
Securing Sensitive Content in a
View-Only File System

Kevin Borders, Xin Zhao, Atul Prakash
University of Michigan

Department of Electrical Engineering and Computer Science
2260 Hayward Street, Ann Arbor, MI

{kborders, zhaoxin, aprakash}@eecs.umich.edu

ABSTRACT

One of the most fundamental problems in computer security is
protecting sensitive digital information from unauthorized
disclosure. There are a number of challenges, such as spyware,
removable media, and mobile devices, which make this a very
hard problem. The problem becomes even more difficult when the
adversary is somebody who is authorized to view the data. This is
what is commonly referred to as an insider information leak.
Insider leaks often occur out of malice, but sometimes are just due
to plain negligence, as was the case with a recent leak of 26
million U.S. veterans’ names, birth dates, and social security
numbers. Current systems make an attempt to protect against this
type of disclosure, but use rudimentary techniques that can be
easily bypassed by a knowledgeable attacker. Examples include
disabling “print” and “save” menu options within an application
or scanning network traffic for signatures of known sensitive
content. This paper examines a new method for protecting
sensitive content from unauthorized disclosure, a View-Only File
System (VOFS). VOFS relies on trusted computing primitives and
virtual machine (VM) technology to provide a much greater level
of security than current systems. In VOFS, a secure virtual
machine on the client authenticates itself with a content provider
and downloads sensitive data. Before allowing the user to view
the data in his or her non-secure VM, the VOFS client disables
non-essential device output. This prevents the user, or any
malicious software, from printing, uploading, or stealing the
sensitive content. When the user is done viewing a sensitive file,
VOFS will reset the machine to previous state and resume normal
device activity. Our goal is to provide near-seamless access to
view-only files, while at the same time securing them from
unauthorized digital replication. This paper presents the initial
design, development plan, and evaluation plan for VOFS.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information Flow Controls –
sensitive information.

General Terms
Design, Security.

Keywords
Digital rights management, information leakage, insider abuse,
virtual machines, file systems.

1. INTRODUCTION
Protecting sensitive digital information is a major concern for
government agencies, corporations, and even home users. Many
security mechanisms exist today in order to prevent unauthorized
disclosure of information, including encryption, firewalls, and
authentication [9, 13, 16]. Unfortunately, most of these
mechanisms fail once sensitive content is decrypted for viewing
on the end host. Furthermore, these systems are unable to deal
with the most dangerous threat to security: an insider information
leak. Recently, an employee of the Veterans Administration took
home a laptop computer that contained the names, birth dates, and
social security numbers of 26 million U.S. veterans and was later
stolen. This led to a congressional investigation [4]. The heart of
the problem was that the user was authorized to view the sensitive
data, but not authorized to copy it to his hard drive and take it
home with him. This is a very common situation where someone
can view content, but should not print, send, or otherwise
replicate the sensitive content. This type of data will be referred to
as sensitive finished content. The View-Only File System aims to
prevent unauthorized disclosure of sensitive finished content,
regardless of whether user is authorized to view the content.

The design of VOFS is based on a set of ideal security policies for
protecting sensitive finished content. In a perfect world,
authorized users should be able to view sensitive information, but
not be allowed to disclose the information to unauthorized parties,
regardless of whether the disclosure is intentional. Furthermore,
all sensitive finished content should be safe from remote access.
In addition to these security policies, we impose a usability
constraint: people should be able to use their standard
applications on their normal workstation for displaying, searching,
playing, or otherwise transforming the sensitive digital data into a
viewable or audible format. Although these policies cannot be
enforced in their entirety (we cannot prevent users from manually
copying information or remembering and disclosing it at a later
time), the following design goals aim to meet the policies insofar
as possible:

1. Sensitive finished content will only be provided to
authenticated and authorized users of physical machines
running trusted software and hardware.

2. Once a client reads sensitive content, all device output for
that machine, except for video, sound, and limited disk
output, should be disabled by a trusted system component.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DRM’06, October 30, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-555-X/06/0010...$5.00.

3. When the user is done viewing the sensitive content, he or
she should be able to revert to a system state before the
sensitive information was read, at which point device output
may resume.

Assuming the integrity of trusted components, satisfying these
goals will prevent the user’s machine from being able to leak
sensitive information, regardless of the user’s actions or any
malicious software installed on the system.

VOFS utilizes virtual machine (VM) technology to achieve
isolation between trusted and un-trusted system components and
fulfill its design goals. VOFS will use the Xen virtual machine
monitor [5]. The Xen virtual machine monitor (VMM) runs as the
lowest software layer in the system. The VMM has complete
control over the computer and mediates interaction between
virtual machines and the hardware. Above the VMM are guest
virtual machines. The user’s primary operating system will run
inside of a guest VM, and will be referred to as the primary guest
VM. This machine is not trusted and will contain all of the user’s
standard applications. Another guest virtual machine, referred to
as Domain 0, has complete administrative access to the system,
and is considered to be trusted. In VOFS, Domain 0 will be
responsible for enabling and disabling device output, and saving
and restoring the state of other virtual machines. A third guest
VM, the SVFS VM, will be responsible for downloading sensitive
finished content, storing it, telling Domain 0 when to save or
restore the primary guest VM’s state, and telling Domain 0 when
to enable or disable device output. The SVFS VM is based on the
data virtual machine from work on a Secure Virtual File System
[21].

