Introduction to Unconstrained Optimization: Part 1

James Allison

ME 555
January 29, 2007
Monotonicity Analysis

What can MA be used for?

- Problem size reduction (elimination of variables and constraints)
- Identification of problems such as unboundedness
- Solution of optimization problem in some cases

What can be done if MA does not lead to a solution?

- Application of optimality conditions
 - Use optimality conditions to derive analytical solution
 - Use numerical algorithms based on optimality conditions
Monotonicity Analysis

What can MA be used for?

- Problem size reduction (elimination of variables and constraints)
- Identification of problems such as unboundedness
- Solution of optimization problem in some cases
Monotonicity Analysis

What can MA be used for?

- Problem size reduction (elimination of variables and constraints)
- Identification of problems such as unboundedness
- Solution of optimization problem in some cases

What can be done if MA does not lead to a solution?
Monotonicity Analysis

What can MA be used for?

- Problem size reduction (elimination of variables and constraints)
- Identification of problems such as unboundedness
- Solution of optimization problem in some cases

What can be done if MA does not lead to a solution?

Application of optimality conditions

- Use optimality conditions to derive analytical solution
- Use numerical algorithms based on optimality conditions
Ch. 4: Unconstrained Optimization

- Concerned only with objective function
- Constrained optimization covered in Ch. 5

$$\min_{x} f(x)$$
Scope

Ch. 4: Unconstrained Optimization
- Concerned only with objective function
- Constrained optimization covered in Ch. 5

\[
\min_x f(x)
\]

Assumptions
- Functions and variables are continuous
- Functions are C^2 smooth
Lecture Outline

- Derivation of optimality conditions
- Analytical solutions
- Function approximations
- Numerical methods
 - First order methods (gradient descent)
 - Second order methods (Newton's Method)
- Problem scaling
Optimality Conditions

Necessary Conditions

\[B \Rightarrow A \]

\(B \) is true only if \(A \) is true (\(A \) is necessary for \(B \))

Sufficient Conditions

\[A \Rightarrow B \]

\(B \) is true if \(A \) is true (\(A \) is sufficient for \(B \))

Necessary and Sufficient Conditions

\[B \iff A \]

\(B \) is true if and only if \(A \) is true (\(A \) is necessary and sufficient for \(B \))
Math Review

Gradient: \(\nabla f(\mathbf{x}) \)

- Multidimensional derivative
- Vector valued (column in my documents, row in POD2)
- \(\nabla f(\mathbf{x}) = [\partial f / \partial x_1, \partial f / \partial x_2, \ldots, \partial f / \partial x_n]^T \)
- Points in direction of steepest ascent

Example:

\[
f(x, y) = x^2 + 2y^2 - xy
\]
Math Review

Gradient: $\nabla f(x)$

- Multidimensional derivative
- Vector valued (column in my documents, row in POD2)
- $\nabla f(x) = [\partial f / \partial x_1, \partial f / \partial x_2, \ldots, \partial f / \partial x_n]^T$
- Points in direction of steepest ascent

Example:

$$f(x, y) = x^2 + 2y^2 - xy$$
Math Review

Hessian: H, sometimes written $\nabla^2 f(x)$

- Multidimensional second derivative
- Matrix valued (symmetric)
- Provides function shape information

$$
H = \begin{bmatrix}
\frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \\
\frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2}
\end{bmatrix}
$$
Hessian: \mathbf{H}, sometimes written $\nabla^2 f(x)$

- Multidimensional second derivative
- Matrix valued (symmetric)
- Provides function shape information

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} \end{bmatrix}$$

Example:

$$f(x, y) = x^2 + 2y^2 - xy$$
Math Review: Taylor’s series expansion

Function of one variable:

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \]

Function of multiple variables:

\[f(x) = f(x_0) + \sum_{i=1}^{n} \frac{\partial f(x_0)}{\partial x_i} (x_i - x_{i0}) \]
\[+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f(x_0)}{\partial x_i \partial x_j} (x_i - x_{i0})(x_j - x_{j0}) + o \left(\|x - x_0\|^2 \right) \]
Math Review: Taylor’s series expansion

Function of one variable:

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n \]

Function of multiple variables: (matrix form)

\[\partial f \triangleq f(x) - f(x_0) = \nabla f(x_0)\partial x + \partial x^T H \partial x + o(\|x - x_0\|^2) \]

where \(\partial x \triangleq x - x_0 \) is the perturbation vector
First order necessity

Suppose that x_* is a local minimum of $f(x)$.
- no perturbations about x_* will result in a function decrease
- first order function approximation can be used to derive necessary conditions (i.e., if x_* is a minimum, then what must be true?)
Derivation of Optimality Conditions

First order necessity

Suppose that \(x_* \) is a local minimum of \(f(x) \).

- no perturbations about \(x_* \) will result in a function decrease
- first order function approximation can be used to derive necessary conditions (i.e., if \(x_* \) is a minimum, then what must be true?)

If \(x_* \) minimizes \(f(x) \), then \(\nabla f(x_*) = 0 \)
First order necessity

Suppose that x_* is a local minimum of $f(x)$.

- no perturbations about x_* will result in a function decrease
- first order function approximation can be used to derive necessary conditions (i.e., if x_* is a minimum, then what must be true?)

If x_* minimizes $f(x)$, then $\nabla f(x_*) = 0$

If $\nabla f(x^\dagger) = 0$, then x^\dagger is a stationary point, but not necessarily a minimizer
Derivation of Optimality Conditions

Second order sufficiency

Suppose that \(\mathbf{x}^\dagger \) is a stationary point of \(f(\mathbf{x}) \).

- no perturbations about \(\mathbf{x}^* \) will result in a function decrease
- second order function approximation can be used to derive necessary conditions (i.e., what must be true for \(\mathbf{x}^\dagger \) to be a minimum?)
Second order sufficiency

Suppose that x_\dagger is a stationary point of $f(x)$.

- no perturbations about x_\star will result in a function decrease
- second order function approximation can be used to derive necessary conditions (i.e., what must be true for x_\dagger to be a minimum?)

If $H \succ 0$ at x_\dagger, then x_\dagger minimizes $f(x)$.
Analytical Solution Example

\[\min_{x} f(x) = x_{1}^{2} + 2x_{2}^{2} - x_{1}x_{2} + x_{1} \]

1) Identify stationary point

2) Test stationary point
Analytical Solution Example

\[\min_{x} f(x) = x_1^2 + 2x_2^2 - x_1x_2 + x_1 \]

1) Identify stationary point

\[x^\dagger = \begin{bmatrix} -\frac{4}{7} \\ -\frac{1}{7} \end{bmatrix} \]

2) Test stationary point
Analytical Solution Example

\[
\min_x f(x) = x_1^2 + 2x_2^2 - x_1x_2 + x_1
\]

1) Identify stationary point

\[x^* = \begin{bmatrix} -\frac{4}{7} \\ -\frac{1}{7} \end{bmatrix}\]

2) Test stationary point

\[
H = \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} \succ 0
\]
Analytical solution to optimization problem frequently impossible (why?)

Numerical algorithms based on FONC and function models can be used
First Order Model: Gradient Descent

\[f(x) \approx f(x^k) + \nabla f(x^k) \partial x \]

1. Build a linear model about the current point \(x^k \)
2. Move in the direction of steepest descent \(-\nabla f(x^k) \) until \(f(x) \) stops improving
3. Update the linear model and repeat until no descent direction exists \((\nabla f(x^k) = 0) \)

Iterative formula:

\[x^{k+1} = x^k - \alpha \nabla f(x^k) \]
Line Search

\[f(\mathbf{x}) = 7x_1^2 + 2.4x_1x_2 + x_2^2, \quad \mathbf{x}^k = [10 \ -5]^T \]

\[\min_{\alpha} f(\alpha) = \mathbf{x}_0 - \alpha \nabla f(\mathbf{x}_0) \]
Discussion on Gradient Descent Method

- Stability/optimality
- Descent
- Speed of convergence
Second Order Model: Newton’s Method

\[f(x) \approx f(x^k) + \nabla f(x^k) \partial x + \partial x^T H \partial x \]

1. Build a quadratic model about the current point \(x^k \)
2. Go to the quadratic approximation for the stationary point
3. Update the quadratic model and repeat until the current point is a stationary point (\(\nabla f(x^k) = 0 \))

Iterative formula:

\[x^{k+1} = x^k - H^{-1} \nabla f(x^k) \]
Second Perspective on Newton’s Method

Newton’s method for root finding (solve $f(x) = 0$):

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$

Multidimensional system of equations (solve $f(x) = 0$):

$$x^{k+1} = x^k - J^{-1}f(x^k)$$
Second Perspective on Newton’s Method

Newton’s method for root finding (solve $f(x) = 0$):

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$

Multidimensional system of equations (solve $f(x) = 0$):

$$x^{k+1} = x^k - J^{-1}f(x^k)$$

What system of equations do we need to solve in unconstrained optimization?
Second Perspective on Newton’s Method

Newton’s method for root finding (solve $f(x) = 0$):

$$x^{k+1} = x^k - \frac{f(x^k)}{f'(x^k)}$$

Multidimensional system of equations (solve $f(x) = 0$):

$$x^{k+1} = x^k - J^{-1}f(x^k)$$

What system of equations do we need to solve in unconstrained optimization?

$$\nabla f(x) = 0$$
Discussion on Newton’s Method

- Stability/optimality
- Descent
- Speed of convergence
Quadratic Forms

Quadratic Form: function is a linear combination of $x_i x_j$ terms

Matrix representation:

$$f(x) = x' Ax$$

Example: $f(x) = 2x_1^2 + x_1 x_2 + x_2^2 + x_2 x_3 + x_3^2$
Quadratic Forms: function is a linear combination of $x_i x_j$ terms

Matrix representation:

$$f(x) = x'Ax$$

Example: $f(x) = 2x_1^2 + x_1 x_2 + x_2^2 + x_2 x_3 + x_3^2$

$$f(x) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 2 & 0.5 & 0 \\ 0.5 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x'Ax$$
Types of Quadratic Functions

- if $x'Ax > 0 \quad \forall x$, A is positive definite \Rightarrow convex quadratic function
- if $x'Ax < 0 \quad \forall x$, A is negative definite \Rightarrow concave quadratic function
- if $x'Ax \leq 0$, A is indefinite \Rightarrow hyperbolic quadratic function

Physical interpretation?
Quadratic Function Definitions

\[f_1(x) = x' A_1 x \]
\[f_2(x) = x' A_2 x \]
\[f_3(x) = x' A_3 x \]

Where:

\[A_1 = \begin{bmatrix} 7 & 1.2 \\ 1.2 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -7 & 1.2 \\ 1.2 & -1 \end{bmatrix}, \quad \text{and} \quad A_3 = \begin{bmatrix} -5 & 2.6 \\ 2.6 & 2 \end{bmatrix} \]
Eigenvalues, Eigenvectors, and Function Geometry

\[Av = \lambda v \]

\(A \) eigenvector \(v \)
\(\lambda \) eigenvalue
Eigenvalues, Eigenvectors, and Function Geometry

\[\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \]

- Provide insight into function shape
- Facilitate useful coordinate system rotations
- Helpful for understanding problem condition (ellipticity) and scaling
Interpretation of Eigenvalues

\[f(x) = f_0 + x'b + x'Ax \]

\[\nabla f(x) = b + 2Ax \]

\[x^+_t = -\frac{1}{2}A^{-1}b \]

Shift coordinate system:

Rotate coordinate system:
Interpretation of Eigenvalues

\[f(x) = f_0 + x'b + x'Ax \]
\[\nabla f(x) = b + 2Ax \]
\[x^* = -\frac{1}{2}A^{-1}b \]

Shift coordinate system:

\[f(z) = f^*_t + z'Az \]

Rotate coordinate system:
Interpretation of Eigenvalues

\[f(x) = f_0 + x'b + x'Ax \]
\[\nabla f(x) = b + 2Ax \]
\[x_\dagger = -\frac{1}{2}A^{-1}b \]

Shift coordinate system:

\[f(z) = f_\dagger + z'Az \]

Rotate coordinate system:

\[f(p) = f_\dagger + \sum_{i=1}^{n} \lambda_i p_i^2 \]
Numerical Examples

Function 1:

\[
\mathbf{v}_1 = \begin{bmatrix} .189 \\ -.982 \end{bmatrix}, \quad \lambda_1 = .769, \quad \mathbf{v}_2 = \begin{bmatrix} -.982 \\ -.189 \end{bmatrix}, \quad \lambda_2 = 7.23
\]

Function 2:

\[
\mathbf{v}_1 = \begin{bmatrix} -.982 \\ .189 \end{bmatrix}, \quad \lambda_1 = -.723, \quad \mathbf{v}_2 = \begin{bmatrix} -.189 \\ -.982 \end{bmatrix}, \quad \lambda_2 = -.769
\]

Function 3:

\[
\mathbf{v}_1 = \begin{bmatrix} -.949 \\ .314 \end{bmatrix}, \quad \lambda_1 = -5.86, \quad \mathbf{v}_2 = \begin{bmatrix} -.314 \\ -.949 \end{bmatrix}, \quad \lambda_2 = 2.86
\]
Numerical Examples

Convex Quadratic Function

Concave Quadratic Function

Hyperbolic Quadratic Function

\[
\begin{align*}
\lambda_1 &= .769 \\
\lambda_2 &= 7.23 \\
\lambda_1 &= - .723 \\
\lambda_2 &= - .769 \\
\lambda_1 &= -5.86 \\
\lambda_2 &= 2.86
\end{align*}
\]
Connection with Quadratic Form

- \(x'Ax > 0 \quad \forall x \iff \lambda_i > 0 \quad \forall i \)
 \(\Rightarrow A \succ 0 \land \text{convex quadratic function} \)

- \(x'Ax < 0 \quad \forall x \iff \lambda_i < 0 \quad \forall i \)
 \(\Rightarrow A \prec 0 \land \text{concave quadratic function} \)

- if \(x'Ax \leq 0 \iff \lambda_i \leq 0 \)
 \(\Rightarrow A \text{ is indefinite} \land \text{hyperbolic quadratic function} \)
Problem Scaling
Condition Number

\[C = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \]

- \(C \gg 1 \Rightarrow \) numerical difficulties, slow convergence
- \(C \approx 1 \Rightarrow \) faster convergence
Scaling Approaches

- Scale design variables to be the same magnitude: \(y = s'x \)
- Account for \(v \) not aligned with coordinate axes: \(y = S^{-1}x \)
- Implement scaling within algorithm: