Multi-artery, heat pipe spreader

D.H. Min, G.S. Hwang, M. Kaviany*

Department of Mechanical Engineering, University of Michigan, 2250 G.G. Brown, Ann Arbor, MI 48109-2125, USA

A R T I C L E I N F O
Article history:
Received 20 March 2008
Received in revised form 11 July 2008
Available online 31 August 2008

Keywords:
Multiple liquid artery
Vapor chamber
Heat pipe
Optimal design
Dry out
Wick superheat

A B S T R A C T
Multiple, columnar liquid vapor chamber allows for effective heat removal from finite, concentrated heat source by heat spreading via lateral vapor flow, while minimizing conduction resistance through thinner evaporator wick. The individual liquid arteries are designed by wick coated solid pillar. We optimize the artery geometry, numbers, and distribution, for both liquid and air-cooled, finned condensers, and show that the overall thermal resistance is substantially lower than the uniform wick vapor chamber.

1. Introduction

With smaller and faster microprocessors, heat removal from such concentrated sources pose challenges [1]. Using single-phase gas or liquid cooling, this concentrated heat should be spread over a sufficiently large area. Vapor chambers spread heat from concentrated sources to large condenser area, where it can be readily removed with high single-phase coolant streams. Vapor chamber (VC) is particularly effective in absence of any solid heat spreader added to the heat source (called internal heat spreader), where VC reduces the external coolant thermal resistance (due to the large area). The internal resistance of VC should be small enough such the overall thermal resistance R is small compared with no VC present.

The analysis of heat, vapor, and liquid flows in the asymmetric flat heat pipes are presented in [2] and a simplified conduction-based model for VC is given in [3], including the effect of gravity. The uniform wick VC [4] is easy to fabricate since it has a single, uniform liquid wick artery; however, it has a large conduction wick resistance. In [4] a centered, single wick column is placed above the heater area to circulate the liquid and ensure the structural stability VC. It decreases the distance of the liquid travels from condenser to evaporator, thus the evaporator wick thickness is reduced. However, it is also important to secure enough evaporation area to increase the heat flux through the wick. In [5] the measured and predicted heat flux in various modulated-wick heat pipes are presented and compared. One of models depicted as an artery–evaporator system with completely separated liquid and vapor flow paths, and this is similar to the multiple-artery heat pipe spreader proposed here.

We design a multiple artery VC to supply liquid for evaporation and reduce the evaporator wick thickness (where its conduction resistance is dominating). The geometric parameters such as artery diameter, numbers, and spacings, are optimized based on three-dimensional resistance network analyses for heat and fluid flows. We use external, air or water cooled, finned condenser and compare the overall thermal resistance with the uniform artery VC.

2. Multi-artery heat pipe spreader

The multi-artery heat pipe spreader (MAHPS) is a columnar vapor chamber heat pipe. An individual artery is designed by a solid pillar covered with a uniform wick as the liquid artery. This capillary artery draws the liquid from the condenser to the evaporator wick. Water is used as an operating fluid to achieve high capillary pressure (surface tension) and heat of vaporization. Fig. 1(a) and (b) shows the geometric parameters of MAHPS, and heat flow path from the heating source to the external, coolant. MAHPS is placed between the heater area and this external heat sink. The heat source is a constant heat flux condition and the coolant is far-field temperature and surface-convection resistance surface. Since the two temperatures for the T_h and T_c are predefined as constant, isothermal heat flux and constant coolant temperature boundary conditions, respectively, in this theoretical analysis, the saturation temperature depends on how much heat spreading occurs as the heater area. Phase change occurs at the liquid–vapor interface in the evaporator and condenser wicks [6]. During the phase change, the generated vapor moves toward the condenser, where it is uniformly condensed over a large area. Capillary pressure is used for
the liquid circulation in MAHPS [7,8]. The critical geometric parameters of the baseline MAHPS are given in Table 1. For the baseline model, the heater diameter is 1 cm, and the condenser diameter is 5 cm. The wick covers the entire internal surface, including the evaporator wall and column walls, but different wick diameter, large sintered particles are used for the condenser and column, and small particles for the evaporator. In the baseline, the condenser-column and evaporator particle diameters are 200 and 50 μm, respectively. A hexagonal unit cell is used to calculate the axial and lateral heat flows, as well as the liquid pressure distribution. The thermophysical properties are evaluated at the saturation temperature of vapor which varies from 71.8 to 76.2 °C in the VC. The smaller the heater area, the lower the saturation temperature is (because of heat spreading). The effect of liquid convection in the thermal network is neglected (assuming small Péclet number [9]).

