
mailto:kazu@umich.edu

 2

station level automated assembly system [7] showed that, this
approach is capable of identifying the possible failures and their
likelihood as well as their 3D geometrical state. This study
involves the integration of this method by using a commercial
assembly simulation software with several developed modules
to build a Virtual Factory. This structure will enable to predict
unexpected propagated errors before the actual assembly
operation takes place thus providing efficient means for
diagnosis and recovery for these types of failures.

PREVIOUS WORK
Prevention of the propagated errors has been a great

interest in the automated recovery of robotic assembly systems.
The established techniques of Failure Mode and Effect Analysis
(FMEA), Fault Tree Analysis (FTA) and Event Tree Analysis
(ETA) are used widely [8]. FMEA is used to examine all
possible component failure modes and to identify their first
order and final effects on the system. It is an important method
to assure quality. WIFA aims to improve the current state of art
of FMEA by knowledge-based support of the user. Each FMEA
in WIFA should be performed in the following steps [9]:

1. Specify the system architecture,

2. Identify critical system elements for which the FMEA
has to be conducted,

3. For each system element specify all its functions,

4. For each system element specify all its failures,

5. Link functions to functional structure,

6. Specify fault trees,

7. Fill out the remainder of the form, i.e. risk priority
numbers (RPNs), actions and responsibilities, etc.

FTA and ETA may be applied at various levels for examining
the errors and failures in a system. FTA is a top-down technique
for assessing the way in which several failures can cause a
single outcome or a system failure. ETA is a ‘forward’
technique, which may be used to examine the propagation of an
initiating event (or failure) with the presence of a number of
other events, failures, faults or conditions. These methods are
used during the design stage of the assembly system in order to
predict possible propagated failure situations.

Probability theory is also used to analyze failure
uncertainty. Fuzzy methodology has been applied in fault
diagnosis, safety and risk engineering and structural reliability.
A qualitative approach to the analysis of a failure (assuming the
failure is a fuzzy element) is presented in [10] by Cai. Rather
than defining success and failure in binary states, a probability
of failure is introduced for each event.

Ishii concentrated on examining the life-cycle engineering
design. It is believed that a life-cycle evaluation tool requires a
flexible set of data that contains pertinent information about the
candidate design [11]. Ishii proposed an effective representation

scheme for assembly tasks by using a semantic network
structure. The network is composed of components and
subassemblies (nodes) and the relationships between the nodes
(link). This representation enables to conduct service mode
analysis (SMA) and life-cycle analysis since it expresses the
relations of the objects in an assembly explicitly. Eubanks and
Ishii [12] also used artificial intelligence methods to infer
required repair labor actions from the design description and
analyze life-cycle service costs.

Several systems were developed in the literature based on
the anticipated error propagation scenarios. Chang and
DiCesare [2] proposed and algorithm for constructing and
pruning failure propagation trees in manufacturing systems. The
purpose of building a failure propagation tree is to identify
possible failure causes and failure sources to allow for a
planning process to recover from the error. A computer-aided
monitoring system for assembly was developed by Abu-
Hamdan and El-Gizawy [1]. The implemented expert system for
detection is composed of task precondition and task execution
monitoring parts and no assembly task is allowed to proceed
unless the preceding task has been successfully completed. It is
claimed that error propagation totally eliminated with this
approach. However, this system is inefficient when there is a
failure among the detection system components.

The systems and methods discussed above depend on the
prediction of failures by human experts so they do not cover
most of the propagation situations.

An off-line error prediction, diagnosis and recovery
technique was discussed previously in [4-7]. This method uses a
commercial robotic assembly simulation software and Monte-
Carlo simulation [13] to predict possible failures during the
assembly operation. It also uses Bayesian Reasoning [14] to
infer on the possible type of failure(s) and provide recovery
logic based on the detected symptoms. The method is composed
of five steps:

1. 3D modeling of the assembly line using a commercial
software package.

2. Prediction of the error cases by using Monte-Carlo
simulation based on the statistical model of sensors,
robots and products.

