
Web Tap: Detecting Covert Web Traffic
Kevin Borders, Atul Prakash

University of Michigan
Department of Electrical Engineering and Computer Science

Ann Arbor, MI 48109-2122

{kborders, aprakash}@umich.edu

ABSTRACT
As network security is a growing concern, system administrators
lock down their networks by closing inbound ports and only
allowing outbound communication over selected protocols such
as HTTP. Hackers, in turn, are forced to find ways to
communicate with compromised workstations by tunneling
through web requests. While several tools attempt to analyze
inbound traffic for denial-of-service and other attacks on web
servers, Web Tap’s focus is on detecting attempts to send
significant amounts of information out via HTTP tunnels to rogue
Web servers from within an otherwise firewalled network. A
related goal of Web Tap is to help detect spyware programs,
which often send out personal data to servers using HTTP
transactions and may open up security holes in the network.
Based on the analysis of HTTP traffic over a training period, we
designed filters to help detect anomalies in outbound HTTP traffic
using metrics such as request regularity, bandwidth usage, inter-
request delay time, and transaction size. Subsequently, Web Tap
was evaluated on several available HTTP covert tunneling
programs as well as a test backdoor program, which creates a
remote shell from outside the network to a protected machine
using only outbound HTTP transactions. Web Tap’s filters
detected all the tunneling programs tested after modest use. Web
Tap also analyzed the activity of approximately thirty faculty and
students who agreed to use it as a proxy server over a 40 day
period. It successfully detected a significant number of spyware
and adware programs. This paper presents the design of Web Tap,
results from its evaluation, as well as potential limits to Web
Tap’s capabilities.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive Software – backdoors,
spyware; C.2.3 [Network Operations]: Network monitoring

General Terms
Security, Measurement, Design, Algorithms

Keywords
Covert channels, intrusion detection, anomaly detection, HTTP
tunnels, spyware detection.

1. INTRODUCTION
Network security has been an increasing concern for network

administrators and executives alike. Consequently, Firewalls and
proxy servers have become prevalent among high-security
networks (and even private homes). Many networks require all
traffic to the internet to go through an HTTP proxy server or mail
server, allowing no direct access to the internal network. This
makes the job of a hacker much more difficult than before, where
direct access to network machines was available.

When a hacker attacks a network with no direct access to the
internet, the first step is getting a user to access a malicious file or
web site. This can be done effectively by e-mailing a Trojan horse
program or a link to a page which exploits the browser [7]. Once
the machine is compromised, the next step is to establish a path of
communication. Traditionally, this would be done by installing a
backdoor program such as BackOrifice [6]. The problem with
using such programs on firewalled networks is that they listen for
an incoming connection on a specific port. All incoming traffic,
however, is blocked. This means that the only way to
communicate with a compromised machine is to have it make a
callback (outbound connection). Often, the only two ways out of
the network are through a mail server or through a proxy server.
Since e-mail is often more closely logged and filtered, the hacker
may find outbound HTTP transactions to be the best avenue for
communication with a compromised workstation.

Spyware is also a huge problem for both system
administrators and users alike [4]. Besides annoying users by
popping up advertisements, spyware can leak information about a
user’s behavior or even send data on the machine to outside
servers. Spyware programs can also degrade system performance
and take valuable time and effort to remove. In addition to these
lesser threats, Security holes have been found in Gator and eZula
(two popular spyware programs) that would allow a hacker to
execute arbitrary code on a target machine [13, 30].

Web Tap is a network-level anomaly detection system that
takes advantage of legitimate web request patterns to detect covert
communication, backdoors, and spyware activity that is tunneled
through outbound HTTP connections. We note that, unlike the
previous work on securing web servers (e.g., [22]), Web Tap’s
focus is on analyzing outbound HTTP traffic from protected
network machines to outside web servers, rather than guarding
web servers against hostile attacks. The goal is to make it more
difficult for hackers or malicious users to run Trojan and HTTP
tunnel programs within an organization that leak information to
the outside. Web Tap is designed for deployment at an
organization’s HTTP proxy server (either passively or actively) to
help detect anomalies in outbound traffic.

To evaluate Web Tap, we used it to look at web traffic from
30 clients over a 40-day period as well as traffic from known

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CCS’04, October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010…$5.00.

HTTP tunneling programs. We were successful at detecting
different types of spyware and adware as well as many data
mining and advertisement servers. During the 40 days of
observation, Web Tap generated alerts for adware clients such as
Weatherbug, Kazaa, Lycos search bar, Google search bar, and
Gator. It also was able to find programs which may be unwanted
in a workplace environment such as iTunes, BitTorrent, and AIM
Express. In addition to non-browser clients, Web Tap detected
data mining and advertisement sites such as coremetrics.com,
ru4.com abetterinternet.com, and doubleclick.net. Two of the
three known HTTP tunneling programs tested, Wsh [12] and
Firepass [11], immediately caused Web Tap to raise an alert. The
third HTTP tunnel, Hopster [18], was detected an hour and twenty
minutes after it began running. A custom HTTP tunnel that we
designed, which does a better job of mimicking legitimate
browser requests, was detected within seven hours. When the
backdoor was actively used to transfer files, it was detected
almost immediately.

The rest of the paper is presented as follows. Section 2
discusses related work. Section 3 gives a threat model. Section 4
presents the design of filtering methods, based on measurements
during the one week training phase. Section 5 provides an
evaluation of Web Tap for an extended period after the evaluation
phase. Section 6 talks about vulnerabilities in Web Tap filters.
Section 7 outlines future work and Section 8 concludes.

2. RELATED WORK
Signature analysis is a commonly used technique to look for

Trojan programs and to do intrusion detection. For example, Snort
[31] is configured with over 2500 signature rules to detect scans
and attacks. Several commercial programs detect and remove
spyware from computers by using the same principle and looking
for spyware program signatures [1, 32, 33]. One limitation of
signature analysis techniques is that new attacks are developed
frequently that existing signatures may fail to detect. For that
reason, signature analysis techniques should be complemented
with anomaly detection techniques. Web Tap is able to detect new
spyware and HTTP tunneling programs because it relies on
anomaly detection, rather than signature analysis. Additionally,
Web Tap runs at the network level, not the host level, and thus is
more easily deployed for an organization that uses an HTTP
proxy server for all its outbound web traffic.

Tracking sequences of events using Markov chains or other
models has been used for host and network intrusion detection [9,
15, 16, 23, 36]. This approach is very effective for many
situations such as analysis of system call traces [15] to detect
tampering of applications on a system after. Anomaly detection
has also been used to detect network attacks [32, 36] and attacks
on web servers [22].

