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1. Abstract  
Decomposition-based methods for system design optimization introduce consistency constraints, which contain 
coupling variables communicated between adjacent subproblems and link them together.  When these variables 
are vector-valued (e.g., dynamic responses), the problem size can increase dramatically and make such methods 
impractical.  Therefore, it is necessary to represent these vector-valued coupling variables with a reduced 
representation that will enable efficient optimization while maintaining an acceptable level of accuracy with 
respect to the original representation.  This study investigates two representation techniques, radial-basis function 
artificial neural networks and proper orthogonal decomposition, and implements each in an analytical target 
cascading problem formulation for electric vehicle powertrain system optimization.  Implementation of each 
representation technique is demonstrated and the techniques are assessed in terms of efficiency (decision vector 
dimensionality) and accuracy. 
 
2. Keywords: Decomposition-based design optimization, analytical target cascading, coupling variables, reduced 
representation, vector-valued target. 
 
3. Introduction 
In formulating design optimization problems for large-scale, complex systems, it is often practical to separate 
these systems into simpler, more manageable subsystem configurations.  Decomposition-based optimization 
strategies are used frequently to solve these problems.  These strategies introduce consistency constraints [1], 
which contain coupling variables and ensure feasible design solutions.  Coupling variables appear in subproblem 
optimization formulations as decision variables, increasing subproblem dimension.  If these coupling variables 
consist of a small, finite number of scalars, problem size does not increase appreciably, and efficient optimization 
of the system is still possible.  However, if coupling comprises infinite-dimensional variables, such as functions, 
ensuring consistency becomes computationally challenging.  Discretization is typically applied, transforming 
infinite-dimensional variables into finite-dimensional ones, which can be represented in vector form as 
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where y is the independent variable and q is the number of discretized points.  Although this transformation 
enables consistency constraints to be computed, it requires a large number of discretization points to ensure a 
sufficiently accurate representation of the function. The dimensionality (measured by q) of these vector-valued 
coupling variables (VVCVs) can become very large, resulting in high-dimension subproblem decision vectors.  
Thus, it is desirable to approximate VVCVs with a reduced dimension representation that preserves sufficient 
accuracy.  The new coupling variables comprising these representations are known as reduced representation 
variables [2]. 
 With the exception of the work by Sobieski [3], published literature has not addressed this issue.  The 
majority of published techniques use simplified models of objective functions and constraints to approximate their 
more computationally-expensive counterparts.  These methods, classified broadly as metamodeling ones [4], have 
a similar motivation as the problem at hand in that both approaches attempt to represent functions more efficiently 
under a sufficient level of accuracy.  The difference, however, is that metamodeling focuses on efficiency in terms 
of computational expense, whereas the reduced representations here focus on efficiency in terms of decision vector 
dimensionality during optimization.  With this motivation, one can explore alternatives beyond the traditional 
metamodeling techniques. 

The particular motivating application is the use of analytical target cascading (ATC) for hybrid-electric 
vehicle (HEV) powertrain system optimization.  In early unpublished work on this problem, it was necessary to 
reduce the representation of VVCVs associated with maximum motor/generator torque curves and power loss 
maps.  Polynomial interpolation [5] and polynomial response surface (PRS) approximation [6-8] were initially 
implemented, with the polynomial coefficients serving as reduced representation variables.  However, these 
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methods were deemed ineffective as many coefficients were required to produce approximations of reasonable 
accuracy.  In a more heuristic approach, weighting coefficients were used as reduced representation variables in 
the linear interpolation of two distinct “baseline” functions to approximate the original representations. While this 
technique significantly reduced the size of VVCVs, the accuracy of the new representations was significantly 
compromised.  Image warping [10, 11], which used warping parameters as reduced representation variables, also 
demonstrated some efficacy but it was challenging to determine appropriate transformations for the motor curve 
and map.  In an earlier, related ATC study [12], it was observed that implementing radial-basis function (RBF) 
artificial neural networks (ANN) [13, 14] with input variables serving as reduced representation variables was a 
promising approach.  

