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ABSTRACT 

One of the most fundamental problems in computer security is 
protecting sensitive digital information from unauthorized 
disclosure. There are a number of challenges, such as spyware, 
removable media, and mobile devices, which make this a very 
hard problem. The problem becomes even more difficult when the 
adversary is somebody who is authorized to view the data. This is 
what is commonly referred to as an insider information leak. 
Insider leaks often occur out of malice, but sometimes are just due 
to plain negligence, as was the case with a recent leak of 26 
million U.S. veterans’ names, birth dates, and social security 
numbers. Current systems make an attempt to protect against this 
type of disclosure, but use rudimentary techniques that can be 
easily bypassed by a knowledgeable attacker. Examples include 
disabling “print” and “save” menu options within an application 
or scanning network traffic for signatures of known sensitive 
content. This paper examines a new method for protecting 
sensitive content from unauthorized disclosure, a View-Only File 
System (VOFS). VOFS relies on trusted computing primitives and 
virtual machine (VM) technology to provide a much greater level 
of security than current systems. In VOFS, a secure virtual 
machine on the client authenticates itself with a content provider 
and downloads sensitive data. Before allowing the user to view 
the data in his or her non-secure VM, the VOFS client disables 
non-essential device output. This prevents the user, or any 
malicious software, from printing, uploading, or stealing the 
sensitive content. When the user is done viewing a sensitive file, 
VOFS will reset the machine to previous state and resume normal 
device activity. Our goal is to provide near-seamless access to 
view-only files, while at the same time securing them from 
unauthorized digital replication. This paper presents the initial 
design, development plan, and evaluation plan for VOFS. 

Categories and Subject Descriptors 
D.4.6 [Security and Protection]: Information Flow Controls – 
sensitive information. 

General Terms 
Design, Security. 

Keywords 
Digital rights management, information leakage, insider abuse, 
virtual machines, file systems. 

1. INTRODUCTION 
Protecting sensitive digital information is a major concern for 
government agencies, corporations, and even home users. Many 
security mechanisms exist today in order to prevent unauthorized 
disclosure of information, including encryption, firewalls, and 
authentication [9, 13, 16]. Unfortunately, most of these 
mechanisms fail once sensitive content is decrypted for viewing 
on the end host. Furthermore, these systems are unable to deal 
with the most dangerous threat to security: an insider information 
leak. Recently, an employee of the Veterans Administration took 
home a laptop computer that contained the names, birth dates, and 
social security numbers of 26 million U.S. veterans and was later 
stolen. This led to a congressional investigation [4]. The heart of 
the problem was that the user was authorized to view the sensitive 
data, but not authorized to copy it to his hard drive and take it 
home with him. This is a very common situation where someone 
can view content, but should not print, send, or otherwise 
replicate the sensitive content. This type of data will be referred to 
as sensitive finished content. The View-Only File System aims to 
prevent unauthorized disclosure of sensitive finished content, 
regardless of whether user is authorized to view the content. 

The design of VOFS is based on a set of ideal security policies for 
protecting sensitive finished content. In a perfect world, 
authorized users should be able to view sensitive information, but 
not be allowed to disclose the information to unauthorized parties, 
regardless of whether the disclosure is intentional. Furthermore, 
all sensitive finished content should be safe from remote access. 
In addition to these security policies, we impose a usability 
constraint: people should be able to use their standard 
applications on their normal workstation for displaying, searching, 
playing, or otherwise transforming the sensitive digital data into a 
viewable or audible format. Although these policies cannot be 
enforced in their entirety (we cannot prevent users from manually 
copying information or remembering and disclosing it at a later 
time), the following design goals aim to meet the policies insofar 
as possible: 

1. Sensitive finished content will only be provided to 
authenticated and authorized users of physical machines 
running trusted software and hardware. 

2.  Once a client reads sensitive content, all device output for 
that machine, except for video, sound, and limited disk 
output, should be disabled by a trusted system component. 
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3.  When the user is done viewing the sensitive content, he or 
she should be able to revert to a system state before the 
sensitive information was read, at which point device output 
may resume. 

Assuming the integrity of trusted components, satisfying these 
goals will prevent the user’s machine from being able to leak 
sensitive information, regardless of the user’s actions or any 
malicious software installed on the system. 

VOFS utilizes virtual machine (VM) technology to achieve 
isolation between trusted and un-trusted system components and 
fulfill its design goals. VOFS will use the Xen virtual machine 
monitor [5]. The Xen virtual machine monitor (VMM) runs as the 
lowest software layer in the system. The VMM has complete 
control over the computer and mediates interaction between 
virtual machines and the hardware. Above the VMM are guest 
virtual machines. The user’s primary operating system will run 
inside of a guest VM, and will be referred to as the primary guest 
VM. This machine is not trusted and will contain all of the user’s 
standard applications. Another guest virtual machine, referred to 
as Domain 0, has complete administrative access to the system, 
and is considered to be trusted. In VOFS, Domain 0 will be 
responsible for enabling and disabling device output, and saving 
and restoring the state of other virtual machines. A third guest 
VM, the SVFS VM, will be responsible for downloading sensitive 
finished content, storing it, telling Domain 0 when to save or 
restore the primary guest VM’s state, and telling Domain 0 when 
to enable or disable device output. The SVFS VM is based on the 
data virtual machine from work on a Secure Virtual File System 
[21]. 