In [22], the focus is on detecting malicious incoming traffic to
a server by building a probabilistic profile of web application
parameters exported by the web server. The methods employed in
Web Tap differ from previous work by targeting outbound rather
than inbound communications, with the primary focus being on
detection of HTTP tunnels. The fundamental barrier in analyzing
outbound traffic is that, because of multitude of web services that
can exist outside the system, it is difficult to collect enough data
to do probabilistic analysis for every web application to build
reasonable profiles; users go to new web sites very often when
browsing the web. For inbound HTTP requests to a web server,
on the other hand, a profile can be built of appropriate requests,

sizes of parameters, and typical sequences of web pages accessed
over time, since all incoming requests are for the same web server
[22].

Zhang and Paxson describe a method for detecting backdoors
[37]. They look at the timing of packet arrivals and packet sizes in
order to characterize an interactive shell. For delay times, they
exploited the observation that keystroke inter-arrival periods
follow a Pareto distribution with a high variance [27]. For packet
sizes, they excluded connections that did not contain a large
enough percentage of small requests. The Pareto model is difficult
to extend to Web Tap. The interactive shell component of a
backdoor program controlled by a remote hacker will not send
requests when the hacker types them; the backdoor server has to
wait for a callback from the client before sending any data.
Instead of following a Pareto distribution, the delay times will
follow a distribution according to whatever algorithm the
backdoor client uses to schedule callback times. Packet size
filtering does not apply as well to web tap either because
commands can easily be hidden in larger HTML pages.

Significant research exists on human browsing patterns for
proxy cache and web server performance optimizations [3, 10,
20]. Web Tap measures some of the same browsing patterns such
as inter-request delay time, request size, and bandwidth usage.
Web Tap, however, uses this information to determine if the
traffic is coming from a legitimate user, while previous research
only looked at human browsing patterns for performance reasons.

A substantial body of work exists on covert channel analysis,
including detection of covert channels between processes or users
on the same machine [24, 26]. A report by McHugh [24] defines a
covert channel as “A mechanism that can be used to transfer
information from one user of a system to another using means not
intended for this purpose by the system developers.” Examples
include manipulating CPU usage or disk utilization to
communicate information. In contrast to previous work, Web Tap
does not deal with covert channels per se. The communications
that Web Tap detects may be covert, but the channel is not. There
is nothing inherently secret about HTTP transactions; they are
designed to allow the exchange of information. Backdoors,
however, hide data within the noise of legitimate web traffic in
order to talk to their owners. These lines of communication are
covert even though the channel is not. For this reason the data
paths used by backdoors to secretly send information in legitimate
web traffic will be referred to as tunnels. Furthermore, Web Tap
does not claim to entirely eliminate tunnels. The main emphasis is
on detection of covert tunnels, with a secondary objective of
slowing them down, all without disrupting normal web browsing
activity.

It is also possible to prevent some HTTP tunnel activity by
deploying a content-filter at the proxy server [25, 35]. Such a
filter can be used to prevent people from accessing any website
not on an approved list. Besides being a very restrictive policy for
many organizations, this will not stop the operation of all
backdoors. A well-designed tunnel could still take advantage of
web e-mail via an approved site to communicate to its host. A
hacker could also compromise a web server on the list of
approved sites and use it for communication. If the hacker is able
to place a CGI script on one of these servers, the tunnel can
communicate with the script to leak information. We do not
consider content filters further in this paper, though they can
nicely complement Web Tap’s capabilities.

3. THREAT MODEL

3.1 HTTP Tunnels
In general, if a protocol is available for communication,

people have found ways to tunnel other protocols through it,
bypassing any firewall restrictions based on protocols or
communication ports. HTTP is no exception. Several programs
provide HTTP tunneling to allow users within an organization to
access non-HTTP services via HTTP proxies. One such program,
Wsh [12], communicates over HTTP and provides file transfer
capability as well as a remote shell from machines inside a
protected network to remote servers. The program can also
encrypt data if desired. Another one, Firepass [11], creates a
tunnel between a client process and a remote service running on
an arbitrary machine and port.

3.2 Backdoor Programs
While HTTP tunnel programs can be convenient at times for

allowing legitimate users to bypass firewalls and get access to
remote services, they can also present a serious security threat.
The scenario presented in this section is a modest extension of
such a program that would allow a remote user to acquire a shell
on a machine behind the firewall. For the purposes of this paper,
we assume that use of such programs is considered to be a
security risk and their detection is a legitimate goal of Web Tap.

To get a better of idea how a backdoor could work, here is a
model of an intrusion using such a program:

1) The hacker sends a Trojan horse program to the user, or the
user to views a malicious site which exploits the browser
[7]. (Much like how spyware programs can be installed.)

2) The payload of the hacker’s program contains a backdoor
that executes on the remote machine.

Once the backdoor program is running on the remote
machine, the hacker needs some way of communicating with it. In
this model, the network either has firewall rules in place to block
all incoming traffic, or uses a proxy server. If the network uses a
firewall, then it also blocks all outgoing packets except HTTP
(TCP port 80) and DNS (UDP port 53). In our implementation,
Web Tap addresses the HTTP proxy server scenario.

After the backdoor has been installed, it calls back to a web
server controlled by the hacker (or a server hosting a script
written by the hacker) using HTTP requests. Callbacks can be
scheduled according to a fixed-wait timer, a random-wait timer,
or times of actual browsing activity. Due to the nature of HTTP
protocol, all transactions must be initiated by the client computer.

The threat model assumes that the hacker may make an effort
to disguise messages as legitimate HTTP transactions. The
communication protocol for the backdoor can hide outbound
information in any header field (including the URL), or in data
trailing the header for a POST request. The backdoor then
receives commands from the hacker hidden within what appears
to be a normal web page. Web Tap does not attempt to filter out
covert transactions based on the content of web pages returned by
the server. There are many clever ways of hiding data [29], and it
would be fruitless to try to detect them all.

3.3 Spyware
For spyware, the threat model is exactly the same except the

initial mode of compromise is different. Spyware programs often
install themselves by piggybacking on legitimate software,

exploiting browser vulnerabilities, or tricking a user into
downloading them voluntarily [4, 30]. Once they are installed,
they can use the same method of communication as the backdoor
program described above.

4. WEB TAP FILTER DESIGN
The first phase of Web Tap’s design was to monitor and

record a number of web browsing statistics. Web Tap was set up
as an extended proxy server written in Python. Python was chosen
because it is easy to code, type-safe, and platform-independent.
The original proxy code was taken from a post to a python
discussion group [17]. We extended the proxy server to pass
requests to a Web Tap measurement module before sending them
to their final destination. The module did not block or modify any
of the requests. The proxy server was run on a department
computer within the University network. Web Tap can also be set
up so that the statistics module is inactive and all the requests are
logged. For each request, the complete request line and text of the
headers with their values need to be logged. Also, the source IP
address and the timestamp of the request need to be stored along
with the request. If it is a POST request, then the proxy must log
the number of bytes sent following the headers to make sure it
matches the content-length header value. Once the logging is
complete, Web Tap can later run offline and perform analysis on
the log files.

