Corrections in "Topological central extensions of semi-simple groups over local fields" by Gopal Prasad and M. S. Raghunathan, Ann. Math. 119 (1984)

1. At the begining of 7.14 add the following sentence:

"We assume that the K-root system of G has roots of unequal lengths."

In this paragraph delete the sentence "Moreover, it is easy to see that $C \cdot Z = C^*$."

- **2**. In the remark on p. 211, replace "In both the cases, $C^* = C$ and" by "If G is of type A, $C^* = C$. In case G/K is of outer type D_n , C^* is disconnected and C is of index 2 in it. In both the cases"
- **3**. In the first line of the fourth paragraph on p. 218, replace "with kernel" by "which is an isomorphism if *n* is odd, and in case *n* is even its kernel is".
- **4**. In the statement and the proof of Lemma 7.27, replace F with f every where.
 - **5**. Replace the proof of Proposition 7.28 with the following.

Proof. We note that in all cases $\mathfrak{L}_1(\mathfrak{f})$ is an irreducible $\mathbf{ZM}(\mathfrak{f})$ -module. Now Lemma 7.27 implies the proposition.

6. Delete the first paragraph of 7.36 add the following sentence after the second sentence of the second paragraph.

Now in case G splits over K and its K-root system has roots of unequal lengths, define G to be the algebraic subgroup generated by the root groups, U_{ω} , $\omega \in \Omega$.

After the third sentence of the third paragraph of 7.36 add the following sentence.

Let G be the subgroup generated by $U_{\dot{\omega}}$, $\omega \in \Omega$, and $U_{\dot{\beta}}$.

- **7**. Replace the statement and the proof of Lemma 7.37 with the following.
- **7.37** Lemma. Assume that G does not split over K and p = 2. Then the following short exact sequence

$$1 \to \mathcal{P}_2/(\mathcal{P}_1,\mathcal{P}_1) \to \mathcal{P}_1/(\mathcal{P}_1,\mathcal{P}_1) \to \mathcal{P}_1/\mathcal{P}_2 \to 1$$

does not admit an M(\mathfrak{f})-equivariant splitting if either (i) # \mathfrak{f} > 2, or (ii) # \mathfrak{f} = 2 and the K-root system of G is of type B_{n+1} for $n \ge 2$.

If the K-root system of G is of type C_{n+1} , $n \ge 1$ and # f = 2, then the above short exact sequence does admit an M(f)-equivariant splitting.

Proof. We shall identify $\mathcal{P}_1/\mathcal{P}_2$, and $\mathcal{P}_2/(\mathcal{P}_1, \mathcal{P}_1)$, with $\mathfrak{L}_1(\mathfrak{f})$, and $\mathfrak{L}_2(\mathfrak{f})$ respectively (cf. 7.34 and 7.35). There is a natural $\mathbf{Z}[\mathsf{T}(\mathfrak{f})]$ -module

identification of $\mathscr{P}_1/(\mathscr{P}_1,\mathscr{P}_1)$ with $\mathfrak{L}_1(\mathfrak{f}) \oplus {}^{\blacksquare}\mathfrak{L}_2(\mathfrak{f})$. For an affine root ψ , let u_{ψ} be the image in $\mathscr{P}/(\mathscr{P}_1,\mathscr{P}_1)$ of the root group of \mathscr{P} corresponding to ψ .

Assume, if possible, that there is a M(\mathfrak{f})-equivariant splitting $\sigma: \mathfrak{L}_1(\mathfrak{f}) = \mathscr{P}_1/\mathscr{P}_2 \to \mathscr{P}_1/(\mathscr{P}_1, \mathscr{P}_1)$. We first take up the case where the *K*-root system of *G* is of type B_{n+1} , for $n \geq 2$. Let $\Omega = \{\omega, \omega'\}$ and let $\beta = \sum_{\alpha \in \Delta - \Omega} \alpha$. Then $\delta = \omega + \beta + \omega'$. By a direct computation we see that since the gradients of $\beta + 2\omega$, and $\beta + 2\omega'$ are respectively $\dot{\omega} - \dot{\omega}'$ and $\dot{\omega}' - \dot{\omega}$, for arbitrary \mathfrak{f} , the subspace of $\mathfrak{L}_2(\mathfrak{f})$ consisting of vectors fixed under the kernel in $\mathsf{T}(\mathfrak{f})$ of $\dot{\omega}$ and $\dot{\omega}'$ is precisely $\mathfrak{L}_{\beta+2\omega} \oplus \mathfrak{L}_{\beta+2\omega'}$.