3. Off-line error diagnosis using Bayesian Reasoning.

4. Off-line generation of robust error recovery logic using
Genetic Programming [15].

5. Downloading the generated codes to the system
controller to prepare the system for automated
recovery.

The logic of the proposed approach is summarized in Fig.1.

The main advantage of this approach is that it provides
sufficient means of gathering information about the probable
error situations during an assembly process and uses this

 3

information correctly to develop robust recovery plans.
Unexpected errors, which may be unforeseen to human design
experts before the operation of the line, can be predicted easily
and outcomes of this prediction with providing necessary
recovery logic will decrease the costly downtime for these types
of systems. Since propagated errors cannot be predicted easily
before the actual assembly process, this method can be used to
predict and diagnose possible propagated errors in large-scale
assembly systems.

Figure 1: Working mechanism of the off-line method.

PROPOSED APPROACH
The proposed system uses the previously discussed off-line

error prediction, diagnosis and recovery method by building
several software modules and linking them to establish a Virtual
Factory. First, the assembly system is modeled in 3D. This
model and the process parameters are inputted to the
commercial software package. After that, possible error
situations are identified by performing Monte Carlo simulation.
These obtained situations are stored in a file in order to be used
in the diagnosis stage. The next stage is generating recovery
codes. In this step, Genetic Programming [15] is used to

generate controller codes [4-6] in robot’s language. Final stage
is developing modules for the Virtual Factory.

The main module is the Virtual Assembly software, which
is responsible from simulating the complete assembly process.
The second module is the Virtual Detection module, which is
used for detecting the component failures (gripper failures,
sensor failures, etc.). Third module is the Virtual Diagnosis
module for diagnosing errors. Fourth module is the Virtual
Recovery module for applying the generated recovery codes.
The factory structure is given in Figure 2 and the detailed
explanation of each module is as follows:

Figure 2: Layout of the Proposed Virtual Factory.

Structure of Virtual Factory

a) Virtual Assembly Software module
This module is the commercial robotic simulation package

and it includes the 3D model of the assembly system and
assembly process codes. It also contains the realistic models of
assembly robots, fixtures and products to simulate the process
accurately. It is also possible to detect collision errors during
the assembly process since this is an implemented feature in the
package.

b) Virtual Detection module
Virtual Detection module is used for detecting the errors

occurred during the assembly process. In assembly systems,
there are two different monitoring types. The first type is called
continuous monitoring, which a parameter is monitored
continuously throughout the complete assembly process. As an
example, torque/force sensors are checked continuously for
collision detection. The second type is called discrete
monitoring, which a parameter is monitored at certain steps of
the assembly process. For example grasping sensors are
checked during the part picking or releasing steps to ensure the
process is completed successfully. Both types of monitoring are
implemented in this module. A sensor array is defined and it
contains information about each sensor’s state. When an error is

Failure Types

Recovery Logic generation
using GP

Robust Recovery Logic

3D model
Statistical

Distributions of
Assembly Model

Parameters

Failure/symptom
probability

Probable Failures and
Symptoms with 3D-states

Bayesian Reasoning

Failure
Classification

Monte Carlo
Simulation

Virtual Assembly
Software

Virtual
Detection
System

Virtual
Recovery
System

Virtual
Diagnosis

System

 4

detected, current condition of the sensor array is passed to the
diagnosis module to analyze the detected error.

c) Virtual Diagnosis module
This module uses the state of the sensor array to infer the

possible failure reason. Based on the given symptom from the
sensor array, the following Bayesian Reasoning formula is used
to calculate a belief value for each failure type.

∑∀

=
l llo

kko
k FPFYP

FPFYPFBel
)(*)\(

)(*)\(
)((1)

In the above formula, the probability of having the

specified symptom for each failure is calculated. Yo indicates
the given symptom from the sensor array and Fk is the type of
failure from the following failure array given in the table below.

Table 1: Failure Array Parameters.