Users consisted of students, faculty, friends, and family
members who voluntarily configured the browsers on their
computers to use the Web Tap proxy server. Thirty users
participated in the study for a period of 40 days. The first week of
data collection was designated as a training period and used to
help design the filter thresholds. During that time, no filters were
active. Web Tap passively monitored a number of statistics to
detect trends in human web surfing behavior. The following
measurement results and filter thresholds are based on the trends
observed during the one-week training period. We will examine
Web Tap’s performance on traffic recorded after the training
period later on in section five.

Note that bandwidth and request size measurements do not
reflect the actual number of bytes sent from the workstation to the
web server. Only bytes that can be modified without setting off a
header alert are counted. (A header alert is raised when an HTTP
request is sent that is formatted differently from a browser
request. An example would be adding a field at the end of an
HTTP request “webtap-data: a7Hc...” The field would contain
additional data, but would be detected first by the header filter.)
This includes bytes in the URL following the hostname, any
information after the headers in a post request, one bit for the
presence or absence of each optional header field, and variable
header values. An additional two bytes are added to help mitigate
the effects timing and other covert channels. The two bytes help
by increasing the significance of very small requests, which
makes it harder for a hacker to send many one or two-byte
messages and leak out more than one or two bytes of information
through auxiliary channels. Some header fields, such as cookie,
can only have a constrained set of values. A backdoor, however,
could forge cookies and include information not sent by the
server. Right now, Web Tap calculates the number of bytes in the
request assuming that all the headers have legitimate values. In
the future, we plan to keep additional state in Web Tap to verify
header integrity.

Web Tap is only configured to measure a limited set of
browsing statistics. Other possible measurements not performed
by web tap include: request type (Image, HTML, CGI, etc.),
request content, inbound bandwidth, and inbound content.
Request type frequencies varied greatly from host to host and thus
were too not useful for inferring anomalies. Some sites only
served CGI, while others only served images or HTML
documents. Web Tap did not attempt to perform content analysis
on the transactions because there are too many data hiding
techniques such as steganography [29] which are very difficult to
detect. Web Tap also does not attempt to monitor inbound
bandwidth usage. Generally speaking, web server replies are
much larger than client requests. Even the simplest web page,
www.google.com, contains approximately 3000 bytes. The
aggregate inbound bandwidth usage would be so large that it
would be hard to detect any additional hidden data in replies.
Instead, Web Tap focuses on outbound requests because they tend
to contain far less data and are more useful for detecting covert
traffic.

4.1 Header Formatting
Every internet browser has a unique header signature and

utilizes a certain set of header fields. Web Tap parses each header
and generates an alert when it sees a header that is indicative of a
non-browser request. Web Tap also monitors the version of
browser and operating system from which requests are being
made. If a backdoor sends out Internet Explorer with Windows
XP headers when all the computers are running Windows 98, it
can be easily detected by the header format filter. Header
formatting detection proved to be a useful tool for detecting non-
browser web requests. In addition to the standard browsers, (IE
and Netscape/Mozilla) it was able to recognize requests from
seven different clients in only 24 hours: Windows Update, iTunes,
Gator, AIM Express, Windows Media Player, McAfee Web
Update, and BitTorrent.

The header format filter does a good job of detecting
unwanted clients, as well as many HTTP covert tunnels in their
default settings. It can also be used to enforce policies that

prevent employees from using clients such as iTunes and AIM
Express, and detect some adware programs like Gator.
Incidentally, one of the clients detected during the training period,
Unicast (unicast.com), set off the header format alarm because it
spelled the word “referrer” correctly in the HTTP request.
According to the HTTP specification [14] it should be spelled
incorrectly as “referer.” This is good example of how easy it can
be for a hacker to make a mistake when designing a tunneling
program.

4.2 Delay Times
Web Tap measures the inter-request arrival time for a specific

web server from a specific client so programs that make periodic
outbound requests, operating on timers, can be detected. Delay
times were measured on a per-site basis for each user and stored
both in individual vectors and in an aggregate format for all users.
The aggregate vector was used to observe the general distribution
of inter-request delays. Figure 1a shows the probabilistic
distribution of all delay times between site accesses. You can
notice jumps in the cumulative distribution curve at 30 seconds, 4
minutes, and 5 minutes. There are also less-pronounced jumps at
15 minutes, 30 minutes, and one hour. These jumps indicate the
presence of sites that refresh using a timer.

The jumps can be observed more clearly if we take the
derivative with respect to the y-axis of the distribution. This can
be seen in Figure 1b. The derivative is plotted along with its
running average multiplied by 0.8. The average helps to illustrate

)(2

2

VSizet

t

≤≤

<

⎩
⎨
⎧

−−
=

)V(tV(t) 1
0

Delay of
Derivative

Average
Running

a

itDerivative
a

i
∑
=

−∗
= 1

)(8.
)(1 VSizet ≤≤

Figure 2. Equations for the derivative and average of the
delay times seen in Figure 1.

 (a) (b)
Figure 1. (a) Aggregate delay time cumulative distribution with jumps at t = 30 seconds, 4 minutes, and 5 minutes.

(b) Derivative of cumulative distribution and running average used to detect anomalies.

places where the derivative drops below the amount of a normal
fluctuation. The dips in the derivative that drop below the dotted
line correspond to jumps in the distribution at times 30 seconds,
60 seconds, 90 seconds, 4 minutes, 5 minutes, 15 minutes, 30
minutes, 60 minutes respectively. Equations for the derivative and
the average can be found in Figure 2. V is a vector of delay times
taken from every nth element in the full delay vector for a site.
We chose the maximum of the square root of the full vector size
or five for n. The value a represents the number of values used in
the running average. We picked the maximum of the square root
of the size of V or 3 for a.

4.3 Individual Request Size
We found that requests to most sites contain very little

information. A hacker would need to send out large amounts of
data in order to transfer files and view big directory listings on the
remote host. Web Tap monitors request sizes to help detect use of
such techniques. Figure 3 illustrates the distribution of maximum
request sizes for all users and sites. Out of approximately 1600
unique web servers which received requests, only eleven saw
requests of over 3 KB, and only four had requests in excess of 10
KB. Most of these large requests were indicative of file uploads.
A good number of them, however, were attributed to ASP scripts
with large forms. Some ASP POST requests got as large as 6 KB.

