Policy Goals in the Short Run: Applying the IS-LM Model

Topics to cover…
- how to use the IS-LM model to analyze the effects of shocks, fiscal policy, and monetary policy
- how to derive the aggregate demand curve from the IS-LM model
- several theories about what caused the Great Depression

Equilibrium in the IS-LM model

The IS curve represents equilibrium in the goods market.

\[Y = C(Y - T) + I(r) + G \]

The LM curve represents money market equilibrium.

\[M/P = L(r, Y) \]

The intersection determines the unique combination of \(Y \) and \(r \) that satisfies equilibrium in both markets.

Policy analysis with the IS-LM model

\[Y = C(Y - T) + I(r) + G \]

\[M/P = L(r, Y) \]

We can use the IS-LM model to analyze the effects of:
- fiscal policy: \(G \) and/or \(T \)
- monetary policy: \(M \)

Crowding Out

- Why is expansionary fiscal policy less effective in the IS-LM framework, than it was when we focused on IS alone?
- A fiscal expansion causes the interest rate to rise which, in turn, crowds out investment, leading to a smaller final influence on \(Y \).
- The strength of the dampening effect on fiscal policy depends on the slope of the LM curve.
 - If money demand is very sensitive to income, the LM curve will be steep (because a large increase in \(r \) will be needed in order to equilibrate the money market) and a change in fiscal policy will have a small effect on output.
A (lump-sum) tax cut

Consumers save \((1-MPC)\) of the tax cut, so the initial boost in spending is smaller for \(\Delta T\) than for an equal \(\Delta G\) and the IS curve shifts by

\[\frac{\text{MPC}}{1-\text{MPC}} \Delta T \]

...so the effects on \(r\) and \(Y\) are smaller for \(\Delta T\) than for an equal \(\Delta G\).

Monetary policy: An increase in \(M\)

1. \(\Delta M > 0\) shifts the \(LM\) curve down (or to the right)
2. ...causing the interest rate to fall
3. ...which increases investment, causing output & income to rise.

How responsive is \(Y\) to monetary policy?

- This will depend on both the investment demand responsiveness to the interest rate, and the money demand responsiveness to the interest rate and income.
- If investment demand is very responsive to the interest rate, then the IS curve will be very flat (since a given interest rate change will correspond to a big investment change and therefore a big planned expenditure change), and any shift in \(LM\) will have a large effect on \(Y\).

How responsive is \(Y\) to monetary policy? (cont.)

- One the money market side, the response of income to a change in monetary policy will depend on the responsiveness of money demand to both the interest rate and income.
- If money demand is very responsive to the interest rate, then a given increase in the money supply will require only a small change in the interest rate to bring the money market back into equilibrium.
- This small change in the interest rate means that the \(LM\) curve will shift down only a little, and the corresponding increase in output will be small.

Interaction between monetary & fiscal policy

- Model: Monetary & fiscal policy variables (\(M\), \(G\), and \(T\)) are exogenous.
- Real world: Monetary policymakers may adjust \(M\) in response to changes in fiscal policy, or vice versa.
- Such interaction may alter the impact of the original policy change.
The Fed's response to $\Delta G > 0$

- Suppose Congress increases G.
- Possible Fed responses:
 1. hold M constant
 2. hold r constant
 3. hold Y constant
- In each case, the effects of the ΔG are different:

Response 1: Hold M constant

If Congress raises G, the IS curve shifts right.

If Fed holds M constant, then LM curve doesn’t shift.

Results:

$$\Delta Y = Y_2 - Y_1$$
$$\Delta r = r_2 - r_1$$

Response 2: Hold r constant

If Congress raises G, the IS curve shifts right.

To keep r constant, Fed increases M to shift LM curve right.

Results:

$$\Delta Y = Y_3 - Y_1$$
$$\Delta r = 0$$

Response 3: Hold Y constant

If Congress raises G, the IS curve shifts right.

To keep Y constant, Fed reduces M to shift LM curve left.

Results:

$$\Delta Y = 0$$
$$\Delta r = r_3 - r_1$$

Estimates of fiscal policy multipliers

from the DRI macroeconomic model

<table>
<thead>
<tr>
<th>Assumption about monetary policy</th>
<th>Estimated value of $\Delta Y/\Delta G$</th>
<th>Estimated value of $\Delta Y/\Delta T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fed holds money supply constant</td>
<td>0.60</td>
<td>-0.26</td>
</tr>
<tr>
<td>Fed holds nominal interest rate constant</td>
<td>1.93</td>
<td>-1.19</td>
</tr>
</tbody>
</table>

Shocks in the IS-LM model

IS shocks: exogenous changes in the demand for goods & services.

Examples:

- stock market boom or crash
 $$\Rightarrow$$ change in households’ wealth
 $$\Rightarrow$$ ΔC
- change in business or consumer confidence or expectations
 $$\Rightarrow$$ ΔI and/or ΔC
Shocks in the IS-LM model

LM shocks: exogenous changes in the demand for money.

Examples:
- A wave of credit card fraud increases demand for money.
- More ATMs or the Internet reduce money demand.

EXERCISE:
Analyze shocks with the IS-LM model

Use the IS-LM model to analyze the effects of
1. A boom in the stock market that makes consumers wealthier.
2. After a wave of credit card fraud, consumers using cash more frequently in transactions.

For each shock,
- Use the IS-LM diagram to show the effects of the shock on \(Y \) and \(r \).
- Determine what happens to \(C, I, \) and the unemployment rate.

Effects of a Stock Market boom

- The IS curve shifts to the right, because consumers feel they can afford to spend more given this exogenous increase in their wealth. This causes \(Y \) and \(r \) to rise.
- \(C \) rises for two reasons: the stock market boom, and the increase in income. \(I \) falls, because \(r \) is higher. \(u \) falls, because firms hire more workers to produce the extra output that is demanded.

Consumers use more cash

- The increase in money demand shifts the LM curve to the left. We are assuming that all other exogenous variables, including \(M \) and \(P \), remain unchanged, so an increase in money demand causes an increase in the value of \(r \) associated with each value of \(Y \) (this can be seen using the Liquidity Preference diagram).
- This translates to an upward (i.e. leftward) shift in the LM curve. This shift causes \(Y \) to fall and \(r \) to rise.
- The fall in income causes a fall in \(C \). The increase in \(r \) causes a fall in \(I \). The fall in \(Y \) causes an increase in \(u \).

CASE STUDY:
The U.S. recession of 2001

- During 2001,
 - 2.1 million people lost their jobs, as unemployment rose from 3.9% to 5.8%.
 - GDP growth slowed to 0.8% (compared to 3.9% average annual growth during 1994-2000).

CASE STUDY:
The U.S. recession of 2001

- Causes: 1) Stock market decline \(\Rightarrow \downarrow C \)
CASE STUDY: The U.S. recession of 2001

- Causes: 2) 9/11
 - increased uncertainty
 - fall in consumer & business confidence
 - result: lower spending, IS curve shifted left
- Causes: 3) Corporate accounting scandals
 - Enron, WorldCom, etc.
 - reduced stock prices, discouraged investment

Fiscal policy response: shifted IS curve right
- tax cuts in 2001 and 2003
- spending increases
 - airline industry bailout
 - NYC reconstruction
 - Afghanistan war

Monetary policy response: shifted LM curve right

What is the Fed’s policy instrument?
- The news media commonly report the Fed’s policy changes as interest rate changes, as if the Fed has direct control over market interest rates.
- In fact, the Fed targets the federal funds rate – the interest rate banks charge one another on overnight loans.
- The Fed changes the money supply and shifts the LM curve to achieve its target.
- Other short-term rates typically move with the federal funds rate.