Failure Array = {d, e, f, g, h}
d= Grasping Error
e= Collision Error
f= Sensor Failure

g= Misplacement Error
h= Flawed Parts

The failure, which has the highest belief value, is suggested

as the reason after this calculation. However, in order to prevent
incorrect automated recovery a threshold level for belief value
is defined. If the diagnosed situation’s belief value is greater
than this threshold, system proceeds with automated recovery. If
it is less than the threshold, system asks for user maintenance
and the most possible failures are written into a log file.

When the system asks for user maintenance, an interactive
reinforced diagnosis system is initialized. This system enables
the user to input further data based on the manual diagnosis by
entering the identified working and non-working components
during the manual inspection process. Based on this additional
data, the situation can be re-diagnosed. The usage of this sub-
system is demonstrated in case studies.

This module can also be embedded to the real line by using
a computer system.

d) Virtual Recovery module
This module is used for applying the recovery logic for the

diagnosed failure. The outputs of the virtual diagnosis module
are passed to this module and based on the failure type a
strategy is followed for the recovery as shown in Table 2.

Table 2: Failure Recovery Strategies.

Failure Type Strategy
Grasping Error Try to grasp or release again
Collision Error Use robust collision recovery

Sensor Failure Call maintenance
Misplacement Error Pickup the part and replace

Flawed Parts Dispose the part and proceed
Each strategy contains one or more recovery codes. The

use of the appropriate code depends on the point where error
has been detected. Another advantage of this module is that the
generated codes can be downloaded to the assembly controller
of the real line.

A multi-robotic system is modeled and the results are
evaluated in the case studies section. Based on these results, the
advantages of using this system are realized as follows:

1) The developed Virtual Factory is capable of predicting and

diagnosing propagated errors, which may cause problems
although their likelihood of occurrence may be less.

2) Virtual Diagnosis module can be embedded to the real line
and used for automated diagnosis.

3) The developed interactive reinforced diagnosis system can
help reducing downtime of the assembly system when
manual diagnosis is required.

CASE STUDIES
A multi-station assembly system, which is responsible from

mounting and welding two workpieces together, is modeled
using Workspace [16] and shown in Fig. 3.

The syste
robots. T
picks up
into the h
the weldi
pieces an
picks up

Rob-B
Figure 3:

m is comp
he assembl
the cylindri
ole of the s
ng robot (R
d welds tho
the welded p
Rob-A

Modeled Assembly Sy

osed of three IRB 640
y process is as follows:
cal piece from the conve
econd piece on the seco
ob-B) approaches to th
se two pieces together. A
iece and places it on the

C

e
Rob-
Fixtur

stem.

0-type industrial
 At first, Rob-A
yor and inserts it
nd station. Then,
e assembled two
fter that, Rob-C

 fixture and all of

 5

the parts are welded together by Rob-B. Finally the complete
assembly is transferred on the conveyor by Rob-C. During the
assembly process, two inspection cameras are used to verify the
assembly process. These cameras are placed over the first
station where Rob-A picks up the cylindrical piece and over the
fixture respectively. The situation after the complete process is
given in Fig. 4.

Figure 4: Completed Assembly.

The elements in the modeled symptom array and their
signal codes are given in the following tables:

Table 3: Symptom Array Parameters.

Symptom Array = {A, B, C, D, E,F}
A= Gripper Sensor of Rob-A

B= Torque/Force Sensor of Rob-A
C= Camera over the 1st Station
D= Gripper Sensor of Rob-B

E= Torque/Force Sensor of Rob-B
F= Camera over the fixture

Each symptom parameter, except the cameras, gets 0 or 1

depending on the signal feedback from the sensors. If there is a
signal indicating an abnormal situation, then the associated
parameter gets 1. For the inspection cameras the following
codes are implemented:

Table 4: Camera Codes.