After examining the maximum request size distribution, the
most effective filter threshold for single requests appears to be
about 3 KB. This setting allows Web Tap to detect almost any file
upload using HTTP POST requests. It is also high enough to keep
the false alarm rate low. Preventing large post requests will force
a hacker to break up transactions and increase the chance of
getting caught by one of the other filters.

4.4 Outbound Bandwidth Usage
Since most HTTP requests are small, normal web browsing

activity rarely utilizes much outbound bandwidth. When a hacker
is using HTTP requests for covert communication, outbound
bandwidth usage is expected to be higher than the norm. The
reason for this is that the hacker usually only sends short requests
and small tools (executables) inbound to the computer. Outbound
bandwidth, however, is needed to download sensitive documents

and directory listings. From a secrecy point of view, a system
administrator should be more worried about outbound than
inbound traffic.

During the training period, Web Tap measured outbound
bandwidth on both an aggregate and per-site basis for each user.
Total bandwidth consumption was found to contain no useful
information that could not be found in the per site measurements,
and thus is omitted here. Per user bandwidth was measured
mainly to determine what times of day the user is active, not to
filter out large bandwidth consumers.

Much like single request sizes, per site bandwidth numbers
are pretty low. Figure 4 shows the cumulative distribution of total
daily bandwidth usage for thirty users on a per destination-site
basis during the training period. For a majority of the sites
(>99%), users did not consume more than 20 KB of request
bandwidth in a single day. Based on the data, 20 KB appears to be
a good lower bound for a daily bandwidth filter threshold. During
the one-week training period, 48 of the daily byte-counts
exceeded 20 KB. This could be a large amount for a system
administrator to sift through, especially considering that these
would also contain a significant number of false positives. It may
be a good threshold, however, for a high-security network. If the
filter was set any lower than 20 KB, then there would be too
many false positives.

Of the sites measured, less than 0.1% used over 60 KB of
request bandwidth in a single day. All of these were true positives
generated by non-browser clients and data mining advertisements.
Thus, based on the data, we concluded that the daily bandwidth
threshold should be set no higher than 60 KB.

4.5 Request Regularity
Since most hackers need a lot of outbound bandwidth, but

have little available to them (without being detected), they are
made to spread their requests out over a long period of time.
Legitimate web traffic, on the other hand, typically occurs in short
bursts. These opposing traffic patterns can be measured by
request regularity. The resulting filter is able to detect a backdoor
that makes frequent callbacks, even if the requests are interlaced
with legitimate traffic to avoid delay time detection.

Figure 3. Cumulative distribution of maximum request
sizes for ~1600 different sites

Figure 4. Cumulative distribution of bandwidth usage
per site per day for 30 users over a one week period.

We used two different methods to measure request regularity.
The first is to count the number of time periods where a particular
site is accessed by the user being observed. Web Tap counts the
number of 5-minute intervals that have non-zero bandwidth usage
over 8-hour and 48-hour time periods. If requests appear too
often, then the site is classified as being accessed by an automated
process. Figure 5a shows a plot of bandwidth counts over an 8-
hour time period for approximately 400 sites accessed by a single
user. Using a threshold of 16% activity, seven sites were filtered
out with no false positives. Five of these were in blatant violation
of the threshold; they were active consistently throughout the
whole eight hours. The two other sites detected served
advertisements that refresh frequently and are persistent
throughout browsing sessions. There were also five sites close to
the detection threshold (between 10% and 16%), only two of
which were false positives, both from livejournal.com. The 16%
threshold was chosen conservatively to avoid false alarms and
could be lowered even further for a low-traffic network.

The second method used is the coefficient of variation
technique. To determine the regularity, the standard deviation of
bandwidth usage is calculated and divided by the mean bandwidth
usage. Conceptually, this number represents a normalized
deviation of bandwidth usage. If a site is accessed in short bursts,
which is characteristic of normal human activity, then the
coefficient of variation will be high. Low variation in bandwidth
usage is indicative of abnormal or non-human activity. The plot of
the coefficient of variation measurements for an 8-hour time
period can been seen in Figure 5b. We found thresholds of 3.3 for
8 hours and 4.5 for 48 hours to be effective. At those settings, the
coefficient of variation method detected nine sites in violation of
the threshold both over an 8-hour and a 48-hour period, none of
which were false positives. Much like the sites close to the
threshold for the counting method, three of the five sites just
above 3.3 were false positives, all associated with
livejournal.com. For a smaller network, the threshold for this
filter could be effectively raised to around 4.0 for an 8-hour
period without producing many false positives. All of the seven

sites filtered by the counting method were also filtered by the
coefficient of variation method.

Web Tap uses both of these measurements, even though they
would have resulted in identical filtering during the training
period. The primary reason is our assumption that more filters
will not hurt, unless they are generating additional false alarms.
For example, if an adversary had to only evade the coefficient of
variation filter and wanted to make callbacks every 10 minutes,
then he or she would just have to make a single large request
(~2500 bytes) every 48 hours, and a smaller big request (~200
bytes) every 8 hours. The hacker’s solution would, however, fail
if both filters are deployed.

4.6 Request Time of Day
Web Tap recorded the time of day when users typically

browse the web on a per-user basis. People tend to follow a
schedule and do their browsing at set times. This is illustrated in
Figure 6 by the browsing activity seen for a randomly selected
user during the first six days of observation. The activity times
stay fairly consistent from day to day. If requests are seen during
a time when the user is usually inactive, then an intrusion alert
can be raised. This approach would be even more effective when
applied in a workplace instead of a home environment, where
users tend to have more rigid schedules. As an
extension of this, day of week and holidays could be monitored in
a work environment where schedules are predetermined.

Hour: | 1 24
Mar 26(Fri) | ---------------XXXXXXXXX
Mar 27(Sat) | --X---------------------
Mar 28(Sun) | ------------------------
Mar 29(Mon) | ---------------XX--XXX-X
Mar 30(Tue) | X--XX----------XXXXXXXXX
Mar 31(Wed) | ---------------XXXXXXXX-

Figure 6. Activity by time of day for one randomly chosen
user. 12 AM to 1 AM is on the left, and 11 PM to 12 AM is

on the right.

 (a) (b)
Figure 5. (a) Seven sites were detected by usage counts for ~400 sites over 8 hours with a detection threshold
of 16% (b) Nine Sites were detected using the deviation over mean during an 8 hour period with a detection

threshold of 3.3

Table 1. Number of alerts and the false alarm rate for each filter.
The aggregate row shows results from running all the filters in parallel.

Filter Name Number of Alerts
Over 40 Days

Average Alerts
Per Day

False Alarm Rate
(Approximate)

False Alarm Requests

Header Format 240 6.00 0% (Exact) Legitimate browser
Delay Time 118 2.95 5% Not running on a timer
Individual Request Size 38 0.95 34% Not upload or spyware

8-Hour 132 3.30 11% Request
Regularity 48-hour 65 1.63 7%

Not spyware/adware,
ad server, or a timer.