Another promising approach coming from data analysis is proper orthogonal decomposition (POD) [15, 16].  
POD is based on principal component analysis (PCA) [17, 18] and can be used for state-space reduction of 
dynamical systems. POD emerged as an interesting candidate for further study because it employs concepts similar 
to linearly combining orthogonal functions, with the advantage that the orthogonal functions in POD are based on 
formal, mathematical techniques that ensure orthogonality [19, 20]. 
 This paper examines the implementation of RBF ANN and POD in the optimization of an electric vehicle 
powertrain system using ATC.  Section 4 reviews ATC briefly; Section 5 discusses the reduced representations 
using RBF ANN and POD; Section 6 presents a summary of the vehicle model; Sections 7 and 8 present results 
and their assessment, respectively; and Section 9 offers some conclusions. 
 
4. Review of Analytical Target Cascading 
ATC is a decomposition-based optimization strategy applied to large-scale systems that uses a hierarchical 
structure to enable design targets determined at upper levels to be cascaded down to lower levels. This technique 
then attempts to minimize deviations between design targets and subsystem responses to achieve an optimal 
solution for the system [21, 22]. 

The system is first decomposed into subproblems hierarchically.  In this configuration, the top level is known 
as the system level and the lower levels are known as subsystem levels.  Additionally, a subproblem linked above 
any given element of interest is known as a parent and those subproblems linked below a given element of interest 
are known as children. The general ATC subproblem Pij for the ith level and jth element can be defined as [1]:  
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In the above, xij is the vector of local design variables for element j at level i, tij is the vector of target coupling 
variables for element j at level i passed from its parent at level (i - 1), rij is the vector of response coupling variables 
for element j at level i passed to its parent at level (i-1), cij = tij – rij is the vector of consistency constraints between 
target and response coupling variables, fij is the local objective function for element j at level i, π is the penalty 
function, gij is the vector of inequality constraints for element j at level i, and hij is the vector of equality constraints 
for element j at level i.  Ideally, the consistency constraints should evaluate to zero for an exact system solution; 
however, this is typically not feasible due to issues such as non-differentiability at the solution and unknown 
minimal parameter values [1].  Therefore, the consistency constraints are relaxed and inserted into some penalty 
function π(c) that requires a resultant value that is within some small tolerance before the algorithm is terminated.  
For this study, an augmented-Lagrangian (AL) penalty function was chosen, which resulted in the following 
general ATC-AL subproblem formulation for the ith level and the jth element [1]: 
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Here, the vectors v and w are weights corresponding to linear and quadratic terms in the AL penalty function, 
respectively.  These decomposed problems are solved in an inner loop strategy where the weights remain constant.  
After performing an outer loop convergence check for each iteration K, the weights are updated according to the 
following scheme: 
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The information flow for the general ATC-AL subproblem is illustrated in Figure 1. 
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Figure 1: ATC Information Flow [1] 
 
5. Reduced Representations of Vector-Valued Coupling Variables 
This section describes the details of RBF ANN and POD representations, and how they are implemented in the 
current study. 
 
5.1. Radial-Basis Function Artificial Neural Networks 
RBF ANN is a technique that develops a mapping to describe the functional relationship between sample 
input/output vector pairs yi = [y1, y2,…, yp]T and zi = [z1, z2,…, zq]T for all i = 1…M samples such that the exact 
function z = f(y) can be approximated at any input vector yj in the sampling domain.  This mapping is 
accomplished through a weighted, linear combination of RBFs: 
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Here, g(y) is the approximation to the exact function f(y), φrbf,k(y) is the kth RBF, N is the number of RBFs and 
neurons, and ωk is the kth weight vector.  Although many different types of RBFs can be used, the one most 
commonly employed for these neural networks is the Gaussian density function: 
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In the above, p denotes the dimensionality of the input, Σ denotes the covariance matrix corresponding to the 
nodes, and γ denotes the center of the basis function.  Using M sampling pairs, the neural network is designed (or 
“trained”) by determining ωk associated with each RBF that minimizes the error between the exact function and its 
approximation in a least-squares sense: 
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Because the neural network design requires k weight vectors, each of dimension q, the total number of 
representation variables would be kq ≥ q.  This contradicts the motivation for use as a reduced representation.  
However, the dimensionality of y is usually significantly less than that of z (p<<q); therefore, the elements within 
the input vector can be used as reduced representation variables. 