VOFS clients will also take advantage of trusted platform module 
(TPM) technology [18]. The clients will use an integrity 
measurement architecture similar to those found in [14] and [10], 
which use trusted boot, to enable remote verification of trusted 
components by content providers. In the trusted boot process, the 
TPM will hold cryptographic digests of trusted system 
components where they are safe from tampering. First, a small 
region of the BIOS will compute a cryptographic hash of the 
remainder of the BIOS and send it to the TPM. Next, the BIOS 
will measure the boot sector. The boot sector will in turn measure 
the lowest software layer, the virtual machine monitor (VMM), 
which will be responsible for verifying the integrity the trusted 
Domain 0 and SVFS virtual machines. During the process, system 
components do not check the next component’s the hash value 
before allowing it to run, but they do store the hash value in a 
secure location on the TPM. This is different than secure boot, 
where each level of the system will not allow the next to run if its 
digest does not match a predetermined value [3]. This extra 
restriction in secure boot is not necessary for VOFS because the 
machine will not be allowed to receive sensitive content unless 
the hashes of its trusted components match known correct values. 

When the user wishes to view a view-only file in VOFS, his or her 
primary VM will make a request to the SVFS VM, which will 
contact the content provider to start an authorization session. This 
session has built-in mechanisms to prevent message reordering, 
deletion, and replay [18]. Next, the content provider will send a 
request to verify that the integrity measurements stored in the 
TPM match trusted values.. The TPM will sign the integrity 
measurements using an asymmetric private key only known to the 
TPM. If the server accepts the integrity values, it will send the 

encrypted sensitive content to the client. The client will only be 
able to decrypt the content using a key on the trusted platform 
module. This all occurs in one authorization session to prevent the 
machine from restarting with malicious software in between 
messages. Next, when the SVFS VM has obtained the decryption 
key for the sensitive finished content,  it will instruct the virtual 
machine monitor to take a snapshot of the guest VM’s state and 
disable its device output. It will finally decrypt the sensitive 
content and allow the user’s virtual machine to display it. When 
the user is done viewing the sensitive content the VMM will 
discard it, restore the old state of the primary guest VM, and re-
enable device I/O. 

Although VOFS provides a much greater level of security than 
current systems, it still relies on the integrity of trusted 
components and cannot protect against all attacks. The threat 
model for our system assumes that the following characteristics 
about trusted system components: 

• The attacker cannot probe memory or any bus on the 
system’s motherboard. 

• The attacker cannot flash the part of the BIOS that makes the 
initial TPM measurement.  

• The attacker cannot steal the TPM chip. 

• The attacker cannot modify trusted software components at 
run time (The VMM, Domain 0, and SVFS VM) by 
tampering with or replacing the CPU, memory, or disk. 

• If an attacker steals an entire machine, an administrator will 
notice and revoke the machine’s credentials before the 
attacker can modify the machine and obtain sensitive content 
from the content server.  

• The attacker can install arbitrary software on the primary 
guest VM while it is running. 

• The attacker can replace the operating system on the VOFS 
client while it is turned off. 

• The attacker can remove the hard drive or any other 
removable media and access it offline. 

• The attacker can leak sensitive information through any 
device output channel, including the serial port, parallel port, 
universal serial bus (USB), and network interface. 

We believe the assumptions about the attacker’s ability to probe 
hardware, modify the BIOS, and steal machines to be reasonable 
in an organizational environment. They may not be reasonable, 
however, for machines completely under the user’s control. VOFS 
does not provide the same level of security and is not 
recommended for end consumer digital rights management. VOFS 
does rely on the integrity of the VMM, Domain 0, and SVFS VM 
at runtime. These components are much more secure than a 
traditional operating system because they run very few services 
(no network services), and only perform basic functions. Although 
it may be possible to compromise a trusted component, doing so 
would be much more difficult than compromising the user’s 
primary guest VM. Our threat model also does not encompass all 
covert communication channels. These channels are generally 
considered to be low-bandwidth and would most likely be slower 
than photographing the screen or copying down information by 
hand, which are beyond the scope of our threat model. 



Today, most workstation machines do not use virtual machine 
technology. Deploying a virtual-machine based security system in 
an enterprise network could be time-consuming from an 
administrative standpoint, and may reduce system performance. 
However, recent research on creating a virtual-machine based root 
kit [11] shows that it is possible to install a virtual machine 
monitor and hoist the machine’s current operating system into a 
guest VM without any interaction from the user (and even without 
the user noticing). VOFS could be installed in a similar manner to 
avoid administrative overhead. Furthermore, a common user will 
probably not be able to tell the difference between a virtual 
machine and a standard operating system because their levels of 
performance are very close on modern virtual machine monitors 
such as Xen [5], and VMWare [19]. 

The remainder of this proposal is laid out a follows: Section 2 
discusses related work. Section 3 outlines the design of VOFS. 
Section 4 describes the details of the VOFS Client Architecture. 
Section 5 briefly talks about preliminary and future work. Section 
6 presents our evaluation plan and expected performance issues. 
Finally, section 7 concludes. 

2. RELATED WORK 
Some work has been done on methods for local verification and 
remote attestation of software integrity [3, 14, 10]. These methods 
ensure that trusted system components are correct when they start 
running. The Terra platform [10] goes even further by having a 
trusted virtual machine monitor that can verify the integrity of 
individual virtual machines. VOFS operates in a very similar 
fashion; it computes the cryptographic hash of the trusted Domain 
0 and SVFS virtual machines during startup. Although trusted 
system components are a critical part of VOFS, its focus is on 
building an application on top of trusted primitives. 