20 KB 106 2.65 32%
30 KB 59 1.48 17%
40 KB 39 0.98 15%
50 KB 26 0.65 12%
60 KB 18 0.45 0%
70 KB 14 0.35 0%

Daily
Bandwidth

80 KB 12 0.30 0%

Not spyware/adware,
not an ad server, not a
file upload, not running
on a timer, and not a
non-browser client

Time of Day 68
2.62 (Not
Including 28%

Anything when the user
is present and active

Aggregate 767 19.2 12% (2.3 per day)

In a home environment, unlike a place of work, users’
schedules are more subject to change. This is especially true for
college students who have part time jobs and subsequently have
schedules that vary from day to day. Even though most of the test
subjects were college students, they still showed striking patterns
in usage times.

5. EVALUATION
After the one-week learning period, the filters were put to the

test against several HTTP tunneling programs, as well as 40 days
of web traffic from 30 users. During the evaluation, all the filters
were active for every site and user. The purpose was to determine
how difficult it would be for a hacker to avoid detection by Web
Tap, how much bandwidth would be available to the hacker, and
the false alarm rate for the filters and thresholds used by Web
Tap. No special filter rules or settings were used to reduce the
number of false positives. We plan to add support for
customization of Web Tap filters in the future.

5.1 Filter Performance over Full Observation
Period

After the first week of measurements designated as the
training period, Web Tap was run with its new filters on traffic
from the same clients over 40 days. The following section
describes the results from the alert logs over the full observation
period for approximately 30 clients. From the 40 days worth of
data collected, 428,608 requests were made to 6441 different
websites, and the proxy log file was 300 Megabytes in size.

Following collection, the information was analyzed by web
Tap in offline mode. An overview of the analysis results from the
40-day period can be found in Table 1. The set of requests that
were considered false positives varied depending on the filter
under consideration. For this experiment, we evaluated false
positives by hand. The type of requests that are false positives can
be seen in Table 1 in the right-hand column. (An ad server is a
web server that hosts refreshing advertisements, such as

doubleclick.net.) In addition to the short description given for
false positives, any alert generated by a Trojan or HTTP tunnel
was considered a true positive, though none were observed during
the evaluation period.

Including those mentioned in section 4.1, Web tap detected 17
different non-browser clients and one non-standard browser using
the header format filter. Six of the clients detected were unwanted
spyware programs. The other eleven clients included those
mentioned earlier such as Windows Update, McAfee Web
Update, and iTunes.

We also found that 5 out of the 30 observed unique clients
had some form of adware on their computer just
based on the header filter results. In addition to the spyware
clients, others were detected that may not be desirable in a work
environment. These included Kazaa, iTunes, AIM Express, and
BitTorrent. Once detected, Web Tap (or the proxy server) could
be set to block, allow but log, or completely allow certain clients
according to network policy.

The large number of header alerts can be attributed to the fact
that Web Tap raises an alarm when it sees a bad header once for
each web server per user. This means that if iTunes were to access
10 different sites, each would generate an alarm. We plan to
reduce the repetition of positives in the future by only raising an
alarm once per client type per user and also filtering out alerts
from allowed clients.

For the delay time measurements, we logged website access
times using one-second granularity. The reason we did not use
more precision is that none of the timers observed had periods of
less than 30 seconds. In order to detect shorter-period timers,
additional precision would be required to differentiate a timer
from repeated short delay times.

Although the false positive rate for the delay time filter was
low (average of one false alarm every 6 days for our test group),
several legitimate websites that refresh using a timer set off
alarms. News and sports sites, such as espn.com and nytimes.com,
tended to be the primary culprits. One way of filtering out

legitimate sites with timers, which we plan to explore, is creating
a list of trusted sites that are allowed to have fixed-interval
callbacks. One must be careful, however, since callbacks to
trusted sites can be used to leak information.

For the individual request size filter, approximately 35% of
the alarms were associated with file uploads. Almost all the other
true positives came from data-mining spyware programs. The
false positives observed were largely ASP and shopping cart
scripts from sites such as www.americanexpress.com and
www.sprintpcs.com. Some websites contained forms with very
large amounts of data that would be sent in single post requests. A
possible method for dealing with this problem, similar to the
solution proposed for delay time false positives, and with similar
risks, would be to create a database of trusted servers. The
database could include popular websites that have very large
forms, but do not allow a user to leak data outside of the network
through file uploads, public message posting, or other means.

As seen in Table 1, the daily bandwidth filter generates more
alerts as well as more false positives as its threshold decreases.
The reason that we took multiple measurements is so that a
security administrator can decide between increased security and
false alarms. For the lowest number of false positives, a threshold
of 60 KB appears to be reasonable for small group sizes. The
threshold can, however, be set lower. For the 20 KB limit, the
false alarm rate is just under one per day. Depending on the level
of security desired, a moderate threshold between 30 and 50 KB
will keep the false positives at a manageable level, and make sure
that most of the real positives are caught. The false positives seen
for the daily bandwidth filter, much like the request size filter,
consisted mainly of sites with large ASP or shopping cart scripts
such as www.tvguide.com and www.sephora.com. The
performance of the daily bandwidth filter could be enhanced by
giving a higher threshold to popular sites from a list that tend to
generate false positives. If the number of false positives is
reduced, then a system administrator can lower the detection
threshold and find more malicious traffic. Also, true positives
could be consolidated by communication between the different
filters. Many of the sites detected by the bandwidth filter, such as
Gator and doubleclick.net, were found by other filters as well.

The regularity filter results seen in Table 1 consisted of both
count and coefficient of variation measurements. We considered
the number of false positives generated by this filter to be
acceptable (approximately one false alarm every three days). The
sites that caused false alarms were only the very popular ones
such as ebay.com and livejournal.com. Many of the sites flagged
by the regularity filter were found by the delay time filter as well.
The regularity filter did, however, find an additional type of
adware that the delay filter was unable to detect: browser search
bars. This particular breed of advertising program imbeds itself
into the person’s browser and calls back to its host every time the
browser opens up as well as throughout browsing sessions. These
are different from other adware programs because their callbacks
are triggered by human activity and thus cannot easily be
differentiated from a person based on inter-request delay times.
Web Tap successfully detected sites that used frequent requests
with this filter, even if they coincided with human usage.

The time of day filter was initially configured so that the first
week of the 40-day period was used for training. After seeing
preliminary results, we lengthened the training time to the first
two weeks of the 40-day period in order to increase the
effectiveness of the filter. During the first two weeks, no alerts

were generated because all requests were representative of normal
activity. It is important to note, however, that for the training
period, spyware and adware programs were active. We did not
attempt to remove fixed-length timer or other non-human activity
from the training data. The effectiveness of training could be
improved to generate more true positives by removing traffic for
sites which set off the delay time or regularity alarms.
Nevertheless, we were still able to detect programs such as Gator
and Wildtangent even though they had been active during the
training period.