In [6] the liquid and heat flow network models are designed for the steady-state analysis of the modulated wick heat pipe, and similar approach is used here.

3. Analysis using resistance thermal/hydraulics networks

3.1. Liquid flow resistance network

For the liquid flow network, the mass flow rates, \(\dot{M}_{ic} \) and \(\dot{M}_{e} \) are calculated for each hexagonal unit cell (Fig. 1(a)). Assumptions for the network model are (i) liquid velocity is locally averaged, (ii) pressure drop by gravity is neglected, (iii) flow is Darcian and incompressible, (iv) liquid–vapor interface is in thermal equilibrium, (v) wick is isotropic, and (vi) condensation and evaporation occur on the wick surfaces [6]. Fig. 2(a) and (b) shows the thermal–hydraulic resistance network models. The liquid moves between the condenser wick and the evaporator wick. Evaporation on the evaporator wick surface is sustained by adjusting the capillary pressure by reducing the effective meniscus radius there. Since the condenser has the highest liquid pressure and we assume that in the outmost location on the condenser wick the capillary pressure is zero (i.e., \(p_1 = p_{c1} \)). The radii difference between the evaporator and condenser gives the capillary pressure difference Young–Laplace equation [8]

\[
\Delta p_c = \Delta p_l = \frac{2\sigma}{r_{cc}} \left(\frac{1}{r_e} - \frac{1}{r_c} \right)
\]

where we have assumed uniform vapor pressure \(p_g = p_{c1} \), where \(p_{c1} \) is the saturation pressure. \(\sigma \) is the surface tension, \(r_{ee} \) and \(r_{cc} \) are the meniscus radii at evaporator and condenser wick surfaces. We assume \(r_{ee} \) is infinity at the outmost corner of the condenser, and the maximum capillary pressure \(p_{c,max} \) is [8]

\[
p_{c,max} = p_g - p_{c,min} = \frac{2\sigma}{r_{c,min}} \cos \theta_c, \quad r_{c,min} = (0.41)0.5d_{pe}
\]

3.2. Heat flow resistance network

where \(\theta_c \) is the contact angle and \(d_{pe} \) is the wick particle diameter for the evaporator wick. Here, \(r_{c,min} \) is the minimum meniscus radius in Eq. (1) for sintered-particle wicks [10]. The material properties and relations are given in Table 2. Assuming that the liquid (l) and vapor (g) flow are incompressible (ii), the continuity equations are

\[
\nabla \cdot u_l = 0 \quad \text{and} \quad \nabla \cdot u_g = 0.
\]

where \(u_l \) and \(u_g \) are the liquid and vapor velocity vectors. The liquid mass flow rate is determined by heat flow from the constant, isothermal area, using the heat of evaporation \(\Delta h_{lg} \)

\[
\dot{M}_l = \frac{Q}{\Delta h_{lg}} = \int_{A_l} m_l \, dA.
\]
Condenser and column wick thickness, \(\delta_{w,p} \) and column spacing \(L_{p,s} \). The heater diameter \(D_h \) is also shown. (b) The cross-sectional area of MAHPS shows the heat flow paths as well as the geometric parameters.

Table 1

<table>
<thead>
<tr>
<th>Geometric parameter</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater diameter, (D_h)</td>
<td>1 cm</td>
</tr>
<tr>
<td>Condenser diameter, (D_t)</td>
<td>5 cm</td>
</tr>
<tr>
<td>Evaporator wall thickness, (L_{w,e})</td>
<td>1 mm</td>
</tr>
<tr>
<td>Condenser wall thickness, (L_{c})</td>
<td>1 mm</td>
</tr>
<tr>
<td>Side wall thickness, (L_{wall})</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>Evaporator wick particle diameter, (d_{p,e})</td>
<td>50 (\mu)m</td>
</tr>
<tr>
<td>Condenser wick particle diameter, (d_{w,c})</td>
<td>200 (\mu)m</td>
</tr>
<tr>
<td>Condenser and column wick thickness, (\delta_{w,c})</td>
<td>200 (\mu)m</td>
</tr>
<tr>
<td>(Uniform artery) wick particle diameter, (d_{p})</td>
<td>100 (\mu)m</td>
</tr>
<tr>
<td>Condenser thickness, (\delta_{c})</td>
<td>800 (\mu)m</td>
</tr>
<tr>
<td>Column diameter, (d_c)</td>
<td>1 mm</td>
</tr>
<tr>
<td>Column height, (L)</td>
<td>3 mm</td>
</tr>
<tr>
<td>Fin diameter, (d_f)</td>
<td>1 mm</td>
</tr>
<tr>
<td>Heat sink coolant number of fins (water), (N_f)</td>
<td>279</td>
</tr>
</tbody>
</table>