VOFS’s information flow policies share a lot of similarities with 
mandatory access control [7, 15]. In the initial state of the system, 
you can think of the user’s primary guest VM, all of its 
applications, and all external devices as being low-security 
objects. The sensitive content is a high-security object. Now, a 
low security object cannot have access to a high-security object 
unless it is upgraded to be a high-security object itself, and has all 
information flows to low-security objects cut off. This is 
essentially what happens when the user’s machine views protected 
content; it is upgraded to be a high-security object and has its 
device output (flow to low-security objects) disabled. VOFS, 
unlike traditional mandatory access control systems such as 
SELinux [12], allows for downgrading of the user’s machine to a 
low-security object again by reverting to a previous state. Without 
this capability, users would be unable to use the same applications 
for accessing sensitive and non-sensitive information, which 
would severely impact usability. 

The primary benefit, however, of VOFS over a traditional 
SELinux deployment is that it is more secure. Although SELinux 
does a great job of preventing an unauthorized user or process 
from accessing sensitive content, it does not do a good job of 
preventing an authorized process from leaking the content. If an 
application knows it is going to be reading a sensitive file and 
wants to send it to a low-security process, it can open up a pipe or 
shared memory region beforehand, open the file, then send it out 
over the communication channel to the unauthorized process. This 
will not be possible with VOFS because all device output from 

the system will be disabled. Processes can steal and leak 
information between each other as much as they want, but there is 
no avenue for leaking the sensitive data to an external entity. 

Some applications also try to prevent unauthorized replication of 
digital content, though they have no support from the operating 
system. One such application is Adobe Acrobat, the standard 
viewing application for the popular portable document format 
(PDF) [1]. Acrobat has a feature where the publisher of a 
document can specify that it is protected, which causes the viewer 
to disable certain menu options, such as “print”, when displaying 
the file. This protection mechanism provides no real security. 
Non-standard PDF viewers can open the same document and print 
it freely. The user can also copy the file from its original location 
onto any disk or send it across the network to an unauthorized 
party. VOFS, on the other hand, protects sensitive documents by 
only allowing the system to decrypt and open them after all device 
output has been disabled. So, the user’s application may have a 
“print” menu option, but selecting it will yield an error message 
that a printer is not connected to the system. 

Another application that attempts to protect sensitive digital 
information is Apple’s iTunes [2], which uses FairPlay digital 
rights management technology [8]. Again, iTunes has no support 
from the operating system and has only has limited success at 
preventing unauthorized replication. Although iTunes uses what 
appear to be cryptographically sound methods for encrypting 
sensitive content, it is unable to store the key used to decrypt 
these files in a secure location. Applications have already been 
developed [20] to decrypt protected files from iTunes. Even if 
iTunes were able to securely store its key, however, it would run 
into the problem of an attacker who controls the operating system 
being able to read the decrypted from its memory. Digital rights 
management provided by iTunes is analogous to placing a steel 
padlock on a cardboard box. VOFS, however, provides a 
complete solution by fully isolating the virtual machine that is 
viewing the sensitive content. 

Cryptographic file systems attempt to address some of the same 
threats as VOFS. In particular, they are concerned with 
unauthorized access to sensitive files on disk [6]. One 
shortcoming of cryptographic file systems is their overhead, 
which can be quite high [6]. In contrast, VOFS will only need to 
perform cryptographic operations when viewing sensitive files, 
and will not affect performance during normal operation. 
Cryptographic file systems also assume that authorized users are 
trusted and it does nothing to prevent them from leaking sensitive 
files. 

There are some network-based solutions that try to prevent 
authorized users from sending data to an external network [17]. 
These solutions are only somewhat successful, however, because 
they usually cannot identify obfuscated or encrypted information. 
Another way of preventing information leakage over a network is 
to physically disconnect the network from the outside world. This 
is known as an air gap, and is the preferred method of security for 
some organizations. The problem with an air gap, however, is that 
some users on the internal network may still be unauthorized to 
view certain sensitive data. Furthermore, restricting network 
connectivity does nothing to stop a malicious insider from 
printing sensitive files or copying them to removable media and 
taking them home. A more complete solution would be a 
computer with no I/O devices other than a keyboard, mouse, 



video card, sound card, and a read-only drive such as a CD-ROM 
player. This extreme solution, however, is almost completely 
unusable, and would still not provide as good of security as VOFS 
because content providers are unable to revoke access if a key is 
compromised or a machine is stolen. 

3. VOFS DESIGN 
The design of VOFS is broken up into two sections. In this 
section, we will give an overview of trusted platform module 
technology and its use in VOFS. Next, we will present the content 
transfer protocol that enables content providers to securely send 
protected data to authorized users on machines running trusted 
hardware and software. In the following section, we will talk 
about the SVFS client machine architecture. 