In the EV design study [2], three RBF ANN were designed to relate the input vectors, which consisted of 
motor design variables, to the output vectors, which in turn consisted of VVCVs associated with maximum and 
minimum motor torque curves as well as power loss maps: 

)(  ),(  ),( pLosspLossminminmaxmax ygzygzygz ≈≈≈         (8) 
The motor design variables were based on the EV powertrain system model developed by Allison [23] and 
included stack length ls, rotor radius rm, rotor resistance Rr, and number of turns per stator coil nc (p = 4): 
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The VVCVs, in turn, were determined by processing the motor design variables in a motor simulation within the 
powertrain model.  Each VVCV associated with the torque curves contained qmax = qmin = 21 values, whereas the 
VVCV associated with the power loss map contained qpLoss = 861 values: 
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The set of training input/output vector pairs was generated by performing a six-level, full-factorial design of 
experiments (DOE), resulting in a total of M = 1296 samples.  Using these training vector pairs, the neural 
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networks were developed in MATLAB® with the newrbe function, which enforces zero approximation error on all 
training vectors.  Note that the training vectors were normalized to enhance the design and subsequent 
performance of the neural networks.  Based on inspection, it can be seen that implementing RBF ANN under the 
strict condition that p<<q significantly reduces the combined dimensionality of the VVCVs from Q = qmax + qmin + 
qpLoss = 903 to Q = p = 4. 
 
5.2. Proper Orthogonal Decomposition 
POD is a method commonly used to simplify the analysis and computation of dynamic systems in engineering 
applications.  Specifically, it reduces the state-space representation of dynamic systems according to the following 
mapping [18]: 

)()( tt rp zVz ≈           (11) 
In the above, z(t) is the original state vector of dimension q, zr(t) is the reduced state vector of dimension p<<q, and 
Vp is a matrix containing the p most energetic basis functions used to construct the approximation of the original 
state vector.  Without any loss of generality, the VVCVs in this study can be thought of as state vectors, and 
therefore the mapping in Eq. (11) can be modified as 

     rp zVz ≈ ,          (12) 
where z is the original VVCV of dimension q, zr is the reduced representation of dimension p<<q, and Vp is a 
matrix containing the p most energetic basis functions used to construct the approximation of the original VVCV.  
This matrix expression is developed through the “method of snapshots” [20], which begins by using M samples of 
the VVCV to form a correlation matrix R: 

     ZZR T=           (13) 
Here, Z is a (q x M) matrix containing all samples of the original VVCV.  The next step is to solve the eigenvalue 
problem associated with the correlation matrix, 

      αλRα =           (14) 
where α represents the matrix of eigenvectors and λ represents the diagonal matrix of associated eigenvalues, both 
of dimension (M x M).  The basis functions used to construct the approximation of the VVCV are formulated 
according to 

       ZαV =           (15) 
where V is the basis function matrix of dimension (q x M).  This captures the essence of the “method of snapshots”, 
which states that each basis function is a linear combination of the M sample vectors [18].  Also, the basis functions 
in V are arranged based on the magnitude of their associated eigenvalues: 

     MM λλλ >>>= 2121    ], , , ,[ vvvV        (16) 
The eigenvalues are indicators of the energy of a given basis function; that is, large eigenvalues are associated with 
high-energy basis functions, whereas small eigenvalues are associated with low-energy basis functions.  In 
determining the reduced basis function matrix Vp from V, it is suggested to choose the first p eigenvalues that 
achieve a relative energy ratio of 0.99 [24].  Although this approach generally ensures that the error in 
reconstructing the sample vectors from the reduced vectors is small, it does not directly quantify the approximation 
error.  Furthermore, because the representation accuracies of both POD and RBF ANN are compared to one 
another, it is imperative that similar approaches be used in assessing in-sample accuracy for setting modeling 
parameters.  Therefore, the following heuristic [2], which is based on average, root-mean-square (RMS) error, has 
been devised to determine the p most energetic basis functions: 
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This states that the most energetic basis functions are found by minimizing the average RMS error between the 
VVCV and its POD approximation across all samples.  While this approach does not guarantee zero approximation 
error on the sample vectors as in the newrbe function for RBF ANN, it does use the same concept to enforce the 
highest accuracy POD approximation possible. 
 For the current study, three POD representations were developed to approximate the VVCVs in Eq. (10): 