As the intersection of $\mathscr{P}_2/(\mathscr{P}_1,\mathscr{P}_1) = {}^{\blacksquare}\mathfrak{L}_2(\mathfrak{f})$ with the image of σ is trivial, from the observations in the preceding paragraph we infer that for all t,

$$\sigma(u_{\omega}(t) u_{\omega'}(\bar{t})) = u_{\omega}(t) u_{\omega'}(\bar{t}) f(t),$$

where $f(t) \in (\mathfrak{L}_{2\omega+\beta} \oplus \mathfrak{L}_{2\omega'+\beta})(\mathfrak{f})$ ($\subset \mathscr{P}_2/(\mathscr{P}_1, \mathscr{P}_1) = {}^{\blacksquare}\mathfrak{L}_2(\mathfrak{f})$). Let γ (resp. γ') be the affine root adjacent to ω (resp. ω') in the Dynkin diagram. These affine roots are long and conjugate to each other under the Galois group of K/k. Now we apply σ to the following commutator, for $s, t \in F$:

$$(u_{\gamma}(s) u_{\gamma'}(\overline{s})) \cdot (u_{\omega}(t) u_{\omega'}(\overline{t})) \cdot (u_{\gamma}(s) u_{\gamma'}(\overline{s}))^{-1} \cdot (u_{\omega}(t) u_{\omega'}(\overline{t}))^{-1}$$

and use the M(\mathfrak{f}) equivariance of σ , we obtain that (note that $(u_{\gamma}(s) u_{\gamma'}(\overline{s})) \in$ M(\mathfrak{f}) and it commutes with f(t)).

$$(u_{\gamma}(s) u_{\gamma'}(\overline{s})) \cdot (u_{\omega}(t) u_{\omega'}(\overline{t}) f(t)) \cdot (u_{\gamma}(s) u_{\gamma'}(\overline{s}))^{-1} \cdot (u_{\omega}(t) u_{\omega'}(\overline{t}) f(t))^{-1}$$

$$= (u_{\gamma}(s) u_{\gamma'}(\overline{s})) \cdot (u_{\omega}(t) u_{\omega'}(\overline{t})) \cdot (u_{\gamma}(s) u_{\gamma'}(\overline{s}))^{-1} \cdot (u_{\omega}(t) u_{\omega'}(\overline{t}))^{-1}$$

$$= (u_{\omega+\gamma}(st) u_{\omega'+\gamma'}(\overline{st})) \cdot (u_{2\omega+\gamma}(st^2) u_{2\omega'+\gamma'}(\overline{st}^2)) \text{ in } \mathcal{P}_1/(\mathcal{P}_1, \mathcal{P}_1).$$

Taking x = st, we see that

$$(u_{\omega+\gamma}(x) u_{\omega'+\gamma'}(\overline{x})) \cdot (u_{2\omega+\gamma}(x^2/s) u_{2\omega'+\gamma'}(\overline{x}^2/\overline{s}))$$

lies in the image of σ for all $s, x \in F$. Now fixing x and varying s over F^{\times} , we see that a nonzero element of $\mathfrak{Q}_2(\mathfrak{f})$ lies in the image of σ (note that $u_{2\omega+\gamma}(y)\,u_{2\omega'+\gamma'}(\overline{y})$) $\in \mathfrak{Q}_2(\mathfrak{f})$ for every $y \in F$). We have thus arrived at a contradiction.

