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station level automated assembly system [7] showed that, this 
approach is capable of identifying the possible failures and their 
likelihood as well as their 3D geometrical state. This study 
involves the integration of this method by using a commercial 
assembly simulation software with several developed modules 
to build a Virtual Factory. This structure will enable to predict 
unexpected propagated errors before the actual assembly 
operation takes place thus providing efficient means for 
diagnosis and recovery for these types of failures.  

PREVIOUS WORK 
Prevention of the propagated errors has been a great 

interest in the automated recovery of robotic assembly systems. 
The established techniques of Failure Mode and Effect Analysis 
(FMEA), Fault Tree Analysis (FTA) and Event Tree Analysis 
(ETA) are used widely [8]. FMEA is used to examine all 
possible component failure modes and to identify their first 
order and final effects on the system. It is an important method 
to assure quality. WIFA aims to improve the current state of art 
of FMEA by knowledge-based support of the user. Each FMEA 
in WIFA should be performed in the following steps [9]: 
 

1. Specify the system architecture, 

2. Identify critical system elements for which the FMEA 
has to be conducted, 

3. For each system element specify all its functions, 

4. For each system element specify all its failures, 

5. Link functions to functional structure, 

6. Specify fault trees, 

7. Fill out the remainder of the form, i.e. risk priority 
numbers (RPNs), actions and responsibilities, etc. 

 
FTA and ETA may be applied at various levels for examining 
the errors and failures in a system. FTA is a top-down technique 
for assessing the way in which several failures can cause a 
single outcome or a system failure. ETA is a ‘forward’ 
technique, which may be used to examine the propagation of an 
initiating event (or failure) with the presence of a number of 
other events, failures, faults or conditions. These methods are 
used during the design stage of the assembly system in order to 
predict possible propagated failure situations.  

Probability theory is also used to analyze failure 
uncertainty. Fuzzy methodology has been applied in fault 
diagnosis, safety and risk engineering and structural reliability. 
A qualitative approach to the analysis of a failure (assuming the 
failure is a fuzzy element) is presented in [10] by Cai. Rather 
than defining success and failure in binary states, a probability 
of failure is introduced for each event. 

Ishii concentrated on examining the life-cycle engineering 
design. It is believed that a life-cycle evaluation tool requires a 
flexible set of data that contains pertinent information about the 
candidate design [11]. Ishii proposed an effective representation 

scheme for assembly tasks by using a semantic network 
structure. The network is composed of components and 
subassemblies (nodes) and the relationships between the nodes 
(link). This representation enables to conduct service mode 
analysis (SMA) and life-cycle analysis since it expresses the 
relations of the objects in an assembly explicitly. Eubanks and 
Ishii [12] also used artificial intelligence methods to infer 
required repair labor actions from the design description and 
analyze life-cycle service costs. 

Several systems were developed in the literature based on 
the anticipated error propagation scenarios. Chang and 
DiCesare [2] proposed and algorithm for constructing and 
pruning failure propagation trees in manufacturing systems. The 
purpose of building a failure propagation tree is to identify 
possible failure causes and failure sources to allow for a 
planning process to recover from the error. A computer-aided 
monitoring system for assembly was developed by Abu-
Hamdan and El-Gizawy [1]. The implemented expert system for 
detection is composed of task precondition and task execution 
monitoring parts and no assembly task is allowed to proceed 
unless the preceding task has been successfully completed. It is 
claimed that error propagation totally eliminated with this 
approach. However, this system is inefficient when there is a 
failure among the detection system components. 

The systems and methods discussed above depend on the 
prediction of failures by human experts so they do not cover 
most of the propagation situations. 

An off-line error prediction, diagnosis and recovery 
technique was discussed previously in [4-7]. This method uses a 
commercial robotic assembly simulation software and Monte-
Carlo simulation [13] to predict possible failures during the 
assembly operation. It also uses Bayesian Reasoning [14] to 
infer on the possible type of failure(s) and provide recovery 
logic based on the detected symptoms. The method is composed 
of five steps: 
 

1. 3D modeling of the assembly line using a commercial 
software package. 

2. Prediction of the error cases by using Monte-Carlo 
simulation based on the statistical model of sensors, 
robots and products. 

3. Off-line error diagnosis using Bayesian Reasoning. 

4. Off-line generation of robust error recovery logic using 
Genetic Programming [15]. 

5. Downloading the generated codes to the system 
controller to prepare the system for automated 
recovery. 

 
The logic of the proposed approach is summarized in Fig.1. 

