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Value of Analysis and Prediction Tools

• Enables testing in the virtual world

What else?
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Value of Analysis and Prediction Tools

• Enables testing in the virtual world

What else?

Without them, full-scale prototypes are required, which may:

• be to expensive to build more than one

• require substantial time for each realization

• risk human safety during testing
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Value of Analysis and Prediction Tools

Once we have a prediction of whether something will fail or not, what is
the next step?
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Value of Analysis and Prediction Tools

Once we have a prediction of whether something will fail or not, what is
the next step?

Safe prediction: Can we improve performance or reduce cost without
risking failure?

Failure prediction: How can we change the widget in order to prevent
failure?
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Value of Analysis and Prediction Tools

Once we have a prediction of whether something will fail or not, what is
the next step?

Safe prediction: Can we improve performance or reduce cost without
risking failure?

Failure prediction: How can we change the widget in order to prevent
failure?

⇒ Either case requires a design change
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Proposing Design Changes

How can we generate new designs that will improve upon previous designs?
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Proposing Design Changes

How can we generate new designs that will improve upon previous designs?

Trial and error methods:

• Use intuition or experience-based knowledge to propose a new design

• Change one aspect of the product at a time and see what happens
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Proposing Design Changes

How can we generate new designs that will improve upon previous designs?

Problems with trial and error methods:

• May require excessive number of tests (a problem even in the virtual
world)

• Still never know if we found the ‘best’ design

• Many products are too complex to design based on intuition
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Proposing Design Changes

How can we generate new designs that will improve upon previous designs?

Scientific approach:

Optimization, a branch of mathematics, provides the necessary tools
to move efficiently toward a design that is superior to all other alternatives.
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Example 1: Trebuchet Design

θ
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Projectile Motion

Horizontal Position x = v0 cos θt

Horizontal Velocity vx = v0 cos θ

Vertical Position y = v0 sin θt− 1
2gt2

Vertical Velocity vy = v0 sin θ − gt
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Trebuchet Design Objective

Distance traveled:

xmax =
2
g
v2
0 sin θ cos θ

Optimization problem:

max
θ

2
g
v2
0 sin θ cos θ
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Optimal Trebuchet Design

Using calculus-based optimization techniques, it is possible to

show that the maximum launch distance is obtained when:

sin θ = cos θ

which is satisfied when:

θ = 45◦
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Other Solution Strategies?
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Other Solution Strategies?

Trial and Error Use software, like MS ExcelTM, to calculate xmax

Graphical Use software to plot the objective over the space of available
designs
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Other Solution Strategies?

Trial and Error Use software, like MS ExcelTM, to calculate xmax

Graphical Use software to plot the objective over the space of available
designs

B What if more than one or two decisions need to be made?

B What if each prediction takes hours, or even days?
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Computational Exercise:

1. Use MS ExcelTMto calculate xmax = 2
gv

2
0 sin θ cos θ, and use

trial and error to find the optimal θ (radians). Use g = 9.81,

v0 = 15.

2. Create a plot of the trajectory that depends on the angle θ

from part 1. Use y = x tan θ − gx2/2v2
0 cos2 θ.

3. Plot xmax as a function of θ from 0 to π/2 radians.

4. Use MS ExcelTMSolver (may need to include the add-in) to

maximize xmax by varying θ.
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Definition of Design
Optimization?
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Effective  and  efficient  decision making  based on  quantitative metrics 

'Making the 
right decision'

'Making 
decisions 
quickly'

'What decisions 
should be made'

Algorithms 
and 

Convergence

Problem 
Formulation

Optimality 
Conditions

'Quantifiably predict 
the outcome of a 

decision'

Governing 
Equations

Numerical 
Approximations

Empirical 
Models

Design variables 
vs. parameters

Finding the best 
design without 
testing them all

Optimization:
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The Best Design Decisions

To look for the best design, we need to formally
define what we mean by best.

• How do we obtain quantitative metrics for comparison

(modeling)?

• How do we formulate the optimization problem?
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Standard Negative Null Form

min
x

f(x)

subject to g(x) ≤ 0

h(x) = 0
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Formulation Choices

We choose:

• what is the objective and what are constraints

• what items we make decisions about (design variables) and what items
are held fixed (design parameters)
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Formulation Choices

We choose:

• what is the objective and what are constraints

• what items we make decisions about (design variables) and what items
are held fixed (design parameters)

These choices will affect the solution to the design optimization problem.

Mathematical techniques will help find the answer, but we define the
question
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Optimality Conditions

What do you notice about the optimal point from the exercise?
(look at the xmax vs. θ plot)
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Optimality Conditions

What do you notice about the optimal point from the exercise?
(look at the xmax vs. θ plot)

• The slope of the curve at the optimal design is horizontal
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Optimality Conditions

What do you notice about the optimal point from the exercise?
(look at the xmax vs. θ plot)

• The slope of the curve at the optimal design is horizontal

• The slope of a curve in higher dimensions is called a gradient.
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Optimality Conditions

What do you notice about the optimal point from the exercise?
(look at the xmax vs. θ plot)

• The slope of the curve at the optimal design is horizontal

• The slope of a curve in higher dimensions is called a gradient.