1= Workpiece not grasped or released
2= Incomplete Assembly

3= No parts
4= Part Jamming

The failure array is designed to provide information on the

possible failure types as discussed before in Table.2. As shown

in Table.5, all of the possible failure types of grasping and
sensor failures are implemented to the model. In grasping,
failure code 6 is different from 7 in the sequence of failures.
Since sequence of failures is also important for the appropriate
recovery these two codes are different from each other.

Table 5: Failure Codes.

Grasping Failure Codes Sensor Failure Codes
1: Rob-A Gripper Picking 1: Camera 1

2: Rob-A Gripper Releasing 2: Gripper A
3: Rob-C Gripper Picking 3: Camera 2

4: Rob-C Gripper Releasing 4: Gripper B
5: (Rob-A + Rob-C) Picking 5: Cam.1, Grip.A

6: Rob-A Pick + Rob-C Release 6: Cam.1, Cam.2
7: Rob-C Release + Rob-A Pick 7: Cam.1, Grip.B

8: (Rob-C + Rob-A) Release 8: Grip.A, Cam.2
 9: Grip.A, Grip.B
 10: Cam.2, Grip.B
 11: Cam.1, Cam.2, Grip.A
 12: Cam.1, Grip.A, Grip.B
 13: Cam.1, Cam.2, Grip.B
 14: Grip.A, Grip.B, Cam.2
 15: All of the sensors

Collision Failure Codes
1: Collision at Station 1
2: Collision at Station 2
3: Collision at Fixture

Several parameters are sampled from the assembly process.

These parameters include robot repeatability for each robot,
gripper reliability, gripper sensors, sensor reliability for the
inspection cameras and dimensional tolerances of each piece.
Each parameter and its distribution type are given in the
following table. The values in the parenthesis indicate the mean
and the standard values of the associated parameter:

Table 6: Sampled Parameters and Values.

Parameter: Nominal Value / Distribution:
Robot Repeatability 0.02 mm/ Normal (0, 0.067 mm)

Grasping Ability Uniform (0.9)
Gripper Sensor Uniform (0.99)

Inspection Camera Uniform (0.99)
Peg 49.92 mm / Normal (0, 0.0106)
Hole 50.3 mm / Normal (0, 0169)

Complete assembly process was simulated off-line 50000

times. The belief value threshold level for automated recovery
is taken as 0.8. During this simulation process several types of
error-propagation were observed. Two examples for these types
of failures are discussed here.

Assembled Part

a) Propagation resulted in part jamming at the fixture:
The actual reason for this problem is Rob-A did not pick

the cylindrical part and this was not detected either by camera-1
over the first station or the Rob-A grasping sensor, since they
are both malfunctioning. Besides, second camera over the
fixture is also dead so it could not detect the incompletely
assembled workpiece and because of this, that part could not be
transferred to the conveyor. This type of error propagation
caused part jamming at the fixture during the next cycle.

In this case, a collision error is detected at the fixture. The
sensor array passes the information to the diagnosis module,
indicating that torque/force sensor of Rob-C detected collision.
The state of the assembly system is shown in Fig.5.

F

At this
human exp
and there
several diff

Inform
Virtual Dia
failure reas

Tabl

Belief Va
Grasping
Sensor Fa

As it c

value is les
and asks
diagnosis s
can be inpu
it is assume

the initially proposed diagnose failure and it was found out that
that component is working properly. Re-diagnosing based on
this further data revealed another reason of failure as shown in
Fig.7 and Table 8.

Figure 6: Virtual Diagnosis Module. g
Part Jammin
6

igure 5: Part jamming at the fixture.

 point, it is difficult to diagnose the situation for a
ert. The only input is from the torque/force sensor
are other parameters to check thus there may be
erent reasons for this problem.
ation from the sensor array is diagnosed by the
gnosis module as shown in Fig.6. The diagnosed
on and its belief value are as follows:

e 7: Output of Virtual Diagnosis Module

Diagnosed Failure:
lue 0.595
 Failure Rob-C Gripper release failure
ilures: Rob-C Gripper + Camera 2

an be seen from the table above, the calculated belief
s than the threshold value. At this point system stops
for user maintenance and interactive reinforced
ystem is initiated. At this step, further obtained data
tted to the system. In order to simulate the situation,
d that Rob-C gripper has been checked according to

Figure 7: Interactive Reinforced Diagnosis System

Table 8: Output of Interactive Reinforced Diagnosis

Diagnosed Failure:
Belief Value 0.8817
Grasping Failure Rob-A Gripper picking failure
Sensor Failures: Cam.1, Gripper 1, Cam.2

As it can be observed from the above table, this time the

correct reason for the failure has been found. The belief value is
0.8817. Although it is less than the threshold, the system is
already in manual recovery mode so it can be recovered.

b) Propagation resulted in part jamming at station 1:
In this case, a jamming error is reported at station-1 by the

torque/force sensor of Rob-A. This time the reason for this
failure is Rob-A did not release the piece in its gripper and
camera-1 and Rob-A gripper sensor is malfunctioning to detect
this initial error. Furthermore, this error is propagated with the
camera-2 failure to detect the incomplete assembly. When the
next cycle starts, the next workpiece collides with the previous
part held still in Rob-A’s gripper.

It is realized that although the malfunctioning components
are all same with the previous case, the error has been detected
at a different place only because there is a part releasing error
rather than picking. The 3D state of the system is also different
compared to the previous case. The failure situation is given in
Fig.8.

Vi
fa

Table 9: Output of Virtual Diagnosis Module

Diagnosed Failure:
Belief Value 0.984
Grasping Failure Rob-A Gripper release failure
Sensor Failures: Cam.1, Rob-A Gripper, Cam.2

Figure 9: Virtual Diagnosis Output

This time the proposed failure reason’s belief value is g
Part Jammin
7

Figure 8: Part jamming at the 1st station.

Information from the sensor array is diagnosed by the
rtual Diagnosis module as shown in Fig.9. The diagnosed
ilure reason and its belief value are as follows:

greater than the threshold so the system proceeds with
automated recovery. The suggested failure recovery strategy is
calling the maintenance person to replace the malfunctioning
sensors and components.

These case studies revealed the fact that although
propagated errors occur in less likelihood, they cannot be
avoided. Although the modeled system is composed of
relatively less number of components when compared to the
large-scale auto-body assembly or consumer electronics lines, it
is still difficult to analyze the system. Therefore, the developed
Virtual Factory aids on prediction, diagnosis and recovery of
the complex errors, which may be propagated during the
assembly process.

CONCLUSIONS
Large-scale robotic assembly systems are used in industry

extensively. However, these systems are composed of many
components and it is not possible to monitor all the parameters
of these components during the assembly process. For example,

 8

an undetected error in upstream of the line can cause a
detectable error in further downstream of a line which is called
the “error-propagation”.

The diagnosis and recovery of propagated errors are
complex since they cannot be predicted easily prior to the
operation of the assembly line. Several methods are used in the
literature to predict the possible propagation of undetected
errors using failure propagation trees, failure mode and effect
analysis or using fuzzy logic. However, these methods are not
adequate since they do not incorporate the 3D model of the
system and they do not cover all of the possible error scenarios.

The advancements in both hardware and software
technology revealed the concept of using Virtual Factories
before building the real-lines. These systems can simulate the
process repetitively in less time to predict the unpredictable,
propagated errors before they occur. They can also be used for
developing and verifying diagnosis and recovery logic.

A Virtual Factory was developed to predict and diagnose
this type of failures before they happen. Several modules are
developed as parts of this factory. The system is capable of
detecting, diagnosing and recovering possible failures, which
may occur during the real process.

In order to demonstrate the validity and the effectiveness of
the proposed system, a multi-station assembly system is
modeled and a previously discussed “off-line prediction and
recovery” method was applied. The obtained results showed
that the method is capable of predicting propagated errors and it
is efficient to diagnose even the failure case is too complex to
solve for a human expert. Following advantages of using a
Virtual Factory are identified after conducting case studies:

• The developed Virtual Factory is capable of predicting

and diagnosing propagated errors, which may cause
problems although their likelihood of occurrence may
be less.