3.1 Trusted Platform Module Overview 
In order to give some background into the basis of the content 
transfer protocol, we will give a brief overview of trusted platform 
module (TPM) technology and how to use it to verify the 
hardware and software running on a remote machine. A Trusted 
Platform Module is a chip that goes into the motherboard of a 
computer, and has a number of capabilities. The primary use of a 
trusted platform module is protecting secret asymmetric 
cryptographic keys and using those keys to sign digests of 
firmware and software components. When a TPM-enabled 
machine boots up, the first thing that happens after the processor’s 
Power on Self-Test is a small trusted portion of the system BIOS 
calculates a cryptographic hash of the rest of the BIOS, and sends 
the hash to the TPM.  The main part of the BIOS then begins 
running and calculates a cryptographic hash of the initial boot 
block and sends it to the TPM. The BIOS then executes the boot 
block, which will send a hash of the operating system (In the case 
of VOFS, the virtual machine monitor) to the TPM. 

One key property of trusted platform modules is that they are 
based on a request-response architecture. This means that a small 
portion of the BIOS needs to be trusted to send a correct 
measurement of the rest of the BIOS to the TPM. Furthermore, 
the CPU, main memory, and all of the communication channels 
between the TPM, BIOS, CPU, and memory need to be trusted. 
Otherwise, an adversary could send an incorrect hash value to the 
trusted platform module, allowing malicious modification of 
software to go unnoticed. 

Trusted platform modules use a chain of trust to assert the 
integrity of each key. The chain of trusted keys on a VOFS 

machine can be seen in Figure 1. The basis of trust is a root 
endorsement key (EK).  Once the EK is set inside of a TPM, it 
cannot be changed. The TPM uses the EK to authenticate itself 
when generating certain child keys, including the storage root key 
(SRK). The “owner” of the TPM, which in this case is a system 
administrator, can use the storage root key to create other keys on 
the system. Whenever an entity “uses” a key to perform some 
operation, that entity must provide an encrypted shared secret to 
the TPM, such as a password. Even if the public portion of the 
storage root key is known, only the owner is able to use the 
storage root key to create other keys, because only he or she 
knows the shared secret, which is also stored securely on the 
TPM. 

In VOFS, the administrator, who is also the TPM owner on all 
client machines, will create an “admin” storage key, which is a 
direct child of the storage root, with the same shared secret on all 
clients. (The “password” to use the admin key on each machine 
will be the same, even though the actual keys will be different). 
The admin storage key is the third key from the left in Figure 1. 
The administrator will then use the admin key to create one server 
storage key per content provider on all of the client machines. He 
or she will then set the shared secret for each server to be same on 
all clients. Again, the actual server keys will be different, which 
allows the server to uniquely identify them, but the provider will 
be able to access each client using the same shared secret. Each 
server should maintain an access control list that specifies the 
rights of each client, allowing restriction of file permissions based 
on the client machine. This is especially important if a client 
machine is stolen; the administrator needs to be able to revoke 
access rights on a per-client basis. Optionally, if one is worried 
about the server and client shared secret becoming compromised 
(due to a server security breach), then the administrator can 
externally certify each of the server storage keys to avoid 
impersonation of a trusted client. Finally, the content providers 
can use their server storage keys to create signing keys, which are 
in turn used to verify the machine’s integrity, and binding keys, 
which are able to decrypt content coming from the server. 

3.2 Content Transfer Protocol 
The purpose of the content transfer protocol is to satisfy the first 
design goal: sensitive finished content will only be provided to 
authenticated and authorized users of physical machines running 
trusted hardware. The content transfer protocol assumes that all of 
the client TPMs have been configured by an administrator as 
specified in the previous section. It also assumes that the content 

 

Figure 1. TPM trust hierarchy on each VOFS machine. Arrows indicate that  
they key on the left was used to create they key on the right 



provider has its shared secret, allowing it to authenticate and 
perform operations with the server storage key on each client. 

Before the server transfers any content, each piece of content 
should be encrypted with a unique file key. Here, a piece of 
content corresponds to one e-mail, one document, etc. The server 
can then send the encrypted content, which may be very large, to 
any client because it will be unreadable without the secret file key. 
For file encryption, we plan on using 256-bit AES with forward 
chaining and random keys generated by the trusted platform 
module. 

Once a client has an encrypted file, it needs to obtain the file key 
from the content provider. The content provider and client will 
use the following protocol to authenticate and securely transfer 
the file key. For this protocol, two-way authentication is not 
necessary. The server only needs to verify the authenticity of the 
client, and not the other way around. (VOFS only protects the 
secrecy of content on the client.) 

1. The server initiates an OSAP authorization session [18] with 
the client, authenticating the client TPM with the shard 
secret. 

2. If a signing key that is a child of the server storage key does 
not exist on the client, the server creates it using 
TPM_CreateWrapKey. (TPM_CreateWrapKey creates and 
returns a new cryptographic key of a specified type, see [18]) 

3. The server obtains the hash chains and integrity 
measurements of the BIOS, boot loader, operating system, 
and trusted components using TPM_Quote. (TPM_Quote 
signs and returns a PCR integrity register value, see [18]) 

4. The server compares the hash chain values to a list of trusted 
values. If the hash chains are not trusted, the server 
terminates the connection. 

5. If a binding key that is a child of the server storage key does 
not exist on the client, the server creates it using 
TPM_CreateWrapKey. 

6. The server encrypts the file key with the binding key and 
sends it to the client. The server sends a command to the 
client’s TPM to decrypt the file key with the server’s binding 
key using TPM_UnBind. (TPM_Unbind decrypts and returns 
a value encrypted with a binding key, see [18]) 

In this communication protocol, the server assures that the client 
is running trusted software before sending it the file key. All of 
the above commands also occur in a single authorization session. 

