Assessing Global Ground Station Capacity

James Cutler, Dylan Boone
University of Michigan

Image courtesy of http://si.smugmug.com/gallery/1674201_UxZmP/1/457184513_4s3Ag
Motivation – Operations and Failures
Goal

- *Optimized* scheduling for...
 - A *dynamic* satellite population
 - A *dynamic* ground station network

- Dynamic means...
 - Ground stations not under operations team control
 - Federation of stations
 - Satellites from multiple institutions

- *Optimized* could mean...
 - Balanced station utilization
 - Satellite communication needs
 - “Cost” functions

Approach

- Tools to estimate capacity
 - How much uplink and downlink capacity is available now and projected into the future?

- Tools to optimize scheduling
 - Can we schedule in real time to optimize over dynamic nature of the system?
Capacity Modeling

<table>
<thead>
<tr>
<th>Model</th>
<th>GS Capability</th>
<th>GS Lat/Lon</th>
<th>Orbits</th>
<th>GS Availability</th>
<th>Compatibility</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topological</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheduled</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Actualized</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- **Current work**
 - Maximum, Topological

- **Future work**
 - Scheduled, Actualized
 - Requires fielded tools

- **Upcoming examples**
 - **Example 1**
 - Survey of Cubesat communication Stations
 - On orbit Cubesats and ISS
 - **Example 2**
 - Single ground station
 - DNEPR Launch #2, 2007
Example 1 - Summary of Ground Station Network

- Data from 2008 survey of station capability
 - http://gs.engin.umich.edu/gs_survey/
 - Cubesat community stations

- Maximum capacity estimates
 - 10kbps (UHF): 150 GB
 - 200kbps (S-Band): 1273GB
Example 1 – Summary of Satellites

- **Cubesats**
 - 25 satellites/objects
 - Mostly circular orbits

- **ISS Related**
 - 4 objects and one toolbag
 - Circular orbits

Inclination (degrees)

Apogee (km)
Example 1 – Single Station With All Satellites

- **ANSAT - Norwegian Student Satellite Program**
 - Lat.: 69.3, Lon.: 16.1
 - 275 avg. passes per day
 - 1252 minutes avg. time per day

- **Cal Poly**
 - Lat.: 35.3, Lon.: -121
 - 152 avg. passes per day
 - 832 minutes avg. time per day

- **PS8RF**
 - Latitude: 5.0486, Longitude: 42.7901
 - 115 avg. passes per day
 - 688 minutes avg. time per day
Passes Per Day at Stations
(30 day simulation)

Average number of passes per day per station as a function of station latitude.

Histogram of passes per days at stations.
Topological Capacity – Time Per Day
(30 day simulation – station data)

- Histogram of time per day at stations.

- Average number of passes per day per station as a function of station latitude.
Example 1 –
Passes per day – satellite perspective

Number of Passes

Days

First Cubes Launched

Everyone else

Genesat

Cute-1.7
Example 2 – Dnepr 2 Launch

- **Launch Time:**
 - 6:46:35 17 April 2007 UTC

- **Three PPods™,**
 - Pod A: CSTB1, Aerocube-2, CP4
 - Pod B: Libertad-1, CAPE1, CP3
 - Pod C: MAST

- **This example**
 - PPod™ A
 - PPod™ B
Example 2 – Cubesat Separation – 1 Year
Seasonal Variations
GS Contact Data

Ann Arbor Ground Station Capacity for Dragon2 Launched CubeSats

Days from Epoch 17 Apr 2007
Future Work

- Develop models for satellite capacity needs.
- Develop optimization algorithms.
- Test on various scenarios and populations.
- More detailed survey.