VOFS clients will also take advantage of trusted platform module
(TPM) technology [18]. The clients will use an integrity
measurement architecture similar to those found in [14] and [10],
which use trusted boot, to enable remote verification of trusted
components by content providers. In the trusted boot process, the
TPM will hold cryptographic digests of trusted system
components where they are safe from tampering. First, a small
region of the BIOS will compute a cryptographic hash of the
remainder of the BIOS and send it to the TPM. Next, the BIOS
will measure the boot sector. The boot sector will in turn measure
the lowest software layer, the virtual machine monitor (VMM),
which will be responsible for verifying the integrity the trusted
Domain 0 and SVFS virtual machines. During the process, system
components do not check the next component’s the hash value
before allowing it to run, but they do store the hash value in a
secure location on the TPM. This is different than secure boot,
where each level of the system will not allow the next to run if its
digest does not match a predetermined value [3]. This extra
restriction in secure boot is not necessary for VOFS because the
machine will not be allowed to receive sensitive content unless
the hashes of its trusted components match known correct values.

When the user wishes to view a view-only file in VOFS, his or her
primary VM will make a request to the SVFS VM, which will
contact the content provider to start an authorization session. This
session has built-in mechanisms to prevent message reordering,
deletion, and replay [18]. Next, the content provider will send a
request to verify that the integrity measurements stored in the
TPM match trusted values.. The TPM will sign the integrity
measurements using an asymmetric private key only known to the
TPM. If the server accepts the integrity values, it will send the

encrypted sensitive content to the client. The client will only be
able to decrypt the content using a key on the trusted platform
module. This all occurs in one authorization session to prevent the
machine from restarting with malicious software in between
messages. Next, when the SVFS VM has obtained the decryption
key for the sensitive finished content, it will instruct the virtual
machine monitor to take a snapshot of the guest VM’s state and
disable its device output. It will finally decrypt the sensitive
content and allow the user’s virtual machine to display it. When
the user is done viewing the sensitive content the VMM will
discard it, restore the old state of the primary guest VM, and re-
enable device I/O.

Although VOFS provides a much greater level of security than
current systems, it still relies on the integrity of trusted
components and cannot protect against all attacks. The threat
model for our system assumes that the following characteristics
about trusted system components:

• The attacker cannot probe memory or any bus on the
system’s motherboard.

• The attacker cannot flash the part of the BIOS that makes the
initial TPM measurement.

• The attacker cannot steal the TPM chip.

• The attacker cannot modify trusted software components at
run time (The VMM, Domain 0, and SVFS VM) by
tampering with or replacing the CPU, memory, or disk.

• If an attacker steals an entire machine, an administrator will
notice and revoke the machine’s credentials before the
attacker can modify the machine and obtain sensitive content
from the content server.

• The attacker can install arbitrary software on the primary
guest VM while it is running.

• The attacker can replace the operating system on the VOFS
client while it is turned off.

• The attacker can remove the hard drive or any other
removable media and access it offline.

• The attacker can leak sensitive information through any
device output channel, including the serial port, parallel port,
universal serial bus (USB), and network interface.

We believe the assumptions about the attacker’s ability to probe
hardware, modify the BIOS, and steal machines to be reasonable
in an organizational environment. They may not be reasonable,
however, for machines completely under the user’s control. VOFS
does not provide the same level of security and is not
recommended for end consumer digital rights management. VOFS
does rely on the integrity of the VMM, Domain 0, and SVFS VM
at runtime. These components are much more secure than a
traditional operating system because they run very few services
(no network services), and only perform basic functions. Although
it may be possible to compromise a trusted component, doing so
would be much more difficult than compromising the user’s
primary guest VM. Our threat model also does not encompass all
covert communication channels. These channels are generally
considered to be low-bandwidth and would most likely be slower
than photographing the screen or copying down information by
hand, which are beyond the scope of our threat model.

Today, most workstation machines do not use virtual machine
technology. Deploying a virtual-machine based security system in
an enterprise network could be time-consuming from an
administrative standpoint, and may reduce system performance.
However, recent research on creating a virtual-machine based root
kit [11] shows that it is possible to install a virtual machine
monitor and hoist the machine’s current operating system into a
guest VM without any interaction from the user (and even without
the user noticing). VOFS could be installed in a similar manner to
avoid administrative overhead. Furthermore, a common user will
probably not be able to tell the difference between a virtual
machine and a standard operating system because their levels of
performance are very close on modern virtual machine monitors
such as Xen [5], and VMWare [19].

The remainder of this proposal is laid out a follows: Section 2
discusses related work. Section 3 outlines the design of VOFS.
Section 4 describes the details of the VOFS Client Architecture.
Section 5 briefly talks about preliminary and future work. Section
6 presents our evaluation plan and expected performance issues.
Finally, section 7 concludes.

2. RELATED WORK
Some work has been done on methods for local verification and
remote attestation of software integrity [3, 14, 10]. These methods
ensure that trusted system components are correct when they start
running. The Terra platform [10] goes even further by having a
trusted virtual machine monitor that can verify the integrity of
individual virtual machines. VOFS operates in a very similar
fashion; it computes the cryptographic hash of the trusted Domain
0 and SVFS virtual machines during startup. Although trusted
system components are a critical part of VOFS, its focus is on
building an application on top of trusted primitives.

VOFS’s information flow policies share a lot of similarities with
mandatory access control [7, 15]. In the initial state of the system,
you can think of the user’s primary guest VM, all of its
applications, and all external devices as being low-security
objects. The sensitive content is a high-security object. Now, a
low security object cannot have access to a high-security object
unless it is upgraded to be a high-security object itself, and has all
information flows to low-security objects cut off. This is
essentially what happens when the user’s machine views protected
content; it is upgraded to be a high-security object and has its
device output (flow to low-security objects) disabled. VOFS,
unlike traditional mandatory access control systems such as
SELinux [12], allows for downgrading of the user’s machine to a
low-security object again by reverting to a previous state. Without
this capability, users would be unable to use the same applications
for accessing sensitive and non-sensitive information, which
would severely impact usability.