5.2 Filter Performance for HTTP Tunnels
and a Web Backdoor Program

For the purposes of this experiment, we used several available
programs that help tunnel TCP traffic over HTTP. These included
Wsh [12], Hopster[18] , and Firepass [11]. The programs we
tested are primarily designed to help people inside a network
bypass firewall restrictions, for example, to get a shell from a
firewalled machine to a remote machine outside the network. We
also included a backdoor program that we designed, Tunl which
allows a user (hacker) outside the network to get a shell on a
machine inside the firewalled network. We present the results
from running these four programs in the following sections.
5.2.1 Third Party HTTP Tunnels

We installed the three tunneling programs on a workstation
using the Web Tap proxy and attempted to send out information
using each. Web Tap was immediately able to detect both Wsh
and Firepass since they used custom header fields in their
requests. After the initial connection, we were unable to
successfully transfer any data using Firepass. Wsh did work
properly, and it was detected by Web Tap’s single request size
filter upon transferring a small file (approximately 5 KB). Wsh,
however, had to be initiated by the client and so did not call back
or set off any other alarms.

We used Hopster to tunnel traffic from AOL Instant
Messenger in our experiments. It began running at 10:30 PM and
no messages were sent during the night. The next day, 10 KB of
data was sent out around Noon. Hopster was not detected
immediately like Firepass and Wsh because it used browser-like
request headers. Unlike the other two programs, Hopster did make
frequent callbacks to the server that were detected by Web Tap’s
regularity filter after 80 minutes, delay time filter after two hours,
and 20 KB daily bandwidth filter after three hours.
5.2.2 Tunl Design

To further evaluate our system, we also designed a prototype
remote shell backdoor called Tunl. It is made to simulate the
situation described in Section 3.2, which allows a user (hacker)
outside the network to get a shell on a machine inside the
firewalled network. Tunl is written for Windows, a popular target
for hackers. It consists of two executables, TunlCli.exe (to run on
the compromised host) and TunlServ.exe (to run on hacker’s
machine), which together provide a remote command shell on the
compromised Windows machine. It is designed to tunnel through
an HTTP proxy server, but can be set to go through a non-proxy
web connection as well.

The first thing TunlCli does when it starts up is launch a
hidden command shell with redefined standard input, output, and
error handles. It then listens indefinitely to the standard output
from the shell, and sends any information back to TunlServ. In
addition to sending data from the standard output, it makes

periodic callbacks to check for server commands. Any data
received from the server is then piped to the standard input of the
command shell for processing. Custom get and put commands,
which are not piped to the shell, are included in Tunl for easy file
transfers. To avoid sending too many small requests, data is
buffered and sent out every 100 milliseconds. Because only
outbound requests from the compromised machine via the proxy
are allowed, when the hacker enters a command on his computer,
the shell has to wait for the client to make an HTTP request
before sending the command in the body of an HTTP reply. The
response to the server’s command is sent back in a subsequent
HTTP POST request. All messaged exchanged are designed to
emulate Internet Explorer on Windows XP accessing an Apache
web server.

Though Tunl did not provide compression or encryption, we
tested it with transferring compressed content. Though some
tunneling programs support encryption (e.g., Wsh), encryption
was largely immaterial to Web Tap since it does not examine data
content. Tunl uses a one hour timer to schedule its callbacks and
retries twice at 30 second intervals in the case of a failed
connection. Note that since Tunl’s communication protocol was
modeled after Internet Explorer requests and Apache replies, it
did not set off any of the header alerts in any test cases.
5.2.3 Tunl with Callback Only Workload

To evaluate the performance of Web Tap, we installed the
Tunl program on one of the machines. The first workload we
tested only contained callbacks to the Tunl server. This represents
the time when a machine is first compromised and the backdoor
begins making callbacks, but the hacker has not yet started using
the shell to execute commands on the compromised machine.

The results for the Tunl client only making callbacks using a
timer were very promising. Even though no data was being
transferred, the traffic from this trace was caught by the request
regularity, the delay time, and the time of day filters. The 8-hour
coefficient of variation bandwidth filter detected the web tunnel 6
hours and 40 minutes after the first callback. The 8-hour activity
count filter was unable to detect the backdoor. The program did,
however, break the threshold for the 48-hour count filter after
about 26 hours. Since the backdoor was running on a timer, the
delay time filter was able to detect it in 2 hours and 10 minutes.
As far as the time of day filter, the delay until detection varies
depending on the individual user’s habits as well as the time of
initial callback. The time of day filter was triggered by the
backdoor very shortly after a time of usual inactivity began.
5.2.4 Minimal Workload

The second test case consists of a hacker using the Tunl shell
to go to the local documents directory (containing approximately
180 documents), listing all the files, and downloading a single
500-word uncompressed document with minimal formatting
(approximately 25 KB). This is a minimal activity scenario where
the hacker only lists one directory and downloads a single small
file. We assumed that any hacker who compromises a machine is
almost sure to do at least this much.

The minimal workload immediately violated the threshold for
the maximum request size filter. It also exceeded the total daily
bandwidth threshold of 40 KB. Even though the file was only 25
KB, the uncompressed directory listing for around 180 different
files was larger than 15 KB. It also went on to trip the delay time
and request regularity filters. The presence of more concentrated
activity, however, made the backdoor harder to detect using the

coefficient of variation regularity measurement. Instead of
detecting Tunl in around 7 hours, the coefficient of variation
measurement did not pass the threshold until after the file transfer
activity was beyond the 8-hour measurement window.
5.2.5 Moderate Workload

The third test case we used represented a moderately intense
hacker session. It consisted of listing all local documents and
desktop directories for one user on the machine. Following the
directory list requests, a variety of files including two income tax
returns (PDF format), one JPG image, three small Word
documents, and a text file containing a 1000-address mailing list
were all compressed and downloaded. Using a common
compression utility, all these files together amounted to a 300 KB
zip file. 300 KB it is actually a moderate, if not small, amount of
data to download from a compromised machine; it represents less
than 1/100,000 the disk space available on a common 40 GB hard
drive.

The alert logs for the moderate workload were almost the
same as those or the minimal workload. The only difference
between alerts is that the moderate workload surpassed the
highest daily bandwidth usage threshold of 80 KB instead of the
just the 40 KB seen during the minimal workload. The moderate
workload did take longer than the minimal workload to complete.
The difference, however, was from two minutes to ten minutes.
Since Web Tap records bandwidth in 5-minute intervals, this did
not really change results from other filters.

6. WEB TAP FILTER VULNERABILITIES
A serious question that comes to mind when evaluating Web

Tap is whether an HTTP tunneling or backdoor program could be
designed to evade Web Tap. This section describes vulnerabilities
that could be exploited to avoid detection by each of the Web
Tap’s filters.
• Single Request Size Filter: Large data transfers can be broken

up into multiple smaller requests (though that risks violating
other filters if the requests are not scheduled carefully).

• Delay Time Filter: The delays could be randomized so as to
bypass thresholds (though this can still trip day-of-time filter,
if the user is not usually active at that time.)

• Time-of-day Filter: The hacker can schedule requests when a
user is normally active (though that increases the risk of
detection by the user.) Of course, if the user is an insider who
wishes to leak data via a tunnel, avoiding this filter is
straightforward.

• Request Regularity Filter: If the hacker knows the thresholds
used, he can attempt to stay below them by keeping a running
count of activity. If the hacker does not know the thresholds
used, then this filter could be avoided by emulating the
regularity of a common site.

• Bandwidth Limit Filter: A tunneling program can keep a
running count of the bytes that have been sent over the past
day. If the count is going to exceed the detection threshold, it
can stop sending data. This requires knowledge of the
thresholds.
In general, it is hard for Web Tap to detect a tunneling

program that closely mimics the browsing patterns of a legitimate
site. This can be accomplished by logging all outbound web
requests and seeing which site is visited the most by the user (this
may be done by compromising the OS or the web browser). The
backdoor can then issue requests of similar size at similar time

intervals to make sure that its traffic does not exceed the
regularity measurement for a legitimate site.

Even though Web Tap can be evaded by copying the
browsing patterns of a legitimate site, the hacker would have to be
careful that the site being mimicked does not generate a false
positive. If the site generates a false positive, and it is copied by a
backdoor, then the backdoor will generate a real positive. This is
one reason why it is very important to set thresholds low enough
so that some false positives still occur. Doing so makes it much
more difficult for hackers to copy the request patterns of other
sites and avoid detection.

It is important to note that if an HTTP tunnel is calling back
to multiple computers, then the amount of bandwidth available is
going to increase. If a system administrator is worried about this,
then it would be possible to set a per user aggregate bandwidth
threshold. Web Tap was unable to measure a good number for
this, since many of the host names actually translated to multiple
computers (at least six in one case) behind one NAT device. This
may, however, be something to examine in the future.

Another possible enhancement to Web Tap would be
allocating different bandwidth quotas for different groups of sites.
Trusted sites that are known to be frequently used can be given
higher bandwidth limits than others. This could help mitigate
attacks by tunnels that mimic access patterns of high-usage
legitimate sites. Such a strategy would allow for the tightening of
thresholds for the remaining sites (or groups of them), thus
limiting the bandwidth available for covert communication.

7. FUTURE WORK
We note that in our study, aggregating over all the filters for

30 users and using the most aggressive bandwidth filter in our
setup of 20 KB/day, 92 false alarms were raised over a 40-day
period (average of 2.3 false alarms per day). The number goes
down to 57 false alarms over a 40-day period (average of
approximately 1.5 false alarms per day) if the bandwidth filter is
set at 60 KB/day. The false positive rate should be manageable
for smaller groups. For larger groups, however, it could become a
concern. There are several techniques to decrease false positive
rate, some of which were pointed to in the previous section. One
simply way of reducing false positives for all filters is to create a
database that keeps track of hosts that tend to set off alarms. If a
system administrator wishes to allow users to access AIM express
and Weatherbug, for example, then these sites may be added to an
ignore list for header, delay time, and request regularity alerts. As
noted in the previous section, however, this increases the risk of
leakage of data via permitted sites, and this is a tradeoff that
system administrators will have to make.

Another intriguing possibility for the reduction of requests
and bandwidth usage for hosts is proxy caching (with the proxy
cache placed before Web Tap). If proxy caching is enabled, then
all the hits do not need to be recorded by Web Tap. Removing
cache hits would help isolate web tunnel activity because all of
the tunnel requests would miss. The number of legitimate requests
going through Web Tap would decrease, while the number of
anomalous requests would remain the same thus making them
potentially easier to detect.

Another way of reducing false positives for bandwidth filters
could be to compress all large transactions. This would
dramatically reduce the size of large requests that would normally
generate false positives. Just to give an example of the effects of
compression, a 3.87 KB POST request that triggered an alarm was

compressed to 2.07 KB, nearly half of its original size.
Compression could help isolate malicious traffic in similar
scenarios. Good hackers are also likely to compress and encrypt
data before sending it over the network, which prevents it from
being compressed any further. Legitimate requests would be
significantly reduced in size, while tunnel requests would not,
thus increasing the chances of the bandwidth filter catching true
positives.

8. CONCLUSION
In contrast to prior work that analyzes attacks on web servers,

Web Tap focused on traffic from internal hosts to the outside
network in order to detect covert HTTP tunnels and spyware. We
presented the design of Web Tap, an anomaly detection system
that can augment an HTTP proxy server to aid in the detection of
spyware and outbound covert HTTP traffic on an otherwise
secure network. Web Tap consists of several anomaly detection
filters. The filters were configured using data from approximately
30 users over a one-week training period. During a 40-day
evaluation period with the same users, Web Tap detected many
spyware programs that used outbound HTTP requests from
compromised clients to send out information. Web Tap was also
successful at detecting several HTTP tunneling programs,
including a test backdoor program.

Different types of tunneling programs set off different alarms.
Data-mining software that sends out personal information tended
to set off bandwidth usage alarms. Browser search bars that made
frequent requests, but operated at times of user activity, were
caught by the request regularity filter. Once detected, spyware can
be blocked or removed to increase system performance and
security. Web Tap can also help detect attempts by hackers to
communicate with backdoors on compromised machines during
normal inactivity times through usage profiling. In addition, Web
Tap detected frequent callbacks from HTTP tunneling programs,
even during times of normal usage.

We also considered the question of what vulnerabilities exist
in Web Tap's filters. In general, evasion of Web Tap’s filters
requires the adversary to know several details, such as Web Tap's
thresholds, a user's normal activity schedule, as well as the typical
browser and platform used on the workstations. Then, the
backdoor must be designed to stay below those thresholds.
Another way that Web Tap can be evaded by the adversary is to
monitor and analyze a user’s outbound traffic then mimic the
access patterns of a legitimate site. Even in that case, the amount
of bandwidth available will be still limited by Web Tap’s
bandwidth filters and the attacker cannot guarantee that he is not
detected since the legitimate site could trigger a false positive. We
also discussed ways to extend Web Tap to further limit the
bandwidth available to a hacker using such a strategy.

While intrusion detection is a never-ending battle between
hackers and security professionals, Web Tap places significant
barriers in front of hackers and spyware designers who target
computers behind proxy servers or restrictive firewalls. Web Tap
produced manageable number of false positives per day for our
30-user group. We also discussed how to manage larger groups
by suggesting additional mechanisms that can help reduce false
positives (such as creating a list of trusted sites that are ignored by
Web Tap). Overall, Web Tap proved to be very effective at
reducing both inadvertent and deliberate information leakage via
outbound HTTP requests.

9. ACKNOWLEDGMENTS
Thanks to students from the University of Michigan who
participated in the study. We also appreciate feedback from
Patrick McDaniel and the reviewers on earlier versions of the
paper. This research is supported in part by grants from the
National Science Foundation (grant CCR 0082851) and gifts from
Microsoft and Intel.

10. REFERENCES
[1] Ad-Aware, http://www.lavasoftusa.com/software/adaware/,

2004.
[2] D. Barbara, R. Goel, and S. Jajodia. Mining Malicious Data

Corruption with Hidden Markov Models. 16th Annual IFIP
WG 11.3 Working Conference on Data and Application
Security, July 2002.

[3] P. Barford, A. Bestavros, A. Bradley, and M. Crovella,
Changes in Web client access patterns: Characteristics and
caching implications, BU Computer Science Technical
Report, BUCS-TR-1998-023, 1998.

[4] J. Berman, Prepared Statement of Jerry Berman, President,
the Center For Democracy & Technology On the SPY
BLOCK Act, Before the Senate Committee On Commerce,
Science, And Transportation Subcommittee on
Communication, March 2004.

[5] BlackICE PC Protection, http://blackice.iss.net/, 2004.
[6] CERT Vulnerability Note VN-98.07, http://www.cert

.org/vulnotes/VN-98.07.backorifice.html, October 1998.
[7] CERT Advisory CA-2003-22 Multiple Vulnerabilities in

Microsoft Internet Explorer,http://www.cert.org/advisories/
CA-2003-22.html, August 2003.

[8] B. Cheswick, An Evening with Berferd in which a cracker is
Lured, Endured, and Studied, USENIX proceedings, January
1990.

[9] D.E. Denning, An Intrusion Detection Model. IEEE
Transactions on Software Engineering, 13(2):222-232,
February 1987.

[10] B. Duska, D. Marwood, and M. J. Feeley, The measured
access characteristics of World Wide Web client proxy
caches, Proc. of USENIX Symposium on Internet Technology
and Systems, December 1997.

[11] A. Dyatlov, Firepass, http://www.gray-world.net/pr_firepass.
shtml, 2004.

[12] A. Dyatlov, S. Castro, Wsh ‘Web Shell’, http://www.gray-
world.net/pr_wsh.shtml, 2004.

[13] EyeOnSecurity, http://eyeonsecurity.org/advisories/Gator/,
2002.

[14] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter,
P. Leach and T. Berners-Lee. Hypertext Transfer Protocol
HTTP/1.1, RFC 2616, June 1999.

[15] S. Forrest, A. Hofmeyr, A. Somayaji, and T. A. Longstaff, A
Sense of Self for Unix Processes, Proc. of the IEEE
Symposium on Security and Privacy, pp. 120-128, May 1996.

[16] A.K. Ghosh, J. Wanken, and F. Charron. Detecting
Anomalous and Unknown Intrusions Against Programs.
Proc. of the Annual Computer Security Applications
Conference (ACSAC’98), pp. 259-267, December 1998.

[17] S. Hisao, Tiny HTTP Proxy, http://mail.python.org/
pipermail/python-list/2003-June/168957.html, June 2003.

[18] Hopster, http://www.hopster.com/, 2004.
[19] H.S. Javitz and A. Valdes. The SRI IDES Statistical

Anomaly Detector, Proc. of the IEEE Symposium on
Security and Privacy, May 1991.

[20] T. Kelly, Thin-client Web access patterns: Measurements
from a cache-busting proxy, Computer Communications,
25(4):357--366, March 2002.

[21] C. Kruegel, T. Toth, and E. Kirda. Service-specific Anomaly
Detection for Network Intrusion Detection. Symposium on
Applied Computing (SAC), ACM Scientific Press, March
2002.

[22] C. Kruegel and G. Vigna, Anomaly Detection of Web-based
Attacks, Proceedings of ACM CCS'03, pp. 251-261, 2003.

[23] T. Lane and C.E. Brodley, Temporal sequence learning and
data reduction for anomaly detection, Proc. of the 5th ACM
Conference on Computer and Communications Security, pp.
150-158, 1998.

[24] J. McHugh, “Covert Channel Analysis”, Handbook for the
computer Security Certification of Trusted Systems, 1995.

[25] MIMEsweeper,http://www.mimesweeper.com/products/msw
/msw_web/default.aspx, 2004.

[26] I. S. Moskowitz and M. H. Kang, Covert channels --- Here to
stay?, Proc. of COMPASS '94, pp. 235 - 243, 1994.

[27] V. Paxson. Bro: A System for Detecting Network Intruders
in Real-Time. Proc. of the 7th Usenix Security Symposium,
January 1998.

[28] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of
Poisson Modeling,” IEEE/ACMTransactions on
Networking, 3(3), pp. 226-244, June 1995.

[29] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn,
Information hiding --- A survey, Proceedings of the IEEE,
special issue on protection of multimedia content,
87(7):1062-1078, July 1999.

[30] S. Saroiu, S. D. Gribble, and H. M. Levy, Measurement and
Analysis of Spyware in a University Environment, Proc. of
the First Symposium on Networked Systems Design and
Implementation, pp. 141–153, March 2004.

[31] M. Roesch. Snort – Lightweight Intrusion Detection for
Networks. Proc. of the USENIX LISA ’99 Conference,
November 1999.

[32] Spybot – Search and Destroy, http://www.safer-networking
.org/, 2004.

[33] SpywareBlaster,http://www.javacoolsoftware.com/
spywareblaster.html/, 2004.

[34] K. Tan and R. Maxion. Why 6? Defining the Operational
Limits of Stide, an Anomaly-Based Intrusion Detector. Proc.
of the IEEE Symposium on Security and Privacy, pp. 188-
202, May 2002.

[35] Websense, http://www.websense.com/products/about/
howitworks/index.cfm, 2004.

[36] N. Ye, Y. Zhang, and C.M. Borror. Robustness of Markov
chain model for cyber attack detection. IEEE Transactions
on Reliability, 52(3), September 2003.

[37] Y. Zhang, V. Paxson, “Detecting Backdoors”, Proc. of the
9th USENIX Security Symposium, August 2000.