In an authorization session, each message contains the nonce of 
the previous message and a new nonce for the next message [18], 
protecting the messages from replay, deletion, and reordering. 
Messages in the same session are also resilient to an attack where 
the client reboots with un-trusted software between messages 

because the session state on the TPM is reset during machine 
reboot.  

4. CLIENT ARCHITECTURE 
So far we have treated the client as a black box, assuming that it 
will adequately protect sensitive information given that it is 
running trusted hardware and software. This section delves into 
the details of the client’s architecture, highlighting its methods for 
protecting content and file keys once they have been decrypted. 
The client architecture is based on the last two design goals for 
VOFS: 

1. Once a machine reads sensitive finished content, all device 
output for that machine, except for video, sound, and limited 
disk output, should be disabled. 

2. A user of a machine with disabled device output should be 
able to revert to a system state before sensitive information 
was read, at which point device output may resume. 

The client relies heavily on virtual machine technology to make 
both device output restriction and machine state restoration easier 
and more secure. A diagram of a virtual machine system can be 
seen in Figure 2. The lowest software layer is the virtual machine 
monitor (VMM). The VMM is responsible for mediating access to 
hardware resources by virtual machines. The virtual machine 

 

Figure 3. Architecture of the VOFS Client 

 

Figure 2. Virtual Machine Architecture 



monitor is a very thin layer, with few services and a small code 
base. One benefit of having a small code base is that the virtual 
machine monitor is much more secure from attack, whether it is 
from the network or from a guest virtual machine. Directly above 
the virtual machine monitor are the guest virtual machines. The 
operating systems on the guest virtual machines interface with a 
number of virtual device drivers that closely resemble physical 
device drivers. The primary difference is that access to a virtual 
device goes through a physical device driver inside of the virtual 
machine monitor, which may examine, modify, or block requests. 

In order to protect sensitive files, the VOFS client will need a way 
of intercepting file system requests made by a guest virtual 
machine. However, doing this outside of the guest VM is not 
straightforward because the guest VM only sends the VMM 
block-level disk commands. Inferring file-level operations from 
block commands would require complex modeling of the file 
system. Instead of taking this approach, we plan on using SVFS, a 
secure virtual file system, to govern access to sensitive files [21]. 
SVFS is based on NFS, a network file system, with the SVFS 
server running in its own virtual machine. Part or all of the guest 
VM’s file system can reside on SVFS. The primary benefit of 
SVFS over a real network-based file system is that when a client 
VM makes a request for a file, communication between the client 
VM and SVFS server VM occurs via fast virtual RPCs instead of 
over the network. Fast VRPCs exploit co-locality of the client and 
server VMs to deliver performance nearly equivalent to standard 
virtual disk access. 

The VOFS client will consist of a primary guest virtual machine, 
which contains all of the user’s applications, an SVFS virtual 
machine, and the privileged Domain 0 virtual machine, which has 
full access to the system. The user will only be able to interact via 
keyboard and mouse with the primary guest VM; the other two 
VMs are trusted, and the user, who is not trusted, should not have 
access to them. A diagram of interaction between the three guest 
virtual machines can be seen in Figure 3. The first step in viewing 
a sensitive file is for the primary guest VM to load it from an 
external source in encrypted format. The primary guest then 
makes a call to open the file, which is intercepted by the SVFS 
VM. The SVFS VM obtains the file key, then tells Domain 0 to 
save system state and disable device output. Finally, it allows the 
primary guest VM to read the file. When the user is finished 
viewing the file, the primary guest tells the SVFS VM that it is 
finished. The SVFS VM will again contact Domain 0 to destroy 
any disk writes that occurred while viewing the sensitive file, 
restore the primary guest VM’s system state, and re-enable device 
output. The remainder of this section discusses the details of these 
operations and how the various VOFS client components will 
support them. 

4.1 The Primary Guest Virtual Machine 
The primary guest VM contains the user’s main operating system. 
The user has complete control over everything in the guest virtual 
machine including settings and applications. In the VOFS client, 
the primary guest is initially un-trusted. The primary guest VM 
also has an SVFS drive for view-only files, and a special 

application for accessing view-only files. Initially, we plan to 
implement a simple view-only manager that will take a file as a 
command line parameter and launch the viewing application. Our 
final goal, however, is to modify the operating system so that 
access is completely transparent to all applications. 

When a user wants to access a view only file, the first step is to 
download the file. We plan to use the extension “.vo” at the end 
of a file having a standard extension to denote that the file is 
encrypted and view-only (i.e. “resume.doc.vo”). In addition to the 
encrypted contents of the original file, a VO file will contain a list 
of server names or IP addresses that have the file key. A VO file 
will also have a unique identifier that specifies the original file 
name on the server and a unique identifier that specifies the file 
version or key ID (in case the same file was encrypted multiple 
times with different file keys). This meta-information will allow a 
client who receives the file to contact the appropriate server and 
obtain the correct file key. A diagram of a VO file’s contents can 
be seen in Figure 4. 

4.1.1  The View-Only Manager 
Once the user downloads a VO file from an e-mail attachment, 
website, or other location, it is time to decrypt and display the file. 
The manager will take the following steps to open the file, launc 
the display application, and return the guest VM to its original 
state before viewing the file: 

1. If the file is not stored on the SVFS drive, copy the file to the 
SVFS drive. 

2. Display an icon or status bar indicating that the machine is in 
view-only mode so that the user knows all changes are non-
persistent. 