• Virtual Diagnosis module can be embedded to the real
line and used for automated diagnosis.

• The developed interactive reinforced diagnosis system
can help reducing downtime of the assembly system
when manual diagnosis is required.

It is believed that this approach will decrease the costly

downtime for failure inspection and recovery. The future work
will involve examining the complex failure scenarios, which
require the coordination of multiple agents for recovery and
automated generation of recovery logic for this type of failures.

ACKNOWLEDGMENTS
The authors are grateful for the technical support of Flow
Sofware Inc. for the WorkspaceTM software. The authors also
acknowledge Rackham Graduate School of Studies at The
University of Michigan for supporting this work.

REFERENCES
[1] Abu-Hamdan M. G., El-Gizawy A. S. (1997), “Computer

Aided Monitoring System for Flexible Assembly
Operations”, Computers in Industry, Vol. 34, pp. 1-10.

[2] Chang S. J, DiCesare F., Goldbogen, G., (1991), “Failure
Propagation Trees for diagnosis in manufacturing
systems”, IEEE Transactions on System Man Cybernetics,
v.21 n.4, pp. 767-776.

[3] Luxhoj J.T., Riis J. O., Thorsteinsson U. (1997), “Trends
and Perspectives in Industrial Maintenance Management”,
Journal of Manufacturing Systems, Vol.16, No.6.

[4] Baydar C., Saitou K. (2000), “Off-line error recovery logic
synthesis in automated assembly lines by using genetic
programming”, Proceedings of the 2000 Japan-USA
Symposium on Flexible Automation, Ann Arbor, MI.

[5] Baydar, C. and Saitou, K., 2000, “A Genetic Programming
Framework for Error Recovery in Robotic Assembly
Systems (extended abstract),” Proceedings of the 2000
Genetic and Evolutionary Computation Conference
(GECCO-2000), Las Vegas, NV.

[6] Baydar C., Saitou K. (2000), “Generation of robust
recovery logic in assembly systems using multi-level
optimization and genetic programming”, Proceedings of
the ASME-DETC2000/CIE Conference, Baltimore, MD.

[7] Baydar C., Saitou K. (2001), “Off-Line Error Prediction,
Diagnosis and Recovery using Virtual Assembly Systems,”
Proceedings of the 2001 IEEE International Conference on
Robotics and Automation, Seoul, Korea.

[8] Khodabandehloo K. (1996), “Analyses of Robot Systems
using Fault and Event Trees: Case Studies”, Reliability
Engineering and System Safety 53, 247-264.

[9] Wirth R., Berthold B., Kramer A., Peter G. (1996),
“Knowledge Based Support of System Analysis for the
Analysis of Failure Modes and Effects”, Engineering
Applications in Artificial Intelligence 9(3), 219-229.

[10] Cai K. Y. (1996), “System Failure Engineering and Fuzzy
Methodology: An Introductory Overview”, Fuzzy Sets and
Systems 83, 113-133.

[11] Ishii K. (1995), “Life Cycle Engineering Design",
Transactions of the ASME 117, 42-47.

[12] Eubanks C.F., Ishii K. (1993), “AI methods for Life-Cycle
Serviceability Design of Mechanical Systems”, Artificial
Intelligence in Engineering 8, 127-140.

[13] Kalos M. H., Whitlock P. A. (1986), “Monte Carlo
Methods, Volume I: Basics”, John Wiley & Sons.

[14] Jensen F. (1996), “An introduction to Bayesian Networks”,
Springer-Verlag.

[15] Koza J. (1992), “Genetic Programming: On the
Programming of Computers by Natural Selection”, MIT
Press, Cambridge, MA.

[16] Workspace v.5 Educational User Guide Manual, (2000).

	Proceedings of DETC’01
	2001 ASME Design Engineering and Technical Conferences
	and Computers and Information in Engineering Conference
	September 9-12, 2001, Pittsburgh, Pennsylvania