The primary benefit, however, of VOFS over a traditional
SELinux deployment is that it is more secure. Although SELinux
does a great job of preventing an unauthorized user or process
from accessing sensitive content, it does not do a good job of
preventing an authorized process from leaking the content. If an
application knows it is going to be reading a sensitive file and
wants to send it to a low-security process, it can open up a pipe or
shared memory region beforehand, open the file, then send it out
over the communication channel to the unauthorized process. This
will not be possible with VOFS because all device output from

the system will be disabled. Processes can steal and leak
information between each other as much as they want, but there is
no avenue for leaking the sensitive data to an external entity.

Some applications also try to prevent unauthorized replication of
digital content, though they have no support from the operating
system. One such application is Adobe Acrobat, the standard
viewing application for the popular portable document format
(PDF) [1]. Acrobat has a feature where the publisher of a
document can specify that it is protected, which causes the viewer
to disable certain menu options, such as “print”, when displaying
the file. This protection mechanism provides no real security.
Non-standard PDF viewers can open the same document and print
it freely. The user can also copy the file from its original location
onto any disk or send it across the network to an unauthorized
party. VOFS, on the other hand, protects sensitive documents by
only allowing the system to decrypt and open them after all device
output has been disabled. So, the user’s application may have a
“print” menu option, but selecting it will yield an error message
that a printer is not connected to the system.

Another application that attempts to protect sensitive digital
information is Apple’s iTunes [2], which uses FairPlay digital
rights management technology [8]. Again, iTunes has no support
from the operating system and has only has limited success at
preventing unauthorized replication. Although iTunes uses what
appear to be cryptographically sound methods for encrypting
sensitive content, it is unable to store the key used to decrypt
these files in a secure location. Applications have already been
developed [20] to decrypt protected files from iTunes. Even if
iTunes were able to securely store its key, however, it would run
into the problem of an attacker who controls the operating system
being able to read the decrypted from its memory. Digital rights
management provided by iTunes is analogous to placing a steel
padlock on a cardboard box. VOFS, however, provides a
complete solution by fully isolating the virtual machine that is
viewing the sensitive content.

Cryptographic file systems attempt to address some of the same
threats as VOFS. In particular, they are concerned with
unauthorized access to sensitive files on disk [6]. One
shortcoming of cryptographic file systems is their overhead,
which can be quite high [6]. In contrast, VOFS will only need to
perform cryptographic operations when viewing sensitive files,
and will not affect performance during normal operation.
Cryptographic file systems also assume that authorized users are
trusted and it does nothing to prevent them from leaking sensitive
files.

There are some network-based solutions that try to prevent
authorized users from sending data to an external network [17].
These solutions are only somewhat successful, however, because
they usually cannot identify obfuscated or encrypted information.
Another way of preventing information leakage over a network is
to physically disconnect the network from the outside world. This
is known as an air gap, and is the preferred method of security for
some organizations. The problem with an air gap, however, is that
some users on the internal network may still be unauthorized to
view certain sensitive data. Furthermore, restricting network
connectivity does nothing to stop a malicious insider from
printing sensitive files or copying them to removable media and
taking them home. A more complete solution would be a
computer with no I/O devices other than a keyboard, mouse,

video card, sound card, and a read-only drive such as a CD-ROM
player. This extreme solution, however, is almost completely
unusable, and would still not provide as good of security as VOFS
because content providers are unable to revoke access if a key is
compromised or a machine is stolen.

3. VOFS DESIGN
The design of VOFS is broken up into two sections. In this
section, we will give an overview of trusted platform module
technology and its use in VOFS. Next, we will present the content
transfer protocol that enables content providers to securely send
protected data to authorized users on machines running trusted
hardware and software. In the following section, we will talk
about the SVFS client machine architecture.

3.1 Trusted Platform Module Overview
In order to give some background into the basis of the content
transfer protocol, we will give a brief overview of trusted platform
module (TPM) technology and how to use it to verify the
hardware and software running on a remote machine. A Trusted
Platform Module is a chip that goes into the motherboard of a
computer, and has a number of capabilities. The primary use of a
trusted platform module is protecting secret asymmetric
cryptographic keys and using those keys to sign digests of
firmware and software components. When a TPM-enabled
machine boots up, the first thing that happens after the processor’s
Power on Self-Test is a small trusted portion of the system BIOS
calculates a cryptographic hash of the rest of the BIOS, and sends
the hash to the TPM. The main part of the BIOS then begins
running and calculates a cryptographic hash of the initial boot
block and sends it to the TPM. The BIOS then executes the boot
block, which will send a hash of the operating system (In the case
of VOFS, the virtual machine monitor) to the TPM.

One key property of trusted platform modules is that they are
based on a request-response architecture. This means that a small
portion of the BIOS needs to be trusted to send a correct
measurement of the rest of the BIOS to the TPM. Furthermore,
the CPU, main memory, and all of the communication channels
between the TPM, BIOS, CPU, and memory need to be trusted.
Otherwise, an adversary could send an incorrect hash value to the
trusted platform module, allowing malicious modification of
software to go unnoticed.

Trusted platform modules use a chain of trust to assert the
integrity of each key. The chain of trusted keys on a VOFS

machine can be seen in Figure 1. The basis of trust is a root
endorsement key (EK). Once the EK is set inside of a TPM, it
cannot be changed. The TPM uses the EK to authenticate itself
when generating certain child keys, including the storage root key
(SRK). The “owner” of the TPM, which in this case is a system
administrator, can use the storage root key to create other keys on
the system. Whenever an entity “uses” a key to perform some
operation, that entity must provide an encrypted shared secret to
the TPM, such as a password. Even if the public portion of the
storage root key is known, only the owner is able to use the
storage root key to create other keys, because only he or she
knows the shared secret, which is also stored securely on the
TPM.