The main advantage of this approach is that it provides 
sufficient means of gathering information about the probable 
error situations during an assembly process and uses this 
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information correctly to develop robust recovery plans. 
Unexpected errors, which may be unforeseen to human design 
experts before the operation of the line, can be predicted easily 
and outcomes of this prediction with providing necessary 
recovery logic will decrease the costly downtime for these types 
of systems. Since propagated errors cannot be predicted easily 
before the actual assembly process, this method can be used to 
predict and diagnose possible propagated errors in large-scale 
assembly systems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Working mechanism of the off-line method. 

PROPOSED APPROACH 
The proposed system uses the previously discussed off-line 

error prediction, diagnosis and recovery method by building 
several software modules and linking them to establish a Virtual 
Factory. First, the assembly system is modeled in 3D. This 
model and the process parameters are inputted to the 
commercial software package. After that, possible error 
situations are identified by performing Monte Carlo simulation. 
These obtained situations are stored in a file in order to be used 
in the diagnosis stage. The next stage is generating recovery 
codes. In this step, Genetic Programming [15] is used to 

generate controller codes [4-6] in robot’s language. Final stage 
is developing modules for the Virtual Factory.  

The main module is the Virtual Assembly software, which 
is responsible from simulating the complete assembly process. 
The second module is the Virtual Detection module, which is 
used for detecting the component failures (gripper failures, 
sensor failures, etc.). Third module is the Virtual Diagnosis 
module for diagnosing errors. Fourth module is the Virtual 
Recovery module for applying the generated recovery codes. 
The factory structure is given in Figure 2 and the detailed 
explanation of each module is as follows: 

 

 

 

 

 

 

 
 
 

Figure 2: Layout of the Proposed Virtual Factory. 

Structure of Virtual Factory 

a) Virtual Assembly Software module 
This module is the commercial robotic simulation package 

and it includes the 3D model of the assembly system and 
assembly process codes. It also contains the realistic models of 
assembly robots, fixtures and products to simulate the process 
accurately. It is also possible to detect collision errors during 
the assembly process since this is an implemented feature in the 
package. 

b) Virtual Detection module 
Virtual Detection module is used for detecting the errors 

occurred during the assembly process. In assembly systems, 
there are two different monitoring types. The first type is called 
continuous monitoring, which a parameter is monitored 
continuously throughout the complete assembly process. As an 
example, torque/force sensors are checked continuously for 
collision detection. The second type is called discrete 
monitoring, which a parameter is monitored at certain steps of 
the assembly process. For example grasping sensors are 
checked during the part picking or releasing steps to ensure the 
process is completed successfully. Both types of monitoring are 
implemented in this module. A sensor array is defined and it 
contains information about each sensor’s state. When an error is 
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detected, current condition of the sensor array is passed to the 
diagnosis module to analyze the detected error.  

c) Virtual Diagnosis module 
This module uses the state of the sensor array to infer the 

possible failure reason. Based on the given symptom from the 
sensor array, the following Bayesian Reasoning formula is used 
to calculate a belief value for each failure type. 
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In the above formula, the probability of having the 

specified symptom for each failure is calculated. Yo indicates 
the given symptom from the sensor array and Fk is the type of 
failure from the following failure array given in the table below.  

 
Table 1: Failure Array Parameters. 

Failure Array = {d, e, f, g, h} 
d= Grasping Error 
e= Collision Error 
f= Sensor Failure 

g= Misplacement Error 
h= Flawed Parts 

 
The failure, which has the highest belief value, is suggested 

as the reason after this calculation. However, in order to prevent 
incorrect automated recovery a threshold level for belief value 
is defined. If the diagnosed situation’s belief value is greater 
than this threshold, system proceeds with automated recovery. If 
it is less than the threshold, system asks for user maintenance 
and the most possible failures are written into a log file.  

When the system asks for user maintenance, an interactive 
reinforced diagnosis system is initialized. This system enables 
the user to input further data based on the manual diagnosis by 
entering the identified working and non-working components 
during the manual inspection process. Based on this additional 
data, the situation can be re-diagnosed. The usage of this sub-
system is demonstrated in case studies. 

This module can also be embedded to the real line by using 
a computer system.  

d) Virtual Recovery module 
This module is used for applying the recovery logic for the 

diagnosed failure. The outputs of the virtual diagnosis module 
are passed to this module and based on the failure type a 
strategy is followed for the recovery as shown in Table 2.   
 

Table 2: Failure Recovery Strategies. 

Failure Type Strategy 
Grasping Error Try to grasp or release again 
Collision Error Use robust collision recovery 

Sensor Failure Call maintenance 
Misplacement Error Pickup the part and replace 

Flawed Parts Dispose the part and proceed 
Each strategy contains one or more recovery codes. The 

use of the appropriate code depends on the point where error 
has been detected. Another advantage of this module is that the 
generated codes can be downloaded to the assembly controller 
of the real line. 

