Chapter 18

Three Dimensions

18.1 Three-Dimensional Drawing

Three-dimensional illustration programs are rather like their two-dimensional counter-
parts except that the range of tools and options is necessarily broader.
A low-end program like Dimensions employs a limited suite of strategies:

1. Fixed suite of “primitives”: cubes, spheres, cones, ellipsoids
2. Extrusion of 2D shape perpendicular to the drawing plane
3. Rotation of 2D shape about an axis

4. Bevel library
Ray Dream Studio offers a wider range of options:

1. “Primitives”: (i) cubes, spheres, cones, ellipsoids
(ii) exotics such as Fog, Fountain and Fire
(iii) formula-objects [user-entered mathematical formula in terms of pa-
rameters p,..., P4, which are then controlled by sliders to allow one to rapidly
adjust the shape.

2. Free form modeller: extrusion and rotation of 2D shapes
3. Editable extrusion curves

4. Scaled extrusion: a cylinder that is wide at one end and narrow at the other , for
example.

5. Morphing between cross-sections so that an extruded object may have a circular
cross-section at one end and a square or elliptical cross-section at another

6. Mesh modeller: network of vertices connected by segments

The “primitives” are the shapes that can be drawn by clicking on a tool. Matlab is
a powerful alternative to drawing programs because Matlab can draw “primitives” that
are defined by very complicated mathematical expressions.

Raydream Studio’s “formula” primitives are an acknowledgment of the need for
user-defined tools. The bad news is that the expression-parser in Studio is rather sim-
ple, and cannot for example deal with Bessel functions or anything more exotic. How-
ever, the parser does recognize p1,..., p4 as parameters to the curves, which must oth-
erwise be expressed as polynomials, trigonemetric functions, exponentials or algebraic
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functions in the Cartesian coordinates (x,y,z). One can then vary these parameters
by moving sliders to see how the shape changes when these parameters are varied.

For complicated objects that arise in a scientific project, Studio can be combined
with Matlab or Mpale. After a complicated shape has been computed in Matlab or
Maple or Mathematica, one can do a polynomial curve-fit or the like to obtain a formula
that can be used to recreate the shape in Studio as a “formula primitive”.

Studio also supports some rather exotic primitives such as “Fog”, “Fire” and “Foun-
tain”. These are not terribly useful in science, but are reminders that the simple primi-
tives of most illustration programs are inadequate to create any but the simplest shapes.
Mlustrator allows the creation of exotic objects through clip art libraries.

A skilled artist can draw three-dimensional shapes in a two-dimensional program
like Ilustrator. One can, for example, create a template of isometric lines to make it
easier to draw shapes in perspective, then import the grid pattern into an illustration
as a separate layer, and finally discard the layer from the final drawing.

However, three-dimensional drawing programs rather strongly discourage this sort
of direct three-dimensional drawing. The reason is that to be able to rotate, scale and
manipulate a shape in three dimensions as a vector graphics object, the program must
know the three-dimensional location of each vertex of a polygon (or whatever). An
Mlustrator drawing of a cube-in-perspective may look fine to the eye, but the program
knows only how the figure projects onto the two-dimensional screen surface, not its
true three-dimensional shape.

Instead, tactic is draw a two-dimensional shape which is then “lifted” into three
dimensions by EXTRUSION and/or ROTATION. The word “extrusion” is borrowed from
manufacturing where objects are often fashioned by forcing a viscous liquid through a
die that forces the object to have the cross-sectional shape of the die when it hardens.
One can also “extrude” by cutting many identical copies of a two-dimensional shape
out of paper or cardboard; when the copies are stacked and glued together, the result is
an object of finite thickness with the cross-section of the two-dimensional sheets from
whence it came (Fig. 18.1.

“Rotation” is called “lathing” in Studio. Whatever the name, a solid-of-revolution
can be made by rotating a two-dimensional cross-section about an axis. Such solids are

Extrude

Figure 18.1: Left: two-dimensional shape. Right: the three-dimensional shape created
by extruding the two-dimensional shape. The extruded figure can then be appropriately
shaded or covered with a texture map.
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manufactured by putting a block of wood on a lathe where the block is turned rapidly
at high speed, and then pressing a metal chisel into the wood as it rotates. Intricate
patterns can be cut by pressing the chisel different depths at different points along
the shaft of the lathe, but the result is always axisymmetric in cylindrical coordinates
(Fig. 18.2).

Extrusion and lathing are rather limited ways to make three-dimensional figures, so
additional strategies are needed. A “bevel” in carpentry is a rounding off of a sharp
corner. Dimensions employs a whole library of bevel shapes so that the corners of
extruded objects can be rounded in different patterns.

Studio allows very complicated extrusion or “sweep” paths. One can, for example,
specify that the cross-section will shrink as the extrusion proceeds so as to obtain a
cylinder which is wide at one end and narrow at the other. One can specify smooth
variations between different beginning and ending cross-sections so that a shape can
“morph” between a circle and a square. The axis of the area swept by the cross-section
can be drawn on the sides of the three-dimensional grid box to inform the program that
the sweep path should twist, zigzag or spiral. Such complicated extrusion paths would
be almost impossible with a physical die-and-plastic, but are easy in the computer.

The other option is draw vertices directly in three dimensions — in such a way
that the computer knows the true three-dimensional location of each point — and then
connect the vertices by lines to make polygons. The magic is that one must specify a
“drawing plane” when moving the mouse to specify a new vertex. By moving the mouse
a certain distance along one drawing plane, changing the plane, and moving again, one
can reach any point in (x, y, z) space. Because the move is split into two steps, rather
than a single move as in drawing isometrically in two dimensions, the program knows
the three-dimensional location of the vertex.

The Mesh Modeller in Studio is a vertex-based method for creating three-dimensional
objects. Of course, drawing each vertex for a complicated object is very tiring and
boring, so Mesh Modeller allows one to begin with primitives (such as cubes, spheres,

)

Rotate

Figure 18.2: Left: two-dimensional shape. Right: the three-dimensional shape created
by rotating the two-dimensional shape about the vertical axis indicated by the dashed
line.
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etc.), fuse different shapes together, and apply the extrusion and lathing concepts. The
“Loft” command stretches shapes between two existing polygons to make a new, united
complex surface.

Drawing programs are much better than Matlab at aligning, rotating, scaling, and
shading 3D objects. They are much inferior to Matlab at creating objects which are
the outcome of a complicated scientific algorithm or numerical experiment. As in two
dimensions, drawing and scientific graphics software are complementary with partially
overlapping but also partially distinct regions of usefulness.

18.2 Three-Dimensional Plots

18.2.1 Isosurfaces

The three-dimensional generalization of a contour plot is an isosurface graph, that
is, a visualization of a two-dimensional surface in a three-dimensional space where
q(x,y,z) = qo where qq is a constant. Matlab’s isosurface command will generate
such plots, and most high-end scientific graphics packages can do the same.

An ordinary contour plot is viewed from above so that many isolines can be seen
simultaneously in the x —y plane. Unfortunately, the only way to see the entire x —y -z
volume, and thus see a lot of nested isosurfaces, would be to view the plot from the
four dimension.

Consequently, it is usually possible to view only a SINGLE isosurface at a time, which
is very annoying. Possible remedies include:

1. Multi-panel graph, each showing the isosurface for a different level gg

2. Slide show animation, such as a Quicktime image sequence, allowing the viewer
to switch rapidly between different isosurfaces so as to “fly in” to an object.

3. Cutaway of one isosurface to reveal part of another.
4. Transparency.

Another difficulty is that a given view reveals only one face of the isosurface while
the other is hidden like the Dark Side of the Moon. Again, a two-panel graph, showing
front and back, or a Quicktime or VRML movie that allows one to rotate around the
isosurface at the click of a slider, can help.

18.2.2 Isocaps

If an isosurface is, for example, an infinitely long cylinder, then the surface will be
clipped by the edges of the viewing box. The isosurface then appears hollow with holes
at the two caps where the surface touches the edge of the viewing box.

Table 18.1: Three-Dimensional Equivalents of Two-Dimensional Plots

2D plot 3D equivalent
contour (isoline) | isosurface, isosurface with caps
contour slices
pseudocolor mini-cubes
[pseudocolor] slices
quiver coneplot
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These holes are rather distracting, and furthermore represent areas of non-information.
It is therefore common to fill the holes or “isosurface caps” with contour plots or pseu-
docolor plots of the same quantity where these flat, two-dimensional graphs are parallel
to the edges of the viewing box, and thus plug the holes completely.

These “isocap” plots do give an indication of interior isosurfaces, and therefore
add information to the isosurface itself. Furthermore, the eye seems a closed volume,
bounded at the ends by the isocaps, rather than a hollow surface, which tends to draw
the eye out of the viewing box. Matlab has an isocaps command which adds caps to
isosurfaces in a single line.

-2 )

Figure 18.3: A cylindrical isosurface (red) with pseudocolor caps. The isosurface is
q = 1/4 where q = exp(—x? — y?2).
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18.2.3 Glyphs, Arrows and Cones

To go beyond isosurfaces, one needs to make use of glyphs, which are little icons whose
shapes, size and/or color conveys additional information about the fields at the location
of the glyph. The most familiar glyph is the arrow which is used in an ordinary two-
dimensional vector or quiver plot. The length of the arrow is magnitude of the vector
while the orientation of the arrow indicates the direction of the vector field.

Unfortunately, three-dimensional arrow plots, though an option quiver3 in Mat-
lab, are not very effective. The problem is that an arrow is a two-dimensional shape,
and it is difficult to perceive the three-dimensionality from a sea of arrows, even with a
surrouding three-dimensional grid box to provide perceptual clues. It is therefore com-
mon to replace the arrow glyphs by cones. Matlab 6 has a coneplot option. It seems
to be easier to visually decode the vector field from the pattern of cones, which are
three-dimensional shapes, than from arrows.

Hydrodynamicists have been especially clever in drawing more elaborate glyphs to
simultaneously convey vector and scalar information. A simple instance is to use color
on a code to visualize the pressure. However, much more elaborate glyph-schemes
have been developed.

Matlab allows a lot of creativity because one has a subroutine to draw a certain
glyph in a unit box, one can then call this function from a glyph-plotting function that
will lay down many copies of the glyph, each with the orientation, shape, color and
size appropriate to that point in 3D space. The difficulty is that novel glyphs force the
viewer to learn a new visual code or paradigm. This means that elaborate glyphs will
only succeed in conveying useful information to viewers who are strongly motivated,
and will to invest a lot of time learning the new visual metaphor.

18.2.4 Mini-cubes

The direct analogue of a pseudocolor plot would be to color each volume (or “voxel”,
in computer graphics jargon) with a color appropriate to g(x, v, z). Unfortunately, in
the absence of transparency, only the colors of the outer wall would be visible.

One remedy is to render a lot of non-continguous small cubes in color instead. If
the gaps between the cubes are sufficiently large and the cube is shown in the proper
perspective, one can get a feeling for how g (x, v, z) varies over the whole volume. Since
the cubes must be rather small to allow sufficient viewing channels into the interior,
this type of graph is called a “mini-cubes” plot.

18.2.5 Slices

Another variation is to visualize three-dimensions through a stack of oriented, flat two-
dimensional slices, spaced so that one can view each member of the stack. Matlab uses
the terminology of “slice” plots, but some others prefer “cut-planes”.

Matlab allows the slices to have an arbitrary orientation; the cuts need not parallel
a pair of coordinate axes. Matlab offers two routines, contourslice and slice. The
former does what the name implies: it draws a fairly standard Matlab contour plot on
the slice plane. The unusual feature is that the output of contourslice is a fully three-
dimensional object, so it can be rotated and viewed at an angle. (In this respect, it is
really a contour3 plot computed along the slice plane.)

The slice routine is really a pseudocolor plot of the function on the slice plane.
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Figure 18.4: A cone plot of a three-dimensional wind field.

18.3 Topology

In a fluid flow, certain “critical points” have place-of-honor. These include stagna-
tion points, where the flow is zero, and the centers of vortices. Other linear features,
such as the streamline between fields of two vortices and shocks or fronts, are im-
portant, too. One strategy for wrestling with three dimensions is to plot only these
topologically-crucial points, curves, and surfaces rather than attempting to visualize
the entire surface.
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Figure 18.5: A slice plot of the function g(x,y,z) = exp(-x2 — y? — z2).