We will now consider the case where the K-root system of G is of type C_{n+1} . In this case $\mathfrak{L}_2(\mathfrak{f})$ is isomorphic to F with the trivial action of D (see 7.24(i)). In this case, all the simple affine roots, except the ones in Ω , are fixed under the Galois group of K/k, which forces us to assume that $\#\mathfrak{f} > 2$ to prove that the short exact sequence can not split.

Let $\Omega = \{\omega, \omega'\}$, and α_0 be the long simple affine root. Let $\beta = \sum_{\alpha \in \Delta - (\Omega \cup \{\alpha_0\})} \alpha$. Then $\delta = \omega + \omega' + 2\beta + \alpha_0$. Hence the gradient of $2\omega + 2\beta + \alpha_0$ is $\dot{\omega} - \dot{\omega}'$ and that of $2\omega' + 2\beta + \alpha_0$ is $\dot{\omega}' - \dot{\omega}$.

For an affine root ψ of length 1 with respect to Ω , we will denote its conjugate by ψ' and let $\sigma(u_{\psi}(t) u_{\psi'}(\bar{t})) = u_{\psi}(t) u_{\psi'}(\bar{t}) f_{\psi}(t)$, with $f_{\psi}(t) \in {}^{\blacksquare}\mathfrak{L}_{2}(\mathfrak{f}) = \mathsf{F}$.

We observe that given an affine root ψ of length 1, there is an affine root η of length 1 and a long root γ of the group D (i.e., the subroot system spanned by $\Delta - \Omega$) such that $\psi = \eta + \gamma$ and $2\eta + \gamma$ equals either $2\omega + 2\beta + \alpha_0$ or $2\omega' + 2\beta + \alpha_0$. In fact, if ω appears in the expression for ψ in terms of simple affine roots, then $\gamma = 2\psi - (2\omega + 2\beta + \alpha_0)$ and if ω' appares in the expression for ψ , then $\gamma = 2\psi - (2\omega' + 2\beta + \alpha_0)$, and $\eta = \psi - \gamma$. In the sequel, without any loss of generality, we assume that $2\eta + \gamma = 2\omega + 2\beta + \alpha_0$. Consider the commutator $c := u_{\gamma}(1) \left(u_{\eta}(t) u_{\eta'}(\bar{t})\right) u_{\gamma}(1)^{-1} \left(u_{\eta}(t) u_{\eta'}(\bar{t})\right)^{-1}$. This commutator equals

$$x := u_{\psi}(t) u_{\psi'}(\bar{t}) u_{2\omega+2\beta+\alpha_0}(t^2) u_{2\omega'+2\beta+\alpha_0}(\bar{t}^2)$$

in $\mathcal{P}_1/(\mathcal{P}_1, \mathcal{P}_1)$, so it equals $u_{\psi}(t) u_{\psi'}(\bar{t})$ in $\mathcal{P}_1/\mathcal{P}_2$. Therefore,

$$\sigma(c) = u_{\gamma}(1) \left(u_{\eta}(t) u_{\eta'}(\bar{t}) f_{\eta}(t) \right) u_{\gamma}(1)^{-1} \left(u_{\eta}(t) u_{\eta'}(\bar{t}) f_{\eta}(t) \right)^{-1}.$$

$$= u_{\gamma}(1) \left(u_{\eta}(t) u_{\eta'}(\bar{t}) \right) u_{\gamma}(1)^{-1} \left(u_{\eta}(t) u_{\eta'}(\bar{t}) \right)^{-1}$$

$$= x = \left(u_{\psi}(t) u_{\psi'}(\bar{t}) \right) \left(u_{2\omega+2\beta+\alpha_0}(t^2) u_{2\omega'+2\beta+\alpha_0}(\bar{t}^2) \right).$$

On the other hand, as c equals $u_{\psi}(t) u_{\psi'}(\bar{t})$ in $\mathcal{P}_1/\mathcal{P}_2$, we obtain $\sigma(c) = u_{\psi}(t) u_{\psi'}(\bar{t}) f_{\psi}(t)$. Comparing the above two values of $\sigma(c)$ we see that $f_{\psi}(t) = u_{2\omega+2\beta+\alpha_0}(t^2) u_{2\omega'+2\beta+\alpha_0}(\bar{t}^2)$. Thus

$$\sigma(u_{\psi}(t) u_{\psi'}(\bar{t})) = (u_{\psi}(t) u_{\psi'}(\bar{t})) \cdot (u_{2\omega+2\beta+\alpha_0}(t^2) u_{2\omega'+2\beta+\alpha_0}(\bar{t}^2)). \quad (1)$$

In case # \mathfrak{f} = 2, we can verify that σ defined by (1) provides an M(\mathfrak{f})-equivariant splitting of the exact sequence of the lemma.

Now we assume that # $\mathfrak{f} > 2$. We take $\psi = \omega + \beta$ in the above (then $\eta = \omega + \beta + \alpha_0$ and $\gamma = -\alpha_0$). Equation (1) gives the following

$$\sigma(u_{\omega+\beta}(t)\,u_{\omega'+\beta}(\bar{t})) = (u_{\psi}(t)\,u_{\psi'}(\bar{t})) \cdot (u_{2\omega+2\beta+\alpha_0}(t^2)\,u_{2\omega'+2\beta+\alpha_0}(\bar{t}^2)). \quad (2)$$

It is easily seen, that in the kernel of $\dot{\omega}$ and $\dot{\omega}'$ in T(\mathfrak{f}), there is an element z such that $\beta(z) =: \lambda \neq 1$. considering the conjugates of both the sides of the last equation under z we get

$$\sigma(u_{\omega+\beta}(\lambda t) u_{\omega'+\beta}(\lambda \bar{t})) = (u_{\omega+\beta}(\lambda t) u_{\omega'+\beta}(\lambda \bar{t})) \cdot (u_{2\omega+2\beta+\alpha_0}(t^2) u_{2\omega'+2\beta+\alpha_0}(\bar{t}^2)).$$
(3)

Replacing λt with t in the previous equation we obtain

$$\sigma(u_{\omega+\beta}(t)\,u_{\omega'+\beta}(\bar t)) = (u_{\omega+\beta}(t)\,u_{\omega'+\beta}(\bar t))\cdot (u_{2\omega+2\beta+\alpha_0}(t^2/\lambda^2)\,u_{2\omega+2\beta+\alpha_0}(\bar t^2/\lambda^2)). \tag{4}$$

From equations (2) and (4) we see that the image of σ contains a nontrivial element of $\mathfrak{Q}_2(\mathfrak{f})$. This is a contradiction, and hence in case $\mathfrak{H}\mathfrak{f} > 2$ and the K-root system of G is of type C_{n+1} , with n > 2, the short exact sequence of the lemma does not split.

Finally we treat the case where the K-root system of G is of type C_2 (= B_2). Let $\Omega = \{\omega, \omega'\}$ and α be the unique long affine root. Assume that the short exact sequence of the lemma admits an M(\mathfrak{f})-equivariant splitting σ . The affine roots of length 1 are ω , ω' , $\omega + \alpha$ and $\omega' + \alpha$. It is obvious that given one of these roots ψ , there is a $\gamma \in \{\pm a_0\}$ such that $\eta := \psi - \gamma$ is a root and $\psi + \gamma = \eta + 2\gamma$ equals either $2\omega + \alpha$ or $2\omega' + \alpha$. For definiteness we will assume that $\eta + 2\gamma = 2\omega + a$. Arguing as above, in the case C_{n+1} , $n \ge 2$, we see that

$$\sigma(u_{\psi}(t) u_{\psi'}(\bar{t})) = (u_{\psi}(t) u_{\psi'}(\bar{t})) (u_{2\omega+\alpha}(t^2) u_{2\omega'+\alpha}(\bar{t}^2)). \quad (5)$$

It can be checked that σ described by (5) is an M(\mathfrak{f})-equivariant splitting of the exact sequence of the lemma if $\mathfrak{H}\mathfrak{f}=2$,

Now let us assume that # \mathfrak{f} > 2. We will now show that σ is not a T(\mathfrak{f})-equivariant splitting. For this purpose, assume to the contrary and let $z \in F$. Then there is a $x \in \mathsf{T}(\mathfrak{f})$ such that $\omega(x) = z^2$, $\omega'(x) = \overline{z}^2$ and $\alpha(x) = (z\overline{z})^{-2}$. Now taking the conjugate by x of both the sides of (5), for $\psi = \omega$, we obtain

$$\sigma(u_{\omega}(tz^2)\,u_{\omega'}(\bar{t}\bar{z}^2)) = (u_{\omega}(tz^2)\,u_{\omega'}(\bar{t}\bar{z}^2))(u_{2\omega+\alpha}(t^2z^4(z\bar{z})^{-2})\,u_{2\omega'+\alpha}(\bar{t}^2z^4(z\bar{z})^{-2})).$$

Replacing tz^2 by t in the above, we obtain

$$\sigma(u_{\omega}(t) \, u_{\omega'}(\bar{t})) = (u_{\omega}(t) \, u_{\omega'}(\bar{t})) (u_{2\omega+\alpha}(t^2(z\bar{z})^{-2}) \, u_{2\omega'+\alpha}(\bar{t}^2(z\bar{z})^{-2})). \quad (6)$$

As # $\mathfrak{f} > 2$, there is a z such that $z\overline{z} \neq 1$, using such a z, and also z = 1, we infer from (6) that the image of σ contains a nontrivial element of $\mathfrak{g}_2(\mathfrak{f}) = \mathfrak{F}$. This implies that σ is not a splitting.

- **8**. Replace the statement and the proof of Proposition 7.38 with the following.
 - **7.38** Proposition *The natural homomorphism*:

$$\operatorname{Hom}_{\mathbf{Z}[\mathsf{M}(\mathfrak{f})]}(\mathfrak{L}_{1}(\mathfrak{f}),\hat{\mathfrak{L}}_{s}(\mathfrak{f})) \to \operatorname{Hom}_{\mathbf{Z}[\mathsf{M}(\mathfrak{f})]}(\mathscr{P}_{1}/(\mathscr{P}_{1},\mathscr{P}_{1}),\hat{\mathfrak{L}}_{s}(\mathfrak{f}))$$

is an isomorphism except where (i) $s \equiv 2 \pmod{4}$, (ii) G does not split over K and its K-root system is of type C_{n+1} , with $n \ge 1$, and (iii) # f = 2.

Except in the exceptional cases mentioned above, if $s \not\equiv -1 \pmod{m}$, there is no nontrivial $\mathbf{Z}[\mathsf{M}(\mathfrak{f})]$ -module homomorphism from $\mathscr{P}_1/(\mathscr{P}_1,\mathscr{P}_1)$ into $\hat{\mathfrak{L}}_s(\mathfrak{f})$.

Proof. If $(\mathcal{P}_1, \mathcal{P}_1) = \mathcal{P}_2$, then $(\mathcal{P}_1, \mathcal{P}_1)/\mathcal{P}_2 = \mathfrak{L}_1(\mathfrak{f})$ and the first assertion of the proposition is obvious. Once the first assertion is established in genral, the second assertion will follow from Proposition 7.25. So we

assume that $(\mathcal{P}_1, \mathcal{P}_1) \neq \mathcal{P}_2$. Then p = 2, G does not split over K, m = 2, and there is an identification of $\mathcal{P}_2/(\mathcal{P}_1, \mathcal{P}_1)$ with $\mathfrak{L}_2(\mathfrak{f})$ (7.34 and 7.35). We identify $\mathcal{P}_1/\mathcal{P}_2$ with $\mathfrak{L}_1(\mathfrak{f})$. Then we have the following short exact sequence of $M(\mathfrak{f})$ -modules:

$$\{0\} \to {}^{\blacksquare}\mathfrak{L}_2(\mathfrak{f}) \to \mathscr{P}_1/(\mathscr{P}_1, \mathscr{P}_1) \to \mathfrak{L}_1(\mathfrak{f}) \to \{0\}.$$
 (1)

Let $\lambda: \mathscr{P}_1/(\mathscr{P}_1, \mathscr{P}_1) \to \hat{\mathfrak{L}}_s(\mathfrak{f})$ be a $\mathbf{Z}[\mathsf{M}(\mathfrak{f})]$ -module homomorphism and \mathfrak{R} be its kernel. We assume first that s is odd. Proposition 7.25 implies that the restriction of λ to $\mathfrak{P}_2(\mathfrak{f})$ is trivial and hence \mathfrak{R} contains $\mathfrak{P}_2(\mathfrak{f})$. This implies that λ factors through $\mathscr{P}_1/\mathscr{P}_2$ which proves the first assertion. If s is a multiple of 4, then \mathfrak{L}_s is isomorphic to the Lie algebra of \mathfrak{M} , $\mathfrak{C}(\mathfrak{f})$ acts trivially on it, whereas $\mathfrak{P}_2(\mathfrak{f})$ does not contain any nonzero $\mathfrak{C}(\mathfrak{f})$ -invariants, so the restriction of λ to $\mathfrak{P}_2(\mathfrak{f})$ is trivial and hence \mathfrak{R} contains $\mathfrak{P}_2(\mathfrak{f})$ which again implies that λ factors through $\mathfrak{P}_1/\mathscr{P}_2$.

Finally, we consider the case $s \equiv 2 \pmod{4}$. If $\Re \cap {}^{\blacksquare}\mathfrak{L}_2(\mathfrak{f}) \neq \{0\}$, then irreducibility of ${}^{\blacksquare}\mathfrak{L}_2(\mathfrak{f})$ implies that \Re contains ${}^{\blacksquare}\mathfrak{L}_2(\mathfrak{f})$ and hence, as before, λ factors through $\mathfrak{L}_1(\mathfrak{f})$. So let us assume that $\Re \cap {}^{\blacksquare}\mathfrak{L}_2(\mathfrak{f}) = \{0\}$. In this case, irreducibility of $\hat{\mathfrak{L}}_s(\mathfrak{f})$ as a M(\mathfrak{f})-module implies that $\lambda(\Re) = \hat{\mathfrak{L}}_s(\mathfrak{f})$ and hence \Re provides a $\mathbf{Z}[\mathsf{M}(\mathfrak{f})]$ -module splitting of the short exact sequence (1). But Lemma 7.37 proves that a splitting can (and does) exist only in the exceptional case.

9. Add the following at the end of section 7.

If G does not split over K and its K-root system is of type C_{n+1} , then it is of the form SU(h), where h is a hermitian form in n + 2 variables defined in terms of a ramified quadratic Galois extension.

- **10** In view of the exceptional cases in Lemma 7.37 and Proposition 7.38, in the rest of the paper we will need to excude these cases for now.
 - **11**. Replace the first line on page 233 with the following:

"and let the induced automorphism of K be σ ."

- **12**. In the second and the third lines of 8.17 replace "if G is not of type C, \mathfrak{x} restricts to zero on G'(k); if G is of type C, then it restricts to zero on G*(k)" with "if G is of type C, \mathfrak{x} restricts to zero on G'(k); if G is not of type C, then it restricts to zero on G*(k)".
- **13**. At the end of the third line (from the top) on page 254 add the following:

" (note that
$$\lambda_m(\mathscr{P}_m^* \times \mathscr{P}_{t-m+1}^*) = \{0\}$$
)"

In the second line (from the bottom) on page 254, the first mathematical expression should be $\sum_{\alpha \in \Delta - \Omega} m_i(\alpha) \alpha$ and the last mathematical expression on this line should be $\beta \in \langle \Delta - \Omega \rangle$

14. In the second line (from the top) on page 256, replace $\mathcal{P}_{t}/\mathcal{P}_{t+2}$ with $\mathcal{P}_{t}/\mathcal{P}_{t+1}$.

Gopal Prasad