A multi-robotic system is modeled and the results are 
evaluated in the case studies section. Based on these results, the 
advantages of using this system are realized as follows: 
 
1) The developed Virtual Factory is capable of predicting and 

diagnosing propagated errors, which may cause problems 
although their likelihood of occurrence may be less. 

2) Virtual Diagnosis module can be embedded to the real line 
and used for automated diagnosis. 

3) The developed interactive reinforced diagnosis system can 
help reducing downtime of the assembly system when 
manual diagnosis is required. 

CASE STUDIES 
A multi-station assembly system, which is responsible from 

mounting and welding two workpieces together, is modeled 
using Workspace [16] and shown in Fig. 3.  
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the parts are welded together by Rob-B. Finally the complete 
assembly is transferred on the conveyor by Rob-C. During the 
assembly process, two inspection cameras are used to verify the 
assembly process. These cameras are placed over the first 
station where Rob-A picks up the cylindrical piece and over the 
fixture respectively. The situation after the complete process is 
given in Fig. 4. 
 

 
 

Figure 4: Completed Assembly. 
 

The elements in the modeled symptom array and their 
signal codes are given in the following tables: 
 

Table 3: Symptom Array Parameters. 

Symptom Array = {A, B, C, D, E,F} 
A= Gripper Sensor of Rob-A 

B= Torque/Force Sensor of Rob-A 
C= Camera over the 1st Station 
D= Gripper Sensor of Rob-B 

E= Torque/Force Sensor of Rob-B 
F= Camera over the fixture 

 
Each symptom parameter, except the cameras, gets 0 or 1 

depending on the signal feedback from the sensors. If there is a 
signal indicating an abnormal situation, then the associated 
parameter gets 1. For the inspection cameras the following 
codes are implemented: 
 

Table 4: Camera Codes. 

1= Workpiece not grasped or released 
2= Incomplete Assembly 

3= No parts  
4= Part Jamming 

 
The failure array is designed to provide information on the 

possible failure types as discussed before in Table.2. As shown 

in Table.5, all of the possible failure types of grasping and 
sensor failures are implemented to the model. In grasping, 
failure code 6 is different from 7 in the sequence of failures. 
Since sequence of failures is also important for the appropriate 
recovery these two codes are different from each other. 

 
Table 5: Failure Codes. 

Grasping Failure Codes Sensor Failure Codes 
1: Rob-A Gripper Picking 1: Camera 1 

2: Rob-A Gripper Releasing 2: Gripper A 
3: Rob-C Gripper Picking 3: Camera 2 

4: Rob-C Gripper Releasing 4: Gripper B 
5: (Rob-A + Rob-C) Picking 5: Cam.1, Grip.A 

6: Rob-A Pick + Rob-C Release 6: Cam.1, Cam.2 
7: Rob-C Release + Rob-A Pick 7: Cam.1, Grip.B 

8: (Rob-C + Rob-A) Release 8: Grip.A, Cam.2 
 9: Grip.A, Grip.B 
 10: Cam.2, Grip.B 
 11: Cam.1, Cam.2, Grip.A 
 12: Cam.1, Grip.A, Grip.B 
 13: Cam.1, Cam.2, Grip.B 
 14: Grip.A, Grip.B, Cam.2 
 15: All of the sensors 

 
Collision Failure Codes 
1: Collision at Station 1 
2: Collision at Station 2 
3: Collision at Fixture 

 
Several parameters are sampled from the assembly process. 

These parameters include robot repeatability for each robot, 
gripper reliability, gripper sensors, sensor reliability for the 
inspection cameras and dimensional tolerances of each piece. 
Each parameter and its distribution type are given in the 
following table. The values in the parenthesis indicate the mean 
and the standard values of the associated parameter: 
 

Table 6: Sampled Parameters and Values. 

Parameter: Nominal Value / Distribution: 
Robot Repeatability 0.02 mm/ Normal (0, 0.067 mm) 

Grasping Ability Uniform (0.9) 
Gripper Sensor Uniform (0.99) 

Inspection Camera Uniform (0.99) 
Peg 49.92 mm / Normal (0, 0.0106) 
Hole 50.3 mm / Normal (0, 0169) 

 
Complete assembly process was simulated off-line 50000 

times. The belief value threshold level for automated recovery 
is taken as 0.8. During this simulation process several types of 
error-propagation were observed. Two examples for these types 
of failures are discussed here. 

Assembled Part 



 

a) Propagation resulted in part jamming at the fixture: 
The actual reason for this problem is Rob-A did not pick 

the cylindrical part and this was not detected either by camera-1 
over the first station or the Rob-A grasping sensor, since they 
are both malfunctioning. Besides, second camera over the 
fixture is also dead so it could not detect the incompletely 
assembled workpiece and because of this, that part could not be 
transferred to the conveyor. This type of error propagation 
caused part jamming at the fixture during the next cycle. 