In VOFS, the administrator, who is also the TPM owner on all
client machines, will create an “admin” storage key, which is a
direct child of the storage root, with the same shared secret on all
clients. (The “password” to use the admin key on each machine
will be the same, even though the actual keys will be different).
The admin storage key is the third key from the left in Figure 1.
The administrator will then use the admin key to create one server
storage key per content provider on all of the client machines. He
or she will then set the shared secret for each server to be same on
all clients. Again, the actual server keys will be different, which
allows the server to uniquely identify them, but the provider will
be able to access each client using the same shared secret. Each
server should maintain an access control list that specifies the
rights of each client, allowing restriction of file permissions based
on the client machine. This is especially important if a client
machine is stolen; the administrator needs to be able to revoke
access rights on a per-client basis. Optionally, if one is worried
about the server and client shared secret becoming compromised
(due to a server security breach), then the administrator can
externally certify each of the server storage keys to avoid
impersonation of a trusted client. Finally, the content providers
can use their server storage keys to create signing keys, which are
in turn used to verify the machine’s integrity, and binding keys,
which are able to decrypt content coming from the server.

3.2 Content Transfer Protocol
The purpose of the content transfer protocol is to satisfy the first
design goal: sensitive finished content will only be provided to
authenticated and authorized users of physical machines running
trusted hardware. The content transfer protocol assumes that all of
the client TPMs have been configured by an administrator as
specified in the previous section. It also assumes that the content

Figure 1. TPM trust hierarchy on each VOFS machine. Arrows indicate that
they key on the left was used to create they key on the right

provider has its shared secret, allowing it to authenticate and
perform operations with the server storage key on each client.

Before the server transfers any content, each piece of content
should be encrypted with a unique file key. Here, a piece of
content corresponds to one e-mail, one document, etc. The server
can then send the encrypted content, which may be very large, to
any client because it will be unreadable without the secret file key.
For file encryption, we plan on using 256-bit AES with forward
chaining and random keys generated by the trusted platform
module.

Once a client has an encrypted file, it needs to obtain the file key
from the content provider. The content provider and client will
use the following protocol to authenticate and securely transfer
the file key. For this protocol, two-way authentication is not
necessary. The server only needs to verify the authenticity of the
client, and not the other way around. (VOFS only protects the
secrecy of content on the client.)

1. The server initiates an OSAP authorization session [18] with
the client, authenticating the client TPM with the shard
secret.

2. If a signing key that is a child of the server storage key does
not exist on the client, the server creates it using
TPM_CreateWrapKey. (TPM_CreateWrapKey creates and
returns a new cryptographic key of a specified type, see [18])

3. The server obtains the hash chains and integrity
measurements of the BIOS, boot loader, operating system,
and trusted components using TPM_Quote. (TPM_Quote
signs and returns a PCR integrity register value, see [18])

4. The server compares the hash chain values to a list of trusted
values. If the hash chains are not trusted, the server
terminates the connection.

5. If a binding key that is a child of the server storage key does
not exist on the client, the server creates it using
TPM_CreateWrapKey.

6. The server encrypts the file key with the binding key and
sends it to the client. The server sends a command to the
client’s TPM to decrypt the file key with the server’s binding
key using TPM_UnBind. (TPM_Unbind decrypts and returns
a value encrypted with a binding key, see [18])

In this communication protocol, the server assures that the client
is running trusted software before sending it the file key. All of
the above commands also occur in a single authorization session.

In an authorization session, each message contains the nonce of
the previous message and a new nonce for the next message [18],
protecting the messages from replay, deletion, and reordering.
Messages in the same session are also resilient to an attack where
the client reboots with un-trusted software between messages

because the session state on the TPM is reset during machine
reboot.

4. CLIENT ARCHITECTURE
So far we have treated the client as a black box, assuming that it
will adequately protect sensitive information given that it is
running trusted hardware and software. This section delves into
the details of the client’s architecture, highlighting its methods for
protecting content and file keys once they have been decrypted.
The client architecture is based on the last two design goals for
VOFS:

1. Once a machine reads sensitive finished content, all device
output for that machine, except for video, sound, and limited
disk output, should be disabled.

2. A user of a machine with disabled device output should be
able to revert to a system state before sensitive information
was read, at which point device output may resume.

The client relies heavily on virtual machine technology to make
both device output restriction and machine state restoration easier
and more secure. A diagram of a virtual machine system can be
seen in Figure 2. The lowest software layer is the virtual machine
monitor (VMM). The VMM is responsible for mediating access to
hardware resources by virtual machines. The virtual machine

Figure 3. Architecture of the VOFS Client

Figure 2. Virtual Machine Architecture

monitor is a very thin layer, with few services and a small code
base. One benefit of having a small code base is that the virtual
machine monitor is much more secure from attack, whether it is
from the network or from a guest virtual machine. Directly above
the virtual machine monitor are the guest virtual machines. The
operating systems on the guest virtual machines interface with a
number of virtual device drivers that closely resemble physical
device drivers. The primary difference is that access to a virtual
device goes through a physical device driver inside of the virtual
machine monitor, which may examine, modify, or block requests.