      pLoss,pLoss,pLossmin,min,minmax,max,max   ,  , rprprp zVzzVzzVz ≈≈≈      (18) 
The sample vectors used in constructing these expressions were identical to those used in the RBF ANN.  After 
applying Eqs. (13)-(17), it was found that the dimensions of the reduced representation vectors associated with the 
torque curves were pmax = pmin = 9, while the dimension of the reduced representation vector associated with the 
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power loss map was ppLoss = 14.  Implementing POD significantly reduces the individual dimensionality of each 
VVCV and the combined dimensionality; Q is reduced from 903 to Q = pmax + pmin + ppLoss = 32. 
 
6. Electric Vehicle Powertrain Model 
The electric vehicle (EV) simulation model considered here was based on Allison [23].  A general plan view of the 
vehicle can be seen in Figure 2.  The model is for a two-passenger, mini-compact vehicle designed for urban 
driving with some highway speed capability.  This classification is evident by its overall dimensions, which 
includes a wheelbase of L = 1.80 m and a track width of W = 1.27 m.  The vehicle is powered by a lithium-ion 
battery, which can vary in length, width, and longitudinal location relative to the vehicle front end such that it lies 
within the dashed region defined by length lmax = 1.05 m and width bwmax = 1.20 m.  Two electric traction motors 
drive the rear wheels through a synchronous belt drive system and have been mounted at the pivots on the rear 
suspension trailing arms in an effort to minimize the unsprung mass in the system.  A MacPherson strut 
configuration was used for the front suspension, and finally, low rolling resistance P145/70R12 tires were used to 
minimize energy consumption. 
 

 
 

Figure 2: General Plan View of Electric Vehicle [23] 
 

This study explores powertrain design exclusively, and so several modifications [2] were made to the 
analysis models within the simulation.  The structural analysis model, for example, was held fixed and thus 
excluded from the design problem.  The powertrain analysis model was decomposed into three separate entities, 
the electric motor, battery size, and vehicle analysis models.  Any remaining input/output variables from the 
original powertrain analysis model (e.g., suspension variables) that were unaccounted for during decomposition 
were treated as parameters.  The new analysis models are defined as [2]: 
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The functions fem, fbs, fmp, and fv correspond to the electric motor, battery size, mass distribution and packaging, and 
vehicle analysis models, respectively.  Table 1 provides definitions for the input/output variables of each function, 
and Figure 3 illustrates the relationships among the analysis models.  Note that the dashed boxes in the figure 
indicate the problem decomposition for design optimization, which considers the interaction between the vehicle 
system and the motor subsystem. 
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Table 1: Definitions of Input/Output Variables to Analysis Models 
 
Variable Definition Variable Definition 

ls Motor stack length (m) ms Sprung mass (kg) 
rm Rotor radius (m) l1 Center of mass longitudinal position (m) 
Rr Rotor resistance (Ω) h Center of mass vertical position (m) 
nc Number of turns per stator coil Iy Pitch moment of inertia (kg-m2) 

zmax VVCV associated with max torque curve Iz Yaw moment of inertia (kg-m2) 
zmin VVCV associated with min torque curve gp1 1st battery packaging constraint

zpLoss VVCV associated with power loss map gp2 2nd battery packaging constraint 
Jr Rotor moment of inertia (kg-m2) pr Pulley speed ratio 

ωmax Max motor speed (rad/s) mpge Gasoline-equivalent fuel economy 
BI Battery electrode thickness scale t60 0-60 time (s) 
BW Battery cell width scale τV Torque violation constraint 
BL Number of cell windings ωV Speed violation constraint 
bm Battery mass (kg) R Vehicle range (mi) 
bw Battery width (m) PV Power violation constraint 
bl Battery length (m) Cb Battery capacity constraint (A-h) 
xb Battery compartment clearance (m)    

 

 
 

Figure 3: Analysis Model Relationships 
 
7. ATC Problem Formulation and Results 
The general ATC problem formulation for the EV powertrain system consists of a two-level hierarchical 
decomposition based on Eq. (3).  The vehicle system described in Figure 3 is the top-level subproblem and the 
motor subsystem described in the same figure is the bottom-level subproblem.  The vehicle system objective is to 
maximize gasoline-equivalent fuel economy while minimizing the AL penalty function, whereas the motor 
subsystem objective is to minimize the AL penalty function exclusively.  Although both subproblems are subject 
to decision variable bound constraints, only the top level contains inequality constraints based on packaging, 
performance, motor feasibility, power consumption, and battery capacity. 