where \(m_{ev} \) is the local evaporation flux. Using the Darcy’ law [11], the liquid pressure drop is

\[
\Delta p_l = \frac{\mu_l L}{\rho_l K_A} M_l, \tag{5}
\]

Table 2

<table>
<thead>
<tr>
<th>Materials and relations used in heat and liquid flow network models (vapor chamber fluid: water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
</tr>
<tr>
<td>Wick porosity</td>
</tr>
<tr>
<td>Air permeability</td>
</tr>
<tr>
<td>Thermal conductivity</td>
</tr>
<tr>
<td>Air conductivity</td>
</tr>
<tr>
<td>Capillary pressure</td>
</tr>
<tr>
<td>Permeability</td>
</tr>
<tr>
<td>Nusselt number for crossflow over cylinders</td>
</tr>
<tr>
<td>Prandtl number</td>
</tr>
<tr>
<td>Surface-convexion resistance</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic of hexagonal unit cells around each column. (a) The size of each hexagonal cell varies with the column (pillar) diameter \(d_p \), column wick thickness \(\delta_{w,p} \), and column spacing \(L_{p,s} \). The heater diameter \(D_h \) is also shown. (b) The cross-sectional area of MAHPS shows the heat flow paths as well as the geometric parameters.

Fig. 2. Resistance network model for the thermal–hydraulic resistances assigned to each node per hexagonal unit cell. (a) The thermal resistances between adjacent temperature nodes. In the wick structures, the hydraulic resistances are used between adjacent pressure nodes. The condensation and evaporation surfaces are also shown.
where \(\mu_l \) is the liquid viscosity, \(L \) is the flow path length, \(M_i \) is the liquid mass flow rate, and \(\rho_l \) is the liquid density, \(K \) is the wick permeability determined from the Carman–Kozeny relation \([12]\) listed in Table 2, and \(A \) is the cross-section area of the wick. \(\Delta p_l \) should be less than the maximum capillary pressure \(p_{c,\text{max}} \) (i.e., \(\Delta p_l \leq p_{c,\text{max}} \)).

3.2. Heat flow resistance network

The assumptions for the heat flow resistance network are (i) local thermal equilibrium between solid and liquid in the wick, (ii) condensation occurs uniformly on the condenser surface, and (iii) vapor temperature (pressure) is uniform. The energy equation is

\[
\nabla \cdot \mathbf{q} = 0,
\]

under steady-state condition. The overall heat flow rate into the evaporator is

\[
Q = \int_{A_e} (\mathbf{q} \cdot \mathbf{s}_e) \ dA = M_{g} \Delta h_g,
\]

where \(\mathbf{s}_e \) is the surface normal unit vector and \(A_e \) is the evaporation area. Due to low liquid velocity in MAHPS leads to the low Péclet number preceding this region, but is not pursued here. The liquid pressure drop in the condenser wick and the corresponding liquid resistance are

\[
\Delta p_l = \frac{\mu L_c}{\rho l K A} M_{l,c} = R_{11} M_{l,c},
\]

where the cross-section area \(A = L_{\text{hex, lat}} \delta_{w,c} \) and \(M_{l,c} \) is the condensation rate. The arrows shown in Fig. 2(b) indicate the direction of liquid flow. The pressure drop along the column wick is

\[
\Delta p_{l,2} = \frac{\mu L_c}{\rho l K A} \left(M_{l,c} - M_{l,e} \right) = R_{11-2} \left(M_{l,c} - M_{l,e} \right),
\]

where the cross-section area \(A = \pi \left((d_c + 2\delta_{w,c})^2 - d_c^2 \right) / 4 \) and \(M_{l,e} \) is the liquid evaporation rate in the evaporator wick. The evaporator pressure drop is

\[
\Delta p_2 = 0.25 \frac{\mu L_p,s}{\rho l K A} M_{l,e} = R_{22} M_{l,e},
\]

where the cross-section area \(A = \pi \left((d_c + 2\delta_{w,c}) \delta_{w,c} \right) / 2 \) and the evaporation is assumed to occur over \(1/4 \) of \(L_{p,s} \). This is a simplifying assumption noting the liquid spreads short distance over the evaporator. More elaborate model may allow for local evaporation over a network preceding this region, but is not pursued here. The liquid resistance \(R_{\text{col}} \) shown in Fig. 2(b) across column is given as

\[
R_{\text{col}} = 0.5 \frac{\mu_l (R_e - N_{l,\text{hex}})}{\rho_l K A},
\]

where the \(N_l \) is the number of rings of hexagonal unit cell, and the liquid path is determined from \(N_l \). Here, \(A \) is the cross-section area of the inter-column defined as \(A = \pi (d_c + N_{l,\text{hex}}) \delta_{w,c} \). The liquid flow rate for each hexagonal unit cell is

\[
M_{ij} = \frac{Q}{N_{\text{hex, lat}} \delta_{h,g}},
\]

where \(Q \) is the heat flow rate defined by the heat flow rate across the wick and \(N_{\text{hex}} \) is the number of hexagonal unit cells.

For the heat flow network, the entire geometry (evaporator and condenser wall, column, wick structure, and finned condenser) is included in the network. The axial and lateral heat flow resistances of VC are given as

\[
R_{b} = \frac{L}{K A},
\]

where \(L \) is the distance for heat flow, \(K \) is thermal conductivity, and \(A \) is the cross-section area normal to the heat flow. Since heat flows toward to the evaporator wall and the column, the resistance across the evaporator wick is defined by an effective evaporation area. As shown in Fig. 2(a), the effective evaporation area is

\[
A_{\text{eff}} = 0.5 \pi d_e L_{p,s} + \left[A_{\text{hex}} - \pi (d_c + 2\delta_{w,c})^2 \right].
\]

The heat flow resistance of the finned external coolant is given next.

3.4. Heat sink (external coolant stream)

Fig. 1(b) shows the finned condenser top of VC. Since the surface-convection of air is less effective than water as coolant, the surface area should be increase (from the baseline which is for water). The geometric paramaters are the number of fins, the diameter and the length of the fin, and the area of the condenser. The surface-convection resistance is

\[
\frac{1}{R_{u,c}} = A_{u} \left(\eta_{1} \frac{k_l}{d_i} + \eta_{2} A_{b} \frac{k_l}{d_i} \right).
\]

The \(A_{u,c} \) given by the correlation for crossflow over cylinders \([13]\). The fin surface area \(A_{f} \) and flat area \(A_{b} \) and the bare area \(A_{b} \), are

\[
A_{f} = N_{f} \left(\pi d_{f} L_{f} + \frac{\pi d_{f}^2}{4} \right), \quad A_{b} = \pi d_{f}^2 / 4 - A_{f}. \quad A_{b} = A_{c} - N_{f} \left(\frac{\pi d_{f}^2}{4} \right).
\]

The same heat flow rate through MAHPS is removed through the finned condenser, i.e.,

\[
Q = \frac{T_{h} - T_{c}}{R_{u,c}},
\]

where the overall resistance, \(R_{u,c} \) is given in Table 4. Here, we use \(\eta_{1} = 1 \) (i.e., relatively short fins).

4. Result and discussion

We now proceed to minimize \(R_{u,c} \) for MAHPS, and make comparison with the single, uniform artery performance.

4.1. Effect of internal column geometry

Fig. 3 shows the variation, as a function of artery diameter \(d_{c} \), for \(L_{c} = 3.0 \) mm, and \(D_{b} = 1 \) cm. As the diameter is reduced, \(R_{u,c} \) decreases. Although the thermal conductivity of the solid portion of the column (copper) is higher than the wick (sintered copper particle), the dominant heat transfer occurred is towards the evaporation surface. Increase in \(d_{c} \) also reduce the evaporation area. So MAHPS performance improves when the evaporation area is increased by reducing \(d_{c} \). However, there is a minimum column
diameter, to avoid liquid chocking through the columns. The pressure drop is limited by the maximum capillary pressure, and this occurs when the column diameter is less than 0.4 mm. In addition, the conduction resistance through the column sharply increases when the column diameter is less than 0.4 mm. As shown in Fig. 3, the thermal resistance is inversely proportional to the evaporation area until the liquid pressure drop reaching the maximum capillary pressure. The uniform, single artery has no columns, so it has more evaporation area compared to MAHPS. However, its overall thermal resistance is about four times higher than MAHPS, due to its thick wick and no area reduction due to presence of columns) is assumed. The simplified model is

The overall thermal resistance for MAHPS, as a function of column diameter. The overall thermal resistance for the uniform artery is also shown.