3. Launch the standard viewing application for the file type or 
an application specified by the user. Tell the application to 
load the file from the SVFS drive. 

4. When the application tries to open the file, SVFS will 
contact the content server to obtain the file key, decrypt the 
file, and instruct the VMM to disable device output. 

5. Wait for the user to close the viewing application or click on 
a “Done Viewing” button, depending on the user’s 
preference. 

6. Make a special call to SVFS, SvfsVoDestroy, which will 
revert the entire state of the guest VM to a point right before 
it read the sensitive content. SVFS will return permission 
denied as the result of the file open call to let the View-Only 
Manager know that the user is done viewing the file and it 
can terminate (similar to the return value of a UNIX fork() 
call). 

The View-Only Manager provides near-transparent access to 
sensitive files. During the development of the View-Only 
Manager, we plan to explore different options for automatically 
opening view-only files and reverting to the original system state. 
Also, we plan to investigate methods for allowing the user to 
continue running the original virtual machine, “fork off” the view-

 

Figure 4. View-Only File Format 



only VM, and seamlessly switch between the two VMs. This may 
be preferable to disabling all device output and restoring system 
state if the user was executing a task in the background, especially 
one involving active network connections. In this case, the 
sensitive file open will also act as a fork call, and the VO Manager 
will instead destroy the current virtual machine in step 6. 

4.2 SVFS Instrumentation 
In the previous section, we briefly discussed instrumentation of 
the file open procedure call, and the addition of a SvfsVoDestroy 
call to the SVFS VM. In this section, we will discuss methods for 
securely decrypting files inside of the SVFS virtual machine and 
reverting to a clean system state. Decryption of files and file keys 
will be done entirely inside of the SVFS virtual machine to 
prevent any possible information leaks. The primary guest is un-
trusted, and will not have access to sensitive content until device 
output is disabled. 

4.2.1 File Open Instrumentation 
The first thing that the SVFS virtual machine does when it 
receives a sensitive file open call is obtain the file key from the 
content server using the communication protocol discussed 
earlier. After SVFS has obtained the file key, it is critical that 
SVFS stores it in physical memory and that it does not mistakenly 
get paged out to disk. If this were to happen and an attacker was 
able to steal the disk, he or she would have the file key and be 
able to decrypt the sensitive content. If SVFS is unable to reach 
the server or the server denies access to SVFS, it should return a 
status code indicating the nature of the failure. 

After SVFS has obtained the file key, it should instruct Domain 0 
to save the state of the primary guest VM’s operating system. 
Once main memory has been saved, SVFS needs to disable all 
device output, including disk writes. It will do this by making a 
call, VoOutputDisable, to the Domain 0 VM. From this point 
forward, all device output will fail with the exception of video, 
audio, and disk writes. Disk writes will appear to succeed, but will 
be cached in memory and not persist past reboot. If main memory 
is unable to cache all disk writes, or does not want to for 
performance reasons, blocks can be written to disk in encrypted 
format. The details of the non-persistent file system are discussed 
in greater detail in the next section on Domain 0 instrumentation. 

 

Now that device output is disabled, the SVFS VM can safely 
decrypt the file as it is read by the client without worrying about 
the data going to the physical disk in a readable format. If it does 
not encounter any errors, SVFS will return a value indicating 
success to the primary guest VM.  

4.2.2 SvfsVoDestroy 
After the user is done viewing the view-only file, the SVFS VM 
must restore the system to a clean state before it had access to 
sensitive data. This is accomplished by making a call to 
SvfsVoDestroy. When SVFS receives the call, the first thing it 
does is contact Domain 0 and call VoDestroyNPFS to destroy all 
writes to the non-persistent file system. Now that all traces of 
sensitive data have been removed from files written by the 
primary guest, SVFS can instruct Domain 0 to restore its memory 
using the original snapshot. Finally, the SVFS VM will tell 
domain 0 to re-enable device output by calling VoEnableDeviceO. 

4.3 Domain 0 Instrumentation 
Domain 0 is the most privileged execution environment. It has full 
control of the actual hardware on the system. As such, it runs as 
few services as possible to minimize its communication with 
outside world, and hence its chances of becoming compromised. 
Although the SVFS machine is responsible for all secure 
communication and encryption, Domain 0 provides most of the 
protection for the client. Domain 0 is responsible for controlling 
device output and managing non-persistent file access. 

4.3.1 Disabling and Enabling Device Output 
When the SVFS VM receives a call to decrypt a file, it first has to 
disable all device output from the primary guest VM. It will do 
this by calling VoOutputDisable in Domain 0. This will cause 
Domain 0 to cut off communication between most of its physical 
device drivers and the primary guest VM. It is important here to 
be very thorough. All serial ports, parallel ports, and USB devices 
are potential avenues for information leakage, not to mention 
network cards, infrared ports, and removable media. Even 
sneakier low-bandwidth channels may also be available, such as 
oscillating the “__ Lock” outputs to the keyboard and capturing 
them. In general, the only device outputs that should be allowed 
are local analog outputs such as the monitor and audio. If the user 
has a USB sound device attached, this may create a problem. 
Having a USB audio device may enable the primary guest VM to 
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Figure 5 (a) Translation of file read to virtual disk read to physical disk read. 
(b) Intermediate driver with read buffer for non-persistent file system. 



send arbitrary digital output to the universal serial bus. Any 
misbehaving device or passive sniffer can monitor the bus and 
read the data. USB 1.1 specifications allow for data transfer at up 
to 12 megabits per second. Even if the maximum rate of audio 
transfer is lower or there are other active devices, allowing this 
fairly high-bandwidth digital information leakage channel could 
potentially compromise the security of VOFS. We plan to initially 
disable all USB devices except for the mouse and keyboard, and 
would like to explore methods for mitigating digital information 
leakage channels while still allowing USB audio output. 

