work implies that any remediation
of student errors, in deciding which action to take and in what
manner to address it, must consider not only knowledge-type ToM
constructs but also social ToM constructs, especially the context
in which the error occurred (public vs private). The authors make
a distinction between student-centric actions (peer discussion of
erroneous facts) vs teacher-centric (immediate correction). Social
ToM constructs within an LLM could help a tutorial system suggest
the most effective implementation of a given remediation action
predicted by the knowledge-based ToM capabilities of the (same or
complementary) LLM system.

2.5 Predicting student mistakes
Predicting common errors is an important aspect of inferring stu-
dent’s knowledge. Recent work in predicting student errors and
remediation in mathematical problems [48] suggests that LLMs are
still constrained in their ability to diagnose student errors or provide
intelligent remediation strategies. Case studies of eliciting common
wrong answers in data science [40] and in K-12 mathematics cur-
riculum [19] suggest that even identifying common misconceptions
could be a challenging task. Ways to address misconceptions can
range from administering multiple-choice questions targeting the
misconception to open-ended answers [42] with tradeoffs of expres-
sivity of student response and difficulty to evaluate response. In
our opinion this is another research direction for LLM development
with significant future potential.

2.6 Augmenting learner-teacher interactions
with ToM models

The idea of simulating ToM abilities within a machine learning
teaching objective is intended to have the teaching algorithm ‘see’
the world from the student’s point of view. This idea has recently
been applied to algorithmic learners, at the level of learner sensory
capacities and memory, to improve the ‘coaching’ usefulness of
teacher agents in robotics. Grislain et al. [18] designed a robot maze
teaching experiment with a robot teacher guiding a robot learner
towards a maze but only having access to the observed behaviors
of the learner. They introduced a simple Bayesian ‘Theory of Mind’
model of the learner’s hidden state, which quantified the learner’s
goals and sensory capacity (maximum distance, vision resolution).
In the first phase, a teaching agent observed a learner’s behav-
ior (trajectory) in a different maze environment with an assumed
known policy in order to estimate the posterior distributions of each
learner’s ToM model parameters. In the second phase, the teaching
agent chose a demonstration from an available set that was tailored
to individual learner goals and cognitive (sensory) abilities. The
utility of a demo was defined in terms of the learner’s goal and
sensory capacity (hidden variable estimated by the teacher), and
the demo with the maximum expected utility of all available demos
was selected to show the learner. As we explain further below, this
idea of augmenting teaching models with basic ToM capabilities is
a promising area for future research.

3 FUTURE OPPORTUNITIES
In the context of the above related contributions, we summarize a
few key areas where we advocate for additional research. This is by
no means meant to be a complete list, but is intended to showcase
representative problems we believe are high priority for the field.

3.1 New educational ToM assessment
benchmarks in arbitrary domains

In addition to tools that can support teachers in identifying common
misconceptions, training teachers to identify misconceptions and
providing feedback increases access to quality education for more
students [16]. Evaluating content knowledge necessary for teaching
is essential to provide the right feedback to students when they
make mistakes and understand and address common misconcep-
tions they may have [38]. In mathematics, research has investigated
measures that not only elicit teachers’ understanding of concepts
but also whether they can reason about mistakes with the con-
cepts. For example, measures developed by Ball et al. [3] considered
whether teachers could come up with examples of mathematical ex-
pressions (e.g., mixed fractions), represent them in different ways, or
relate them to word problems. Such understanding has been shown
to be positively correlated with student learning outcomes [37].
These measures were later condensed into Mathematical Knowl-
edge for Teaching (MKT) measures that capture teacher compe-
tencies for effective elementary mathematics instruction [22]. The
measures span dimensions such as how teachers represent numbers,
how they interpret unusual student answers, assessing material
difficulty, and providing individualized feedback to students. We
advocate for applying a more general form of such measures to
evaluate LLMs for their capability to infer student knowledge gaps,
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as one important indicator of their potential applicability to educa-
tional courses.

Looking ahead, progress in incorporating educational ToM ca-
pabilities broadly in AI systems will require new ways to evaluate
different systems on specific educational ToM tasks, in arbitrary
domains. With careful use, the same, or related, benchmarks could
also be applied to optimize generative AI system performance on
educational ToM tasks. We need to build on the deep research con-
tributions described above in areas like mathematics education to
leverage LLMs to create dynamic, automated processes for generat-
ing such benchmarks.

We advocate for at least two different modalities for these evalu-
ations: new LLM-based approaches that can create a static assess-
ment similar to existing measures such as MKT for math teachers
but in any desired domain1; and a dynamic assessment anchored
in interactive conversation (inspired by BUGGY above) that can
capture important pedagogical aspects of learner-teacher interac-
tion, such as the ability to elicit further diagnostic information in
a supportive way. Conversation-based benchmarks incorporating
social ToM could also assess teacher effectiveness in both public
and private teaching scenarios.

3.2 Hybrid LLM-based teaching and learning
models

We believe a powerful trend in upcoming educational systems will
be the inclusion of educational ToM capabilities in the objective
functions used to both assess and optimize underlying AI algo-
rithms. This idea relates to the computer science subfield of machine
teaching [51], which has incorporated human cognitive models into
machine learning objective functions [32] in order to obtain more
effective training schedules for both humans and machines on diffi-
cult tasks. Related work in search engines that help people learn has
also integrated simplistic cognitive models into machine learning
objectives [45]. Following the examples discussed in Sec. 2.6, we
expect that hybrid models that join detailed validated cognitive
models of student learning with the linguistic capabilities of LLMs
could be an effective path toward incorporating both Knowledge-
and Social-based ToM capabilities within AI-based educational sup-
port systems.

3.3 Curriculum support tools for diverse
student backgrounds

Online education provides opportunities for students to follow di-
verse learning pathways depending on their interests and economic
goals. However, traditionally designed curricula may not be the
ideal vehicle for supporting such diversity of student backgrounds
and goals [41]. For example, while computing (and more recently,
AI) are increasingly being used in diverse domains, lack of program-
ming expertise can often be a barrier to learning for individuals
from non-CS majors [25]. Designing curricula for students with
different backgrounds requires evaluating their understanding of
course materials given their prior knowledge [12]. Strategies like
explaining core concepts through visualizations and structured pro-
gramming exercises can reduce the complexity for learners but
1Interestingly, the MKT tests contain a mixture of textual and graphical elements,
making them an interesting separate benchmark category for vision-oriented tasks.

this may require additional teaching and domain expertise [43].
AI-supported curriculum design workflows can provide instructors
insights on what parts of lessons may be difficult for students from
different backgrounds and how to restructure them automatically
or with instructor guidance. For example, Kross et. al [29] suggest
that tools can support designing datasets for data science instruc-
tion that contain "correlations, associations, and relationships" in
data that are necessary to illustrate the applicability of data science.

3.4 Conclusion
While current generative AI systems do not possess comprehensive
theory of mind capabilities, it is still useful to evaluate their utility
in understanding and predicting student knowledge gaps. In the
context of a broad, cross-disciplinary literature review of work
in student and teacher assessment in education [3] and computer
science, we advocate for new resources and approaches to evaluate
and optimize LLMs for their theory of mind capabilities in education
– an area we believe with significant future potential to help both
teachers and learners, especially at scale.
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