4.2. Effect of heater size

Fig. 4 shows the variation of overall thermal resistance with respect to the heater diameter. Here, a simplified model is used to predict maximum and minimum bounds of R_S, where one-dimensional heat flow (no heat spreading in the evaporator wall and wick, and no area reduction due to presence of columns) is assumed. The simplified model is

$$R_S = \frac{1}{A_h} \left(\frac{L_{e,c}}{k_s} \right) + \frac{1}{A_s} \left(\frac{L_{i,c}}{k_v} + \frac{L_{c,c}}{k_c} + A_c \frac{\delta_{w,c}}{R_{ku,c}} \right). $$

(20)

where A_h is heater area where the constant, isothermal heat flux boundary condition is applied, $L_{e,c}$ is evaporator wall thickness, $\delta_{w,c}$ and $\delta_{w,e}$ are evaporator and condenser wick thicknesses, A_c is surface area of condenser, $L_{i,c}$ is the distance between evaporator area and condenser wick, and $R_{ku,c}$ is the surface-convection resistance of coolant stream. k_v of 10^5 W/m-K is used since the thermal resistance of evaporated vapor is negligibly small [3]. From Eq. (20), the minimum of R_S is 0.0146 K/W, when the heater has the same size of the condenser. R_S is larger than this lower limit for MAHPS, shown in Fig. 4. The top view shows the number of columns when the total Q is maximized. For small D_h, the area covered by columns is relatively larger than the heater area, which implies heat spreading. As the aspect ratio of the heater and evaporator, or the thickness of the evaporator wall, is increased, more spreading occurs in the evaporation area and R_S increases due to this heat spreading [1]. For $D_h < 1.5$ cm diameter, MAHPS R_S is less than the simplified model. This implies that the bottleneck for reducing the overall thermal resistance is the thermal resistance through the evaporator wall and wick. However, for $D_h > 1.5$ cm, heat spreading near the heater does not contribute to the thermal resistance. It indicates that the external coolant resistance play a large role in R_S. Fig. 5 shows the amount of heat transferred through MAHPS, as a function
of D_h/D_c. The wick-superheat dominated regime and viscous-capillary dominated regime are marked. A maximum evaporator wick superheat of 10 °C is assumed from the pool boiling experiments [14]. The viscous-capillary limit is smaller than the superheat limit. Values of R_c as a function of heater diameter, are also listed in Table 4.

4.3. Comparison with solid copper heat spreader and uniform wick

The columns in MAHPS reduce the overall flow resistance, since the condensate directly moves to the heater area. For the uniform artery, the liquid flow path is longer, this increases the overall liquid flow resistance, while its evaporation area is larger than MAHPS. Fig. 6 shows variation of R_c for uniform artery, MAHPS, and a solid copper heat spreader [15], as a function of A_h. For the uniform artery, the wick thickness is 800 μm and for MAHPS, the evaporator wick thickness is 50 μm, and this results in larger R_c for the uniform artery. However, there is only a small difference between the two for small A_h. Although the conduction resistance of MAHPS is less than the uniform artery, the effect of heat spreading compensates. For small heater diameter, the area for evaporation is critical. If the heater diameter is equal or smaller than the MAHPS column diameter d_c, there is no reduction in A_hR_c [4].

Although the vapor spreads heat uniformly, thus reducing the overall thermal resistance substantially, MAHPS may potentially be disadvantageous, compared with a solid copper heat spreader due to its low wick effective thermal conductivity. Using the analytical model for R_c in solid copper heat spreader [15], the results for MAHPS, uniform artery, and the solid copper heat spreader, are compared in Fig. 6. The overall (no interfacial material or resistance) R_c for the solid copper heat spreader is [15]

$$R_c = \frac{\cos x^{-1}}{d} \int_0^d \frac{A_c}{(D_h/2 + \tan zd) \pi k_w} dz + \frac{A_c}{(D_h/2 + \tan zd) \pi R_{w,c}},$$

(21)

where $x = 70^\circ$ is used as a spreading angle in the solid copper heat spreader and d is the total spreading thickness. The material properties are those listed in Table 2. Fig. 6 shows that A_hR_c for the solid copper heat spreader is lower than the uniform artery, but higher than MAHPS. Since the heat spreadability of the vapor reduces A_hR_c substantially, MAHPS shows better performance compared to the solid copper heat spreader. In Fig. 6, the simplified model for the uniform artery (no heat spreading) is differ, from the results of its network model. This is because heat spreading occurs inside the thick wick which reduces A_hR_c in network model as A_h decreases. Thus, for small A_h there is a small difference between the uniform artery and the solid heat spreader.

