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Abstract— True shared control of robotic vehicle is only
possible when the robot attains sufficient level of autonomy.
To be genuinely useful for human users, the robot must be
able to carry out high-level navigational instructions on its
own (e.g., go to my office desk), while allowing the user
to take control whenever is necessary. However, in real life
situations autonomous navigation is a difficult challenge since
the environment is almost always dynamic and uncertain.

In a companion paper [1], we have introduced the model pre-
dictive equilibrium point control (MPEPC) framework, which
allows a robot wheelchair to navigate gracefully in dynamic,
uncertain and structured environments in the presence of
multiple pedestrians. The algorithm works well in simulations
and in a physical robot: it works both in theory and in practice.

In this paper, we present the full technical description of
the MPEPC-based navigation algorithm, and provide further
discussions on theoretical aspects of the algorithm that allows
the robot to navigate in dynamic and uncertain environments.

I. INTRODUCTION

To allow a human user to truly share control with a robot
vehicle, the system must be intuitive and trustworthy: the
user must be able to instruct the robot in a natural and
intuitive way (e.g. go to my office desk), and the robot
must be able to carry out the instruction safely and reliably
while complying to user preferences. The robot must attain
sufficient level of autonomy in order for the control to be
granted. In this paper, we address the important problem of
reliable autonomous navigation, when the (wheelchair) robot
is given a destination pose as a high-level instruction.

The wheelchair system is a particularly good platform
for autonomous navigation research. The platform is large
enough to mount various sensors and carry a passenger, but
small enough to run experiments indoors without requiring
special infrastructures. An intelligent wheelchair capable of
safe and autonomous navigation can provide necessary level
of motor assistance to individuals with physical and mental
disabilities.

The wheelchair system also poses special challenges. With
pedestrians, a typical indoor environment is dynamic and
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uncertain. Pedestrians are more agile than a typical powered
wheelchair, as they are omni-directional and can run faster.
Like a car, the wheelchair is underactuated with nonholo-
nomic constraints (cannot move sideways). The motion of the
wheelchair needs to be graceful [2], avoiding all collisions
and limiting the velocity, acceleration and jerk, to ensure the
safety and comfort of potentially physically fragile users.

There has been impressive progress in the motion planning
and autonomous navigation in the past few decades, but
existing algorithms typically focus on solving a subset of
the full problem. Path planning algorithms such as RRT
[3], RRT∗ [4], A∗ and its variants [5] are very popular in
static or quasi-static environments, but may not work well in
highly dynamic environments. Reactive and control-oriented
methods such as potential field [6], navigation function
[7], gradient methods [8], VFH [9], DWA [10] and VO
[11] are often more suitable in dynamic environments, but
with reactive methods it may be difficult to generate more
sophisticated robot behaviors and to limit accelerations and
jerks, as the motion is determined based on observation on
a single time step. The notion of graceful motion has been
introduced and explored by Gulati [2], [12], but in general
there has been limited work on planning comfortable motion.
Planning in uncertain environment is also an open area, but
important results are published recently [13], [14], [15].

In a companion paper [1], we present the model predictive
equilibrium point control (MPEPC) framework for robot
navigation in uncertain and dynamic environments. We show
that with the proposed algorithm, we can formulate local
navigation as a continuous, low-dimensional, and uncon-
strained optimization problem, which is easy to solve. The
proposed algorithm can generate trajectories on-line that are
safe, smooth and comfortable in structured, dynamic and
uncertain environments.

In this paper, we identify critical features of the MPEPC-
based navigation algorithm and provide further theoretical
discussions. The proposed algorithm depends on: (1) decom-
position of the navigation task; (2) integrated planning and
control; (3) a pose-stabilizing feedback; and (4) decision-
theoretic trajectory evaluation. The technical detail of the
proposed algorithm is also described (as in [1]).

II. MPEPC NAVIGATION
A. Decomposition of the Navigation Task

In dynamic environments (e.g. a hall with a large number
of pedestrians), we need trajectory planning in configuration-
time space. Path planning alone is not sufficient, since a
path is defined in configuration space and does not include



important timing information that is required to efficiently
avoid collision with dynamic objects. But real environments
are always uncertain, making trajectory planning in large
time horizon impractical. It is difficult to accurately predict
motion of a pedestrian for more than a few seconds.

For efficient on-line trajectory planning, we decompose
the navigation task into two parts. We explicitly differentiate
between the static and the dynamic part of the environment,
and first plan a metric path to a destination in the static
environment. We use navigation function (NF) [7] as our
representation of the static plan, as it encodes a set of
shortest-distance paths and is easy to compute (Fig. 1).1

Then we use the NF as an instruction for the local on-
line trajectory planner in the dynamic environment, treating
it as a cost-to-go to the final destination in the model
predictive control (MPC) setting. We will formally introduce
the framework in the next subsection.

Detection and tracking of the pedestrians becomes consid-
erably easier with the decomposition. We generate the static
map via SLAM, and then identify the portions of laser scans
that are not explained by the static map [16]. We cluster
those dynamic scans and track them via Kalman filters for
position and linear velocity (Fig. 2).

B. MPEPC and Integrated Planning and Control

For the on-line, local trajectory planning, we build upon
a receding horizon model predictive control (MPC) archi-
tecture (e.g., see [17], [18], [19] for UAV examples, and
[20], [21], [22], [23] for ground vehicle examples). MPC is
useful in dynamic and uncertain environments as it provides
a form of information feedback with constant re-planning,
by continuously incorporating new information with the
receding time horizon and optimizing the prediction of
robot behavior within the time horizon. In the optimization
framework, tradeoffs between multiple objectives can be
expressed explicitly in the objective function.

Unlike most other MPCs, we start with a stabilizing
feedback control policy

u = πζ (x,x∗) (1)

which always steers the system toward x→ x∗, where x∗ is
a control goal, or a reference. ζ represents manipulatable
parameters in πζ (e.g., control gains).

We formulate the model predictive equilibrium point con-
trol (MPEPC) by defining the optimization space for the
MPC with the pose-stabilizing controller (1). The optimiza-
tion problem is cast as:

minimize
z∗=(x∗,ζ )

J(x,x∗,ζ ,T ) (2)

subject to ẋ = fπζ
(x,πζ (x,x∗)) (3)

x(0) = xI (4)
x(t) ∈ X (5)

1Although cases exists when the navigation function can fail for non-
circular robots (e.g. a long narrow corridor where the robot cannot rotate,
with a destination behind the robot), for the wheelchair robot those cases
are very uncommon in typical indoor environments.

Fig. 1. The information about the static world available to the robot.
Top: Occupancy grid map (20×10m) with initial robot pose (blue) and the
final goal (green circle). Middle: Navigation function. Bottom: Proximity
to walls.

Fig. 2. (Best viewed in color) A snapshot of a physical wheelchair (black
rectangle) navigating in a dynamic environment. Circles denote tracked
pedestrians, with protruding lines indicating estimated linear velocity. Green
trajectory represent a planned time-optimal trajectory.

where (2) is the navigation cost (which include the cost-to-
go) that needs to be minimized, (3) is the system dynamics
under the stabilizing policy πζ , (4) is the boundary condition,
and (5) is the constraint on states with space of admissible
states X.2

Observe that in (3), x∗ essentially acts as a control input
to the system, as the trajectory of the stable system is
determined by the initial condition and the location of the
equilibrium point. That is, the system can