Disabling device output on Domain 0 will require different 
actions depending on the type of device. For the network, packets 
already go through an iptables firewall in Xen [5]. Disabling 
network output from a particular guest VM can be accomplished 
by blocking all packets at the firewall. Other devices, however, 
will require modification to the physical drivers on the VMM. 
Instead of automatically translating and allowing requests from 
virtual device drivers, the physical drivers must be modified to 
check the source virtual machine and deny requests from 
particular VMs. We expect modification of these drivers to be 
relatively straightforward. They only need to enforce “deny all” or 
“allow all” policies based on the source virtual machine. 

4.3.2 Creating a Non-Persistent File System 
One part of VOFS’s threat model is is theft or removal of 
persistent storage devices such as hard drives, USB keys, etc. In 
order to guarantee that no sensitive information is ever written to 
persistent storage in un-encrypted format, Domain 0 needs to 
intercept all disk write calls and prevent them from reaching the 
physical disk. 

In the virtual machine architecture, each guest OS is assigned one 
or more virtual disks to store files. A virtual disk can be stored in 
a local file, a disk partition, or even a network file system.  
Because of the isolation provided by the VMM, a guest OS can 
only access its own virtual disk(s). As Figure 5a shows, on a guest 
virtual machine applications access files by invoking standard 
system calls such as read() and write(), as they do in a native 
operating system. The guest OS handles these calls and translates 
them into virtual disk I/O commands, which contain block-level 
parameters such as cylinder and sector numbers. The virtual disk 
I/O commands are then processed by physical disk driver on the 
VMM, which converts them to physical disk commands with the 
actual cylinder and sector numbers. The VMM can then access the 
physical disk with the translated cylinder and sector numbers. 

Instead of allowing the disk commands to go through directly 
from the guest’s virtual disk driver to the physical disk driver, 
Domain 0 can interpose an intermediate driver that creates a write 
buffer as seen in Figure 5b. When the virtual disk driver tries to 
write a disk block, the write will instead go to the write buffer. 
Now, when it reads a block, the VMM will first check if the block 
has been written and, if it has, retrieve it from the write buffer. If 
it has not been written, the VMM will read the block from disk. 
Maintaining a write buffer in memory will prevent any sensitive 
data from going to disk, while still giving the SVFS VM and the 
primary guest VM the illusion of a writable disk.  

If the write buffer becomes full, the intermediate driver can 
encrypt parts and write them to swap space on disk. Here the 
intermediate driver should create an ephemeral 256-bit AES key 
using the TPM’s random number generation capability. This key 
should be stored in memory, and never written to disk. So, if the 

machine is turned off, none of the encrypted write buffer, which 
may contain sensitive information, can be read. When encrypting 
disk blocks, the intermediate driver should also compute the XOR 
of the 256-bit key with the unique disk block number. This 
ensures each block is encrypted with a different key, and prevents 
an attacker from being able to determine if two blocks contain the 
same content. With this encryption scheme, it will be impossible 
for a guest VM to directly leak any information to disk.  

5. PRELIMINARY AND FUTURE WORK 
Currently, we have implemented a stand-alone version of the 
Secure Virtual File System [21]. In our SVFS implementation, all 
of each guest virtual machine’s sensitive read-only files are stored 
within a SVFS virtual machine. Unlike a traditional networked 
file system, SVFS takes advantage of co-locality of the client and 
server on the physical hardware with its unique virtual RPC 
mechanism to deliver near-native disk performance. When 
building the Linux kernel, a standard networked file with the 
client and server running in separate VMs ran 51% slower than a 
native virtual file system. SVFS, however, ran with only 8.3% 
overhead. These results suggest that storing some files in a 
separate virtual machine is not likely to have a significant effect 
on system performance. 

Most of the VOFS project remains to be implemented, including 
client and server applications for content transfer that utilize TPM 
technology, disabling of output for non-network devices, 
instrumentation of Domain 0, and instrumentation of the SVFS 
VM. Some exceptions include snapshot save and restore 
capability, which is already performed by Xen, and disabling 
network I/O for guest virtual machines, which we can currently do 
using iptables firewall rules [13]. During the implementation of 
the remainder of the system, we plan to iteratively perform a 
thorough security evaluation. The hope is to identify and 
eliminate any covert communication channels or weaknesses in 
the underlying system that could be used to bypass security 
mechanisms and leak sensitive information. 

6. PERFORMANCE AND EVALUATION 
VOFS will do an excellent job of preventing information leakage, 
and address a number of threats, such as hard drive theft and 
insider attacks, which previous systems fail to handle. However, 
all of these security properties come with a cost. For our 
evaluation, we will compare the performance of our system to a 
standard, un-instrumented virtual machine system. In particular, 
we will examine the following operations, which we believe will 
be the most costly: 

• Saving main memory to disk before accessing a sensitive file  

• Restoring main memory from disk after accessing a sensitive 
file 

• Using a write buffer for disk I/O 

6.1 Memory Save and Restore 
The first intensive operation, saving a snapshot of the primary 
guest VM’s memory to disk, can be optimized by running the 
snapshot in the background. What this means is that the virtual 
machine monitor will begin saving the virtual machine’s memory, 
but allow the machine to continue running. If the VM happens to 
make a write request to a memory block that the VMM has not yet 
saved, then the VMM will skip ahead and save that block, then 
continue writing the rest of memory. The Xen virtual machine 



monitor performs snapshots in the background by default, and we 
plan to use its capability to optimize snapshots in VOFS. 