Applying Eq. (3) directly, the vehicle subproblem P11 (excluding bound constraints) is: 
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In the above, g1 = gp1 and g2 = gp2 are battery packaging constraints, g3 is a performance (0-60 time) constraint, g4 
and g5 are motor feasibility constraints, g6 is a vehicle range constraint, g7 is a power violation constraint, and g8 is 
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Vehicle Analysis 
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Mass/Packaging 
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a battery capacity constraint [23].  It should be noted that zcomb and zcomb,r refer to the original vector of combined 
VVCVs and the combined vector of reduced representation variables, respectively.  Also, observe that the 
superscripts T and R denote target and response versions of the same coupling variable, respectively.  Similarly, 
the motor subproblem P21 (excluding bound constraints) can be formally described as: 
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The problem formulation shown in Eqs. (20)-(21) has been solved by implementing RBF ANN and POD 
separately as reduced representations of the VVCVs associated with motor torque boundary curves and a power 
loss map.  Due to the presence of non-smoothness in the powertrain model, a non-gradient-based optimization 
algorithm known as NOMADm [25] was used. The default settings for this MATLAB®-based optimizer were 
adequate for the current study.  Finally, in optimizing the powertrain system for each reduced representation, 
identical starting points were used. 
 
7.1 Optimization Results using RBF ANN 
The optimization results using RBF ANN as a reduced representation technique are displayed in Tables 2-4.  The 
algorithm successfully converged after two ATC iterations and resulted in a system solution that was consistent 
between both subproblems with the exception of the consistency constraint on Jr.  In the vehicle subproblem, the 
bound constraint on ωmax

T was active and constraints g3 and g6 were also active.  This behavior was expected as 
maximizing fuel economy directly compromises vehicle performance and range.  In the motor subproblem, 
however, none of the bound constraints were active.  Under these design conditions, the EV achieved a 
gasoline-equivalent fuel economy of approximately 200 mpg using the optimal motor map illustrated in Figure 4. 

 
Table 2: Optimal Consistency Constraint Vector and Penalty Weights 

 
Consistency Constraint copt vopt wopt 

cz,max 0.60 1.15 1.5 
cz,min  0.50 1 1.5 

cz,pLoss 0.80 1.65 1.5 
cJr -0.15 -0.30 1.5

cω,max -0.05 -0.10 1.5 
 

Table 3: Optimal Decision Vector for Vehicle Subproblem 
 

Vehicle Subproblem, P11 
Variable BI BW BL xb pr lsT rm

T Rr
T nc

T Jr
T ωmax

T 
Value 0.75 1 20 0.10 2 0.13 0.12 0.09 11 0.20 755 

Activity -- -- -- -- -- -- -- -- -- -- X 
 

Table 4: Optimal Decision Vector for Motor Subproblem 
 

Motor Subproblem, P21 
Variable lsR rm

R Rr
R nc

R 
Value 0.12 0.13 0.06 12 

Activity -- -- -- -- 
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Figure 4: Optimal Motor Power Loss Map 
 
7.2 Optimization Results using POD 
In implementing POD as a reduced representation technique during optimization, the algorithm failed due to a 
powertrain simulation crash.  Figures 5-6 provide some insight to the cause of this failure.  In particular, Figure 5 
indicates that the POD approximation of the motor map at the failed design point was faulty; that is, it did not 
exhibit behavior similar to the motor map shown in Figure 4.  Figure 6 builds upon this information by revealing 
that the failed design point was not physically realizable.  Specifically, the original assumption that the POD 
design space was defined by simple bound constraints was incorrect; instead, nonlinear constraints characterized 
this design space.  It should be noted that Figure 6 only captures one of these constraints graphically; in reality, 
there could be many other interactions among the reduced representation variables, leading to possibly hundreds of 
other constraints.  The identification and formulation of these nonlinear constraints is outside the scope of this 
study and is proposed as a topic for future work. 
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Figure 5: Motor Power Loss Map using POD 
 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

zr,max1

zr
,m

ax
3

Feasible Design Space of Two Elements within zr,max

 
 