In order to protect sensitive files, the VOFS client will need a way
of intercepting file system requests made by a guest virtual
machine. However, doing this outside of the guest VM is not
straightforward because the guest VM only sends the VMM
block-level disk commands. Inferring file-level operations from
block commands would require complex modeling of the file
system. Instead of taking this approach, we plan on using SVFS, a
secure virtual file system, to govern access to sensitive files [21].
SVFS is based on NFS, a network file system, with the SVFS
server running in its own virtual machine. Part or all of the guest
VM’s file system can reside on SVFS. The primary benefit of
SVFS over a real network-based file system is that when a client
VM makes a request for a file, communication between the client
VM and SVFS server VM occurs via fast virtual RPCs instead of
over the network. Fast VRPCs exploit co-locality of the client and
server VMs to deliver performance nearly equivalent to standard
virtual disk access.

The VOFS client will consist of a primary guest virtual machine,
which contains all of the user’s applications, an SVFS virtual
machine, and the privileged Domain 0 virtual machine, which has
full access to the system. The user will only be able to interact via
keyboard and mouse with the primary guest VM; the other two
VMs are trusted, and the user, who is not trusted, should not have
access to them. A diagram of interaction between the three guest
virtual machines can be seen in Figure 3. The first step in viewing
a sensitive file is for the primary guest VM to load it from an
external source in encrypted format. The primary guest then
makes a call to open the file, which is intercepted by the SVFS
VM. The SVFS VM obtains the file key, then tells Domain 0 to
save system state and disable device output. Finally, it allows the
primary guest VM to read the file. When the user is finished
viewing the file, the primary guest tells the SVFS VM that it is
finished. The SVFS VM will again contact Domain 0 to destroy
any disk writes that occurred while viewing the sensitive file,
restore the primary guest VM’s system state, and re-enable device
output. The remainder of this section discusses the details of these
operations and how the various VOFS client components will
support them.

4.1 The Primary Guest Virtual Machine
The primary guest VM contains the user’s main operating system.
The user has complete control over everything in the guest virtual
machine including settings and applications. In the VOFS client,
the primary guest is initially un-trusted. The primary guest VM
also has an SVFS drive for view-only files, and a special

application for accessing view-only files. Initially, we plan to
implement a simple view-only manager that will take a file as a
command line parameter and launch the viewing application. Our
final goal, however, is to modify the operating system so that
access is completely transparent to all applications.

When a user wants to access a view only file, the first step is to
download the file. We plan to use the extension “.vo” at the end
of a file having a standard extension to denote that the file is
encrypted and view-only (i.e. “resume.doc.vo”). In addition to the
encrypted contents of the original file, a VO file will contain a list
of server names or IP addresses that have the file key. A VO file
will also have a unique identifier that specifies the original file
name on the server and a unique identifier that specifies the file
version or key ID (in case the same file was encrypted multiple
times with different file keys). This meta-information will allow a
client who receives the file to contact the appropriate server and
obtain the correct file key. A diagram of a VO file’s contents can
be seen in Figure 4.

4.1.1 The View-Only Manager
Once the user downloads a VO file from an e-mail attachment,
website, or other location, it is time to decrypt and display the file.
The manager will take the following steps to open the file, launc
the display application, and return the guest VM to its original
state before viewing the file:

1. If the file is not stored on the SVFS drive, copy the file to the
SVFS drive.

2. Display an icon or status bar indicating that the machine is in
view-only mode so that the user knows all changes are non-
persistent.

3. Launch the standard viewing application for the file type or
an application specified by the user. Tell the application to
load the file from the SVFS drive.

4. When the application tries to open the file, SVFS will
contact the content server to obtain the file key, decrypt the
file, and instruct the VMM to disable device output.

5. Wait for the user to close the viewing application or click on
a “Done Viewing” button, depending on the user’s
preference.

6. Make a special call to SVFS, SvfsVoDestroy, which will
revert the entire state of the guest VM to a point right before
it read the sensitive content. SVFS will return permission
denied as the result of the file open call to let the View-Only
Manager know that the user is done viewing the file and it
can terminate (similar to the return value of a UNIX fork()
call).

The View-Only Manager provides near-transparent access to
sensitive files. During the development of the View-Only
Manager, we plan to explore different options for automatically
opening view-only files and reverting to the original system state.
Also, we plan to investigate methods for allowing the user to
continue running the original virtual machine, “fork off” the view-

Figure 4. View-Only File Format

only VM, and seamlessly switch between the two VMs. This may
be preferable to disabling all device output and restoring system
state if the user was executing a task in the background, especially
one involving active network connections. In this case, the
sensitive file open will also act as a fork call, and the VO Manager
will instead destroy the current virtual machine in step 6.

4.2 SVFS Instrumentation
In the previous section, we briefly discussed instrumentation of
the file open procedure call, and the addition of a SvfsVoDestroy
call to the SVFS VM. In this section, we will discuss methods for
securely decrypting files inside of the SVFS virtual machine and
reverting to a clean system state. Decryption of files and file keys
will be done entirely inside of the SVFS virtual machine to
prevent any possible information leaks. The primary guest is un-
trusted, and will not have access to sensitive content until device
output is disabled.

4.2.1 File Open Instrumentation
The first thing that the SVFS virtual machine does when it
receives a sensitive file open call is obtain the file key from the
content server using the communication protocol discussed
earlier. After SVFS has obtained the file key, it is critical that
SVFS stores it in physical memory and that it does not mistakenly
get paged out to disk. If this were to happen and an attacker was
able to steal the disk, he or she would have the file key and be
able to decrypt the sensitive content. If SVFS is unable to reach
the server or the server denies access to SVFS, it should return a
status code indicating the nature of the failure.