In contrast to taking a snapshot, restoring main memory is more 
costly. This is because the entire snapshot is typically restored 
before allowing the machine to resume execution. It would be 
possible to let the system begin running immediately and restore 
specific portions of memory as they are read, but doing this may 
actually decrease performance. If memory is read non-
sequentially, restoration may incur additional disk seek and 
rotation penalties. Without allowing immediate execution, 
snapshot restoration takes approximately seven seconds for a 
virtual machine with 256 MB of memory on a 3.0 GHz Pentium 
IV machine with 1 GB of physical memory. 

We hope to investigate methods for optimizing snapshot 
restoration, such as immediately resuming execution and paging 
in memory as it is read, and plan to evaluate restoration speed. In 
the immediate restoration scenario, we will begin using the 
restored virtual machine as soon as it starts executing, and 
compare the wall clock time required to restore the entire 
snapshot to that of a simple restore. If the two are comparable, 
and the guest virtual machine is usable during the restoration, then 
we will use background restoration. Otherwise, we plan to use the 
traditional method of restoring virtual machines. 

6.2 Disk Write Buffer 
Creating an intermediate write buffer in memory between the 
physical disk driver and virtual disk driver can add extra overhead 
for disk operations. The amount of overhead for reads that end up 
having to go to the real hard drive will be minimal; the time 
required to check if a block is in the write buffer will be very 
small compared to the disk seek and read time to grab the block. 
For reads that hit in the write buffer, performance may actually be 
better because reading from memory is much faster than reading 
from disk. In this case, the write buffer acts as a file cache. Writes 
should also go to the write buffer in memory, which again will be 
faster than going to disk. One major issue, however, will be the 
size of the write buffer. Depending on how long the primary guest 
VM runs in view-only mode, it could potentially write a lot of 
data. If this happens, then the intermediate driver will need to 
encrypt disk blocks, which is a CPU intensive operation, and 
write them to disk. Similarly, it will need to read the same blocks 
back from disk and decrypt them as it receives read requests. 
Fortunately, the primary guest VM is not likely to perform many 
disk writes because the user knows none of them will persist. 
Writes should only be needed for temporary files, which will 
probably not occupy more than 100 MB. Also, if disk writes do 
exceed the capacity of memory, the primary guest VM’s only 
function in view-only mode is to display content. Almost no 
viewing applications are performance-intensive, with the possible 
exception of video playback, and are unlikely to slow down 
noticeably if they have to go through an encryption layer. 

In our evaluation, we plan to investigate the effects of a write 
buffer. First, we will try to get an idea of how large the write 
buffer needs to be by running standard viewing applications on 
various types of files and observing temporary file size. Next, we 
will force the entire contents of the write buffer to go through an 
encryption layer and eventually to the disk. We will view various 
types of content with a disk-only encrypted write buffer and see if 
it creates any delay noticeable by a human.  We also plan to run a 
number of benchmarks that reflect less likely usage scenarios for 

VOFS, such as the Andrew benchmark, and record their wall 
clock times compared to a normal virtual machine system. We 
expect that more complex operations will experience greater slow-
down, but standard viewing will not take much memory and may 
even be faster due to in-memory caching of disk writes.  

7. CONCLUSION 
In this paper we present the design of a View-Only File System, a 
promising method for protecting finished content. VOFS will 
prevent unauthorized disclosure of sensitive “view-only” content 
by only allowing access by authorized users running trusted 
hardware and software. Furthermore, VOFS will disable all device 
output from the user’s primary operating system, except for video 
and audio, before allowing it to access sensitive finished content. 
When the user is finished, VOFS will revert the user’s operating 
system to state before it had access to the sensitive data. These 
security mechanisms enable VOFS to prevent sensitive 
information leaks, even by users who are authorized to view the 
information. 

VOFS will utilize trusted boot technology, based on the TPM 
chip, to enable remote verification of software integrity. Content 
servers first check to make sure that clients are running the correct 
VOFS software before sending them sensitive information. When 
the sensitive content is on a client machine, VOFS uses virtual 
machine technology to provide isolation between trusted and un-
trusted components. Sensitive data is protected inside of an SVFS 
VM until a Domain 0 VM shuts off device output from the user’s 
primary OS. Once output is disabled, the SVFS VM allows the 
primary guest to access and display sensitive content. In this 
manner, VOFS provides both a high level of security and 
usability, allowing the user’s primary guest virtual machine to 
access sensitive data without requiring trust or verification from 
the system. 

While implementing the remainder of VOFS, we plan to perform 
thorough and iterative security tests to explore possible covert 
communication channels and eliminate potential vulnerabilities in 
the system. We also plan on evaluating the overhead of resource-
intensive operations including snapshot save, snapshot restore, 
and disk write buffering. Our goal is to create a system that is as 
seamless as possible and does not hinder the user from performing 
authorized everyday activities, while still providing stringent 
security guarantees to protect sensitive finished content. 
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