IS-LM and aggregate demand
- So far, we’ve been using the IS-LM model to analyze the short run, when the price level is assumed fixed.
- However, a change in \(P \) would shift \(LM \) and therefore affect \(Y \).
- The aggregate demand curve captures this relationship between \(P \) and \(Y \).
Deriving the AD curve

Intuition for slope of AD curve:

\(\uparrow P \Rightarrow \downarrow (M/P) \Rightarrow LM \) shifts left

\(\Rightarrow \uparrow r \Rightarrow \downarrow I \Rightarrow \downarrow Y \)

Fiscal policy and the AD curve

Expansionary fiscal policy (\(\uparrow G \) and/or \(\downarrow T \)) increases aggregate demand:

\(\downarrow T \Rightarrow \uparrow C \Rightarrow \uparrow Y \) at each value of \(P \)

IS-LM and AD-AS in the short run & long run

Recall: The force that moves the economy from the short run to the long run is the gradual adjustment of prices.

<table>
<thead>
<tr>
<th>In the short-run equilibrium, if</th>
<th>then over time, the price level will</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y > \bar{Y})</td>
<td>rise</td>
</tr>
<tr>
<td>(Y < \bar{Y})</td>
<td>fall</td>
</tr>
<tr>
<td>(Y = \bar{Y})</td>
<td>remain constant</td>
</tr>
</tbody>
</table>

The SR and LR effects of an IS shock

A negative IS shock shifts IS and AD left, causing \(Y \) to fall.

The SR and LR effects of an IS shock

In the new short-run equilibrium, \(Y < \bar{Y} \)
The SR and LR effects of an IS shock

In the new short-run equilibrium, $Y < \bar{Y}$

Over time, P gradually falls, which causes:
- SRAS to move down.
- M/P to increase, which causes LM to move down.

The Great Depression

- Unemployment (right scale)
- Real GNP (left scale)

The SR and LR effects of an IS shock

This process continues until economy reaches a long-run equilibrium with $Y = \bar{Y}$

THE SPENDING HYPOTHESIS:

Shocks to the IS curve

- asserts that the Depression was largely due to an exogenous fall in the demand for goods & services – a leftward shift of the IS curve.
- evidence:
 - output and interest rates both fell, which is what a leftward IS shift would cause.

THE SPENDING HYPOTHESIS:

Reasons for the IS shift

- Stock market crash ⇒ exogenous $\downarrow C$
 - Oct-Dec 1929: S&P 500 fell 17%
 - Oct 1929-Dec 1933: S&P 500 fell 71%
- Drop in investment
 - "correction" after overbuilding in the 1920s
 - widespread bank failures made it harder to obtain financing for investment
- Contractionary fiscal policy
 - Politicians raised tax rates and cut spending to combat increasing deficits.
THE MONEY HYPOTHESIS: A shock to the LM curve

- asserts that the Depression was largely due to huge fall in the money supply.
- evidence: M_1 fell 25% during 1929-33.
- But, two problems with this hypothesis:
 - P fell even more, so M/P actually rose slightly during 1929-31.
 - nominal interest rates fell, which is the opposite of what a leftward LM shift would cause.

THE MONEY HYPOTHESIS AGAIN: The effects of falling prices

- asserts that the severity of the Depression was due to a huge deflation: P fell 25% during 1929-33.
- This deflation was probably caused by the fall in M, so perhaps money played an important role after all.
- In what ways does a deflation affect the economy?

THE MONEY HYPOTHESIS AGAIN: The effects of falling prices

- The stabilizing effects of deflation:
 - $P \downarrow \Rightarrow (M/P) \uparrow \Rightarrow LM$ shifts right $\Rightarrow Y$}
- **Pigou effect:**
 - $P \downarrow \Rightarrow (M/P) \uparrow$
 - \Rightarrow consumers’ wealth \uparrow
 - $\Rightarrow C$
 - $\Rightarrow IS$ shifts right
 - $\Rightarrow Y$

Why another Depression is unlikely

- Policymakers (or their advisors) now know much more about macroeconomics:
 - The Fed knows better than to let M fall so much, especially during a contraction.
 - Fiscal policymakers know better than to raise taxes or cut spending during a contraction.
 - Federal deposit insurance makes widespread bank failures very unlikely.
 - Automatic stabilizers make fiscal policy expansionary during an economic downturn.