After SVFS has obtained the file key, it should instruct Domain 0
to save the state of the primary guest VM’s operating system.
Once main memory has been saved, SVFS needs to disable all
device output, including disk writes. It will do this by making a
call, VoOutputDisable, to the Domain 0 VM. From this point
forward, all device output will fail with the exception of video,
audio, and disk writes. Disk writes will appear to succeed, but will
be cached in memory and not persist past reboot. If main memory
is unable to cache all disk writes, or does not want to for
performance reasons, blocks can be written to disk in encrypted
format. The details of the non-persistent file system are discussed
in greater detail in the next section on Domain 0 instrumentation.

Now that device output is disabled, the SVFS VM can safely
decrypt the file as it is read by the client without worrying about
the data going to the physical disk in a readable format. If it does
not encounter any errors, SVFS will return a value indicating
success to the primary guest VM.

4.2.2 SvfsVoDestroy
After the user is done viewing the view-only file, the SVFS VM
must restore the system to a clean state before it had access to
sensitive data. This is accomplished by making a call to
SvfsVoDestroy. When SVFS receives the call, the first thing it
does is contact Domain 0 and call VoDestroyNPFS to destroy all
writes to the non-persistent file system. Now that all traces of
sensitive data have been removed from files written by the
primary guest, SVFS can instruct Domain 0 to restore its memory
using the original snapshot. Finally, the SVFS VM will tell
domain 0 to re-enable device output by calling VoEnableDeviceO.

4.3 Domain 0 Instrumentation
Domain 0 is the most privileged execution environment. It has full
control of the actual hardware on the system. As such, it runs as
few services as possible to minimize its communication with
outside world, and hence its chances of becoming compromised.
Although the SVFS machine is responsible for all secure
communication and encryption, Domain 0 provides most of the
protection for the client. Domain 0 is responsible for controlling
device output and managing non-persistent file access.

4.3.1 Disabling and Enabling Device Output
When the SVFS VM receives a call to decrypt a file, it first has to
disable all device output from the primary guest VM. It will do
this by calling VoOutputDisable in Domain 0. This will cause
Domain 0 to cut off communication between most of its physical
device drivers and the primary guest VM. It is important here to
be very thorough. All serial ports, parallel ports, and USB devices
are potential avenues for information leakage, not to mention
network cards, infrared ports, and removable media. Even
sneakier low-bandwidth channels may also be available, such as
oscillating the “__ Lock” outputs to the keyboard and capturing
them. In general, the only device outputs that should be allowed
are local analog outputs such as the monitor and audio. If the user
has a USB sound device attached, this may create a problem.
Having a USB audio device may enable the primary guest VM to

Virtual Disk Driver (Guest VM)

Guest Application (Guest VM)

Physical Disk Driver (VMM)

Hard Drive

Read(“sensitive.doc”)

Read Virtual Cylinder 10, Sector 10

Read Physical Cylinder 1010, Sector 10

Disk
Block In Write

Buffer?

No

Yes (Read
From Buffer)

 (a) (b)

Figure 5 (a) Translation of file read to virtual disk read to physical disk read.
(b) Intermediate driver with read buffer for non-persistent file system.

send arbitrary digital output to the universal serial bus. Any
misbehaving device or passive sniffer can monitor the bus and
read the data. USB 1.1 specifications allow for data transfer at up
to 12 megabits per second. Even if the maximum rate of audio
transfer is lower or there are other active devices, allowing this
fairly high-bandwidth digital information leakage channel could
potentially compromise the security of VOFS. We plan to initially
disable all USB devices except for the mouse and keyboard, and
would like to explore methods for mitigating digital information
leakage channels while still allowing USB audio output.

Disabling device output on Domain 0 will require different
actions depending on the type of device. For the network, packets
already go through an iptables firewall in Xen [5]. Disabling
network output from a particular guest VM can be accomplished
by blocking all packets at the firewall. Other devices, however,
will require modification to the physical drivers on the VMM.
Instead of automatically translating and allowing requests from
virtual device drivers, the physical drivers must be modified to
check the source virtual machine and deny requests from
particular VMs. We expect modification of these drivers to be
relatively straightforward. They only need to enforce “deny all” or
“allow all” policies based on the source virtual machine.

4.3.2 Creating a Non-Persistent File System
One part of VOFS’s threat model is is theft or removal of
persistent storage devices such as hard drives, USB keys, etc. In
order to guarantee that no sensitive information is ever written to
persistent storage in un-encrypted format, Domain 0 needs to
intercept all disk write calls and prevent them from reaching the
physical disk.

In the virtual machine architecture, each guest OS is assigned one
or more virtual disks to store files. A virtual disk can be stored in
a local file, a disk partition, or even a network file system.
Because of the isolation provided by the VMM, a guest OS can
only access its own virtual disk(s). As Figure 5a shows, on a guest
virtual machine applications access files by invoking standard
system calls such as read() and write(), as they do in a native
operating system. The guest OS handles these calls and translates
them into virtual disk I/O commands, which contain block-level
parameters such as cylinder and sector numbers. The virtual disk
I/O commands are then processed by physical disk driver on the
VMM, which converts them to physical disk commands with the
actual cylinder and sector numbers. The VMM can then access the
physical disk with the translated cylinder and sector numbers.

Instead of allowing the disk commands to go through directly
from the guest’s virtual disk driver to the physical disk driver,
Domain 0 can interpose an intermediate driver that creates a write
buffer as seen in Figure 5b. When the virtual disk driver tries to
write a disk block, the write will instead go to the write buffer.
Now, when it reads a block, the VMM will first check if the block
has been written and, if it has, retrieve it from the write buffer. If
it has not been written, the VMM will read the block from disk.
Maintaining a write buffer in memory will prevent any sensitive
data from going to disk, while still giving the SVFS VM and the
primary guest VM the illusion of a writable disk.