In this case, a collision error is detected at the fixture. The 
sensor array passes the information to the diagnosis module, 
indicating that torque/force sensor of Rob-C detected collision. 
The state of the assembly system is shown in Fig.5. 
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Figure 7: Interactive Reinforced Diagnosis System 
 



 

 
 

Table 8: Output of Interactive Reinforced Diagnosis 

Diagnosed Failure: 
Belief Value 0.8817 
Grasping Failure Rob-A Gripper picking failure 
Sensor Failures: Cam.1, Gripper 1, Cam.2 

 
As it can be observed from the above table, this time the 

correct reason for the failure has been found. The belief value is 
0.8817. Although it is less than the threshold, the system is 
already in manual recovery mode so it can be recovered. 

b) Propagation resulted in part jamming at station 1: 
In this case, a jamming error is reported at station-1 by the 

torque/force sensor of Rob-A. This time the reason for this 
failure is Rob-A did not release the piece in its gripper and 
camera-1 and Rob-A gripper sensor is malfunctioning to detect 
this initial error. Furthermore, this error is propagated with the 
camera-2 failure to detect the incomplete assembly. When the 
next cycle starts, the next workpiece collides with the previous 
part held still in Rob-A’s gripper.  

It is realized that although the malfunctioning components 
are all same with the previous case, the error has been detected 
at a different place only because there is a part releasing error 
rather than picking. The 3D state of the system is also different 
compared to the previous case. The failure situation is given in 
Fig.8. 
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Table 9: Output of Virtual Diagnosis Module 

Diagnosed Failure: 
Belief Value 0.984 
Grasping Failure Rob-A Gripper release failure 
Sensor Failures: Cam.1, Rob-A Gripper, Cam.2 

 

 
 

Figure 9: Virtual Diagnosis Output 
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Figure 8: Part jamming at the 1st station. 

Information from the sensor array is diagnosed by the 
rtual Diagnosis module as shown in Fig.9. The diagnosed 
ilure reason and its belief value are as follows: 

 
 

greater than the threshold so the system proceeds with 
automated recovery. The suggested failure recovery strategy is 
calling the maintenance person to replace the malfunctioning 
sensors and components.  

These case studies revealed the fact that although 
propagated errors occur in less likelihood, they cannot be 
avoided. Although the modeled system is composed of 
relatively less number of components when compared to the 
large-scale auto-body assembly or consumer electronics lines, it 
is still difficult to analyze the system. Therefore, the developed 
Virtual Factory aids on prediction, diagnosis and recovery of 
the complex errors, which may be propagated during the 
assembly process. 

CONCLUSIONS 
Large-scale robotic assembly systems are used in industry 

extensively. However, these systems are composed of many 
components and it is not possible to monitor all the parameters 
of these components during the assembly process. For example, 
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an undetected error in upstream of the line can cause a 
detectable error in further downstream of a line which is called 
the “error-propagation”. 

The diagnosis and recovery of propagated errors are 
complex since they cannot be predicted easily prior to the 
operation of the assembly line. Several methods are used in the 
literature to predict the possible propagation of undetected 
errors using failure propagation trees, failure mode and effect 
analysis or using fuzzy logic. However, these methods are not 
adequate since they do not incorporate the 3D model of the 
system and they do not cover all of the possible error scenarios.   

The advancements in both hardware and software 
technology revealed the concept of using Virtual Factories 
before building the real-lines. These systems can simulate the 
process repetitively in less time to predict the unpredictable, 
propagated errors before they occur. They can also be used for 
developing and verifying diagnosis and recovery logic.  

A Virtual Factory was developed to predict and diagnose 
this type of failures before they happen. Several modules are 
developed as parts of this factory. The system is capable of 
detecting, diagnosing and recovering possible failures, which 
may occur during the real process.  

In order to demonstrate the validity and the effectiveness of 
the proposed system, a multi-station assembly system is 
modeled and a previously discussed “off-line prediction and 
recovery” method was applied. The obtained results showed 
that the method is capable of predicting propagated errors and it 
is efficient to diagnose even the failure case is too complex to 
solve for a human expert. Following advantages of using a 
Virtual Factory are identified after conducting case studies: 

 
• The developed Virtual Factory is capable of predicting 

and diagnosing propagated errors, which may cause 
problems although their likelihood of occurrence may 
be less. 

• Virtual Diagnosis module can be embedded to the real 
line and used for automated diagnosis. 

• The developed interactive reinforced diagnosis system 
can help reducing downtime of the assembly system 
when manual diagnosis is required. 

 
It is believed that this approach will decrease the costly 

downtime for failure inspection and recovery. The future work 
will involve examining the complex failure scenarios, which 
require the coordination of multiple agents for recovery and 
automated generation of recovery logic for this type of failures.  
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