In Fig. 6, A_hR_c depends on the column spacing L_c. This implies that the size of hexagonal unit cell given by L_c, influences the accuracy of the network model results, the placement of the columns in the heater area is determined (constrained) by this unit-cell size. However, this is not a large difference in A_hR_c. The numerical values used in Fig. 6 are also given in Table 5.

4.4. Effect of coolant

For an air cooled condenser, the number of pins and condenser diameters are found for the same cooling performance as water as the coolant ($R_{w,ck}$). The results are shown in Fig. 7, and compare with those of water cooled condenser (baseline design). Although air cooled condenser requires a larger surface area and number of fins, the results show a moderate condenser diameter and number of fins of the air-cooled heat sink.

Table 4
Overall thermal resistance R_c for the various heater diameter ($L_c = 3.5$ mm)

<table>
<thead>
<tr>
<th>N_c</th>
<th>D_h/D_c</th>
<th>D_h (cm)</th>
<th>A_hR_c (K/(W/cm²))</th>
<th>Q_i (W)</th>
<th>ΔT_{in} (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>0.1</td>
<td>0.5</td>
<td>0.0454</td>
<td>43.2</td>
<td>4.01</td>
</tr>
<tr>
<td>37</td>
<td>0.4</td>
<td>1.0</td>
<td>0.0438</td>
<td>179</td>
<td>3.50</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>0.0749</td>
<td>236</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>2.0</td>
<td>0.102</td>
<td>307</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>2.5</td>
<td>0.112</td>
<td>436</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>3.0</td>
<td>0.158</td>
<td>449</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>5.0</td>
<td>0.322</td>
<td>610</td>
<td>1.13</td>
<td></td>
</tr>
</tbody>
</table>

Table 5
Comparison of overall thermal resistance R_c between MAHPS (MA) and uniform artery (UA) design

<table>
<thead>
<tr>
<th>A_h (cm²)</th>
<th>N_c</th>
<th>$L_c = 3$ mm</th>
<th>$A_hR_{c,MA}$</th>
<th>Q_{MA}</th>
<th>$A_hR_{c,UA}$</th>
<th>Q_{UA}</th>
<th>$A_hR_{c,MA}$</th>
<th>Q_{MA}</th>
<th>$A_hR_{c,UA}$</th>
<th>Q_{UA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.196</td>
<td>19</td>
<td>0.00454</td>
<td>43.3</td>
<td>0.111</td>
<td>17.7</td>
<td>0.0454</td>
<td>43.2</td>
<td>0.0919</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>0.785</td>
<td>37</td>
<td>0.00491</td>
<td>160</td>
<td>0.223</td>
<td>34.8</td>
<td>0.0438</td>
<td>179</td>
<td>0.178</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>1.077</td>
<td>-</td>
</tr>
<tr>
<td>0.314</td>
<td>-</td>
</tr>
<tr>
<td>1.091</td>
<td>-</td>
</tr>
<tr>
<td>0.074</td>
<td>-</td>
</tr>
<tr>
<td>0.158</td>
<td>-</td>
</tr>
<tr>
<td>19.6</td>
<td>127</td>
<td>0.342</td>
<td>574</td>
<td>1.58</td>
<td>124</td>
<td>0.322</td>
<td>610</td>
<td>1.19</td>
<td>152</td>
<td></td>
</tr>
</tbody>
</table>
5. Conclusions

In this paper, the network model for MAHPS is developed to optimize its three-dimensional heat and liquid flow. The baseline design uses water as external coolant, and air cooling is also considered. The results show while large number of columns is needed to make the most of the maximum capillary pressure by removing the most heat, the columns also limit the evaporation area. For a 1 cm diameter heater in a 5 cm diameter VC, the optimized number of columns is about 37. In addition to the viscous-capillary limit, we also use the evaporator wick-superheat limit set at 10°C.

MAHPS shows superior performance compared to the uniform artery, by reducing its overall thermal resistance.