If the write buffer becomes full, the intermediate driver can
encrypt parts and write them to swap space on disk. Here the
intermediate driver should create an ephemeral 256-bit AES key
using the TPM’s random number generation capability. This key
should be stored in memory, and never written to disk. So, if the

machine is turned off, none of the encrypted write buffer, which
may contain sensitive information, can be read. When encrypting
disk blocks, the intermediate driver should also compute the XOR
of the 256-bit key with the unique disk block number. This
ensures each block is encrypted with a different key, and prevents
an attacker from being able to determine if two blocks contain the
same content. With this encryption scheme, it will be impossible
for a guest VM to directly leak any information to disk.

5. PRELIMINARY AND FUTURE WORK
Currently, we have implemented a stand-alone version of the
Secure Virtual File System [21]. In our SVFS implementation, all
of each guest virtual machine’s sensitive read-only files are stored
within a SVFS virtual machine. Unlike a traditional networked
file system, SVFS takes advantage of co-locality of the client and
server on the physical hardware with its unique virtual RPC
mechanism to deliver near-native disk performance. When
building the Linux kernel, a standard networked file with the
client and server running in separate VMs ran 51% slower than a
native virtual file system. SVFS, however, ran with only 8.3%
overhead. These results suggest that storing some files in a
separate virtual machine is not likely to have a significant effect
on system performance.

Most of the VOFS project remains to be implemented, including
client and server applications for content transfer that utilize TPM
technology, disabling of output for non-network devices,
instrumentation of Domain 0, and instrumentation of the SVFS
VM. Some exceptions include snapshot save and restore
capability, which is already performed by Xen, and disabling
network I/O for guest virtual machines, which we can currently do
using iptables firewall rules [13]. During the implementation of
the remainder of the system, we plan to iteratively perform a
thorough security evaluation. The hope is to identify and
eliminate any covert communication channels or weaknesses in
the underlying system that could be used to bypass security
mechanisms and leak sensitive information.

6. PERFORMANCE AND EVALUATION
VOFS will do an excellent job of preventing information leakage,
and address a number of threats, such as hard drive theft and
insider attacks, which previous systems fail to handle. However,
all of these security properties come with a cost. For our
evaluation, we will compare the performance of our system to a
standard, un-instrumented virtual machine system. In particular,
we will examine the following operations, which we believe will
be the most costly:

• Saving main memory to disk before accessing a sensitive file

• Restoring main memory from disk after accessing a sensitive
file

• Using a write buffer for disk I/O

6.1 Memory Save and Restore
The first intensive operation, saving a snapshot of the primary
guest VM’s memory to disk, can be optimized by running the
snapshot in the background. What this means is that the virtual
machine monitor will begin saving the virtual machine’s memory,
but allow the machine to continue running. If the VM happens to
make a write request to a memory block that the VMM has not yet
saved, then the VMM will skip ahead and save that block, then
continue writing the rest of memory. The Xen virtual machine

monitor performs snapshots in the background by default, and we
plan to use its capability to optimize snapshots in VOFS.

In contrast to taking a snapshot, restoring main memory is more
costly. This is because the entire snapshot is typically restored
before allowing the machine to resume execution. It would be
possible to let the system begin running immediately and restore
specific portions of memory as they are read, but doing this may
actually decrease performance. If memory is read non-
sequentially, restoration may incur additional disk seek and
rotation penalties. Without allowing immediate execution,
snapshot restoration takes approximately seven seconds for a
virtual machine with 256 MB of memory on a 3.0 GHz Pentium
IV machine with 1 GB of physical memory.

We hope to investigate methods for optimizing snapshot
restoration, such as immediately resuming execution and paging
in memory as it is read, and plan to evaluate restoration speed. In
the immediate restoration scenario, we will begin using the
restored virtual machine as soon as it starts executing, and
compare the wall clock time required to restore the entire
snapshot to that of a simple restore. If the two are comparable,
and the guest virtual machine is usable during the restoration, then
we will use background restoration. Otherwise, we plan to use the
traditional method of restoring virtual machines.

6.2 Disk Write Buffer
Creating an intermediate write buffer in memory between the
physical disk driver and virtual disk driver can add extra overhead
for disk operations. The amount of overhead for reads that end up
having to go to the real hard drive will be minimal; the time
required to check if a block is in the write buffer will be very
small compared to the disk seek and read time to grab the block.
For reads that hit in the write buffer, performance may actually be
better because reading from memory is much faster than reading
from disk. In this case, the write buffer acts as a file cache. Writes
should also go to the write buffer in memory, which again will be
faster than going to disk. One major issue, however, will be the
size of the write buffer. Depending on how long the primary guest
VM runs in view-only mode, it could potentially write a lot of
data. If this happens, then the intermediate driver will need to
encrypt disk blocks, which is a CPU intensive operation, and
write them to disk. Similarly, it will need to read the same blocks
back from disk and decrypt them as it receives read requests.
Fortunately, the primary guest VM is not likely to perform many
disk writes because the user knows none of them will persist.
Writes should only be needed for temporary files, which will
probably not occupy more than 100 MB. Also, if disk writes do
exceed the capacity of memory, the primary guest VM’s only
function in view-only mode is to display content. Almost no
viewing applications are performance-intensive, with the possible
exception of video playback, and are unlikely to slow down
noticeably if they have to go through an encryption layer.

In our evaluation, we plan to investigate the effects of a write
buffer. First, we will try to get an idea of how large the write
buffer needs to be by running standard viewing applications on
various types of files and observing temporary file size. Next, we
will force the entire contents of the write buffer to go through an
encryption layer and eventually to the disk. We will view various
types of content with a disk-only encrypted write buffer and see if
it creates any delay noticeable by a human. We also plan to run a
number of benchmarks that reflect less likely usage scenarios for

VOFS, such as the Andrew benchmark, and record their wall
clock times compared to a normal virtual machine system. We
expect that more complex operations will experience greater slow-
down, but standard viewing will not take much memory and may
even be faster due to in-memory caching of disk writes.

7. CONCLUSION
In this paper we present the design of a View-Only File System, a
promising method for protecting finished content. VOFS will
prevent unauthorized disclosure of sensitive “view-only” content
by only allowing access by authorized users running trusted
hardware and software. Furthermore, VOFS will disable all device
output from the user’s primary operating system, except for video
and audio, before allowing it to access sensitive finished content.
When the user is finished, VOFS will revert the user’s operating
system to state before it had access to the sensitive data. These
security mechanisms enable VOFS to prevent sensitive
information leaks, even by users who are authorized to view the
information.

VOFS will utilize trusted boot technology, based on the TPM
chip, to enable remote verification of software integrity. Content
servers first check to make sure that clients are running the correct
VOFS software before sending them sensitive information. When
the sensitive content is on a client machine, VOFS uses virtual
machine technology to provide isolation between trusted and un-
trusted components. Sensitive data is protected inside of an SVFS
VM until a Domain 0 VM shuts off device output from the user’s
primary OS. Once output is disabled, the SVFS VM allows the
primary guest to access and display sensitive content. In this
manner, VOFS provides both a high level of security and
usability, allowing the user’s primary guest virtual machine to
access sensitive data without requiring trust or verification from
the system.

While implementing the remainder of VOFS, we plan to perform
thorough and iterative security tests to explore possible covert
communication channels and eliminate potential vulnerabilities in
the system. We also plan on evaluating the overhead of resource-
intensive operations including snapshot save, snapshot restore,
and disk write buffering. Our goal is to create a system that is as
seamless as possible and does not hinder the user from performing
authorized everyday activities, while still providing stringent
security guarantees to protect sensitive finished content.

8. ACKNOWLEDGMENTS
We would like to thank Trevor Mudge for his advice on trusted
hardware technology as well as the Intel Corporation and the
National Science Foundation (Grant #0325332) for their support.

9. REFERENCES
[1] Adobe Systems Incorporated. Adobe Acrobat. June 2006,

http://www.adobe.com/ products/acrobat.

[2] Apple Computer, Inc. iTunes. June 2006,
http://www.apple.com/itunes.

[3] W. Arbaugh, D. Farber, and J. Smith. A Secure and Reliable
Bootstrap Architecture. In IEEE Computer Society
Conference on Security and Privacy, pp. 65-71, 1997.

[4] The Associated Press. VA Chief: Security Fix Will Take
Time. MSNBC, June 8, 2006.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho
R. Neugebaur, I. Pratt, A. Warfield. Xen and the Art of
Virtualization. In Proc. 19th ACM Symp. On Operating
Systems Principles, pp. 164-177, 2003.

[6] M. Blaze. A Cryptographic File System for UNIX. In Proc.
of the 1st ACM Conference on Computer and
Communications Security, pp. 9-16, 1993.

[7] D. Denning. A lattice model of secure information flow.
Communications of the ACM, v.19 n.5, pp.236-243, 1976.

[8] K. Fisher. Apple’s FairPlay DRM Cracked. ArsTechnica,
June 2006. http://arstechnica.com/news/posts/
1081206124.html.

[9] A. Freier, P. Karlton, P. Kocher. The SSL Protocol, V3.0.
http://www.netscape.com/ eng/ssl3/draft302.txt.

[10] T. Garginkel, B. Pfaff, J. Chow, M. Rosenblum, D. Boneh.
Terra: A Virtual Machine-Based Platform for Trusted
computing. In Proc. of the 9th ACM Symposium on
Operating Systems Principles, pp. 193-206, 2003.

[11] S. King, P. Chen. SubVirt: Implementing Malware with
Virtual Machines. In Proc. of 2006 IEEE Symposium on
Security and Privacy, pp. 314-327, 2006.

[12] National Security Agency. Security-Enhanced Linux. June
2006, http://www.nsa.gov/ selinux.

[13] NetFilter/IPTables Project Team. What is netfilter/iptables?
June 2006. http://www.netfilter.org.

[14] R. Sailer, X. Zhang, T. Jaeger, and L. Doorn. Design and
Implementation of a TCG-based Integrity Measurement
Architecture. In Thirteenth Usenix Security Symposium, pp.
223-238, 2004.

[15] R. Sandhu. Lattice-Based Access Control Models. Computer,
v.26 n.11, pp. 9-19, 1993.

[16] J. Steiner, C. Neuman, J. Schiller. Kerberos: An
authentication service for open network systems. In Proc.
USENIX Winter Conf., pp. 191-202, 1988.

[17] Tablus, Inc. Tablus Content Alarm NW Honored with SC
Magazine Award for Best Intellectual Property Protection
Solution. Februrary 2006. http://www.tablus.com/
press.php?id=29.

[18] Trusted Computing Group. Trusted Platform Module Main
Specification. June 2006, Version 1.2, Revision 94,
http://www.trustedcomputinggroup.org.

[19] VMWare, June 2006. http://www.vmware.com.

[20] H. Wen. JHymn Goes Behind Atoms and Apple To Bring
DRM-Free Music. OSDir.com, January 2005.
http://osdir.com/Article3823.phtml.

[21] Xin Zhao, Kevin Borders, and Atul Prakash. Towards
protecting sensitive Files in a compromised system. In 3rd
International IEEE Security in Storage Workshop, 2005.