Figure 6: Design Space of Two POD Variables

8. Efficiency and Accuracy Assessment 
The efficiency of each reduced representation in terms of their impact on decision vector dimensionality is evident 
upon inspection of their respective vehicle subproblems.  When using RBF ANN, x11 contained 5 local design 
variables, 4 reduced representation variables, and 2 additional coupling variables.  This yielded a decision vector 
dimensionality of 11.  The same number of local design and coupling variables were present when using POD; 
however, 32 reduced representation variables were also used, yielding a decision vector dimensionality of 39.  This 
indicates that RBF ANN performed better in terms of efficiency. 
 The accuracy of each reduced representation was quantified by using a comparison tool known as AVASIM 
[26], which characterizes the local and global error between exact and approximation models through l1-norms.  
From these norms, error indices are constructed such that nonnegative values denote valid approximation models 
with accuracy levels between 0 and 1, and all negative values denote invalid approximation models.  Note that 
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Designs 
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validity is defined by approximations that lie within some preset threshold value; therefore, a value of 0 indicates 
that an approximation is at the threshold and valid, whereas a value of 1 indicates that an approximation is 
completely accurate.  AVASIM was applied with a 3% tolerance to measure the accuracy in the torque curves and 
power loss maps produced by RBF ANN and POD.  Tables 5-6 show the results of these calculations and indicate 
that RBF ANN performed better in terms of accuracy. 
 

Table 5: AVASIM Results for RBF ANN 
 

Index zmax zmin zpLoss 
Elocal 0.91 0.94 -2.54 
Eglobal 0.93 0.94 0.91 

Ecombined 0.92 0.94 -0.82 
 

Table 6: AVASIM Results for POD 
 

Index zmax zmin zpLoss 
Elocal 0.44 0.83 -9.60 
Eglobal 0.77 0.84 0.37 

Ecombined 0.61 0.84 -4.61 

9. Conclusions and Future Work 
Based on these initial results, one may conclude that RBF ANN is the best reduced representation technique to use 
for VVCVs present in ATC problem formulations.  The use of this representation was able to produce an optimal 
solution with low decision vector dimensionality and reasonable accuracy of the motor torque boundary curves.  A 
key issue in using methods such as POD successfully is properly identifying and formulating the constraints 
defining the design space of their representation variables.  Like any optimization problem, there may be nonlinear 
constraints that characterize the design space in addition to simple bound constraints.  The challenge in 
formulating constraints for these methods is that the reduced representation variables often have no physical 
meaning, leaving their interactions to be described purely in terms of advanced mathematical techniques. 
Therefore, implementation of POD in the current context requires further research.  

An important observation can be made in inspecting Eqs. (20)-(21) for the RBF ANN implementation.  The 
decision vector x21 is identical to the reduced representation variables in x11.  This presents both a theoretical and 
practical problem in that the key motivation in using the ATC formulation is to partition the original system design 
problem into subproblems that are unique with the exception of coupling variables.  If the set of decision variables 
for a given subproblem only include coupling variables, then such a subproblem is not truly unique and should be 
incorporated into the larger system problem.  This implies that an all-in-one formulation could be used to solve the 
problem rather than ATC.  Therefore, a meaningful use of RBF ANN as the reduced representation of VVCVs in 
an ATC implementation would be, for example, when local objectives are present in the subproblems.  Otherwise, 
methods that employ coupling variables that are distinct from design variables in each subproblem, such as POD, 
would need to be considered. 
 Finally, it should be observed that the power loss map approximations for both RBF ANN and POD were 
deemed invalid based on the AVASIM metric.  Although the relatively tight error tolerance might have contributed 
to this lack of validity, the most likely cause was an insufficient sample size based on preliminary investigation.  
Further exploration into this issue would be desirable. 
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