⇒ A necessary condition for optimality is a zero (horizontal) slope or
gradient.
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Optimality Conditions

What do you notice about the optimal point from the exercise?
(look at the xmax vs. θ plot)

• The slope of the curve at the optimal design is horizontal

• The slope of a curve in higher dimensions is called a gradient.

⇒ A necessary condition for optimality is a zero (horizontal) slope or
gradient.

⇒ Many optimization algorithms are based on this principle.
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Optimization Examples in Nature

• Gravitational Potential Energy

– Objects seek position of minimum gravitational potential energy: V =
mgh

• Surface Energy

– Bubbles seek to minimize surface area ⇒ spherical shape/fewer,larger
bubbles

– Crystallization/grain growth

• Atomic Spacing

• Survival of the fittest: optimization of organisms or entire ecosystems
(genetic algorithms)
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Effective  and  efficient  decision making  based on  quantitative metrics 

'Making the 
right decision'

'Making 
decisions 
quickly'

'What decisions 
should be made'

Algorithms 
and 

Convergence

Problem 
Formulation

Optimality 
Conditions

'Quantifiably predict 
the outcome of a 
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Governing 
Equations

Numerical 
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Empirical 
Models

Design variables 
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Finding the best 
design without 
testing them all

Optimization:
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Fast Design Decisions

Optimization Analogy: finding the low point of a curve

While in a fishing boat, find the deepest point of a pond.
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Fast Design Decisions

Optimization Analogy: finding the low point of a curve

While in a fishing boat, find the deepest point of a pond.

1. Grid search (take a long time, don’t know if you found it)
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Fast Design Decisions

Optimization Analogy: finding the low point of a curve

While in a fishing boat, find the deepest point of a pond.

1. Grid search (take a long time, don’t know if you found it)

2. Steepest descent

• Take a few extra measurements around a point to get a sense of
‘downhill’

• Move in the downhill direction until the bottom starts going back
uphill

• Find a new direction, and repeat until there is no more downhill
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Algorithm Convergence

Convergence Existence The algorithm will converge

to a design

Convergence Rate How many iterations are

required for convergence
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Algorithm Effectiveness

An effective optimization algorithm finds the best
design without having to test all alternatives.
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Algorithm Categorization: by Variable Type

Optimization

Continuous Discrete

Integer

Mixed Categorical
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Algorithm Categorization: by Function Type

• linear vs. nonlinear

• noisy vs. smooth

• convex vs. non-convex
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What Decisions to Make?

• Parametric design vs. Conceptual design (CAD example)

• Design variables vs. design parameters
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What Decisions to Make?

• Parametric design vs. Conceptual design (CAD example)

• Design variables vs. design parameters

Tradeoff:

• Fewer design variables ⇒ easier to solve

• More design variables ⇒ more design options, better results
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Modeling: Quantification of Designs

• Optimization results are only as good as the model’s accuracy

• Must make a tradeoff between computation time and accuracy

• Rough models: preliminary optimization studies (find desirable
configuration and reduced set of important design variables)

• Hi-Fidelity models: later stages of design optimization
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Example 2: Air Flow Sensor Design

v

cos 
k

F
1/2 cos 
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Sensor Calibration Problem

min
`,w

(θ − θT)2

subject to F − Fmax ≤ 0

`w −A = 0
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Multidisciplinary Analysis

Aerodynamic Analysis:

F = CAfv
2 = C`w cos θv2

Structural Analysis:

kθ =
1
2
F` cos θ
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System Interdependency

Structural
Analysis

Aerodynamic
Analysis

l

l,w

F
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Design Space Visualization
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Design Space Visualization
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University of Michigan Department of Mechanical Engineering June 20, 2005



Summary of Basic Topics

Design Optimization has value in aiding us to find the best

designs in a small amount of time.

Limitations: The ‘optimal design’ is only optimal with respect
to how the problem was formulated, to what values were chosen
as design variables, and to the accuracy of the modeling used.
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Questions to Ask:

• Objective function accurately reflect what is really wanted?

• Hidden constraints or interactions?

• Is there uncertainty or variation in:

– Manufacturing processes or supplies?

– Product usage?

– Environment the product exists in?

– Modeling or analysis?
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Additional Topics for Discussion

1. Organizations and Economies as optimization processes

2. Complex system optimization

(a) Analytical Target Cascading: coordinating between system-level and
component-level thinking

(b) Multidisciplinary Design Optimization: integration of many different
disciplinary analysis into an overall system optimization

(c) Software for large-scale optimization: Optimus, iSIGHT
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3. Additional optimization applications

(a) Fitting models to experimental results
(b) Design of experiments
(c) Operations Research: military operations planning, airport problem,

diet problem, project management
(d) Manufacturing: optimization of CNC tool paths, tolerance allocation

4. Multi-objective optimization

5. Product family/product platform design

6. Local vs. global optima

7. Generalized reduced gradient method (algorithm used in MS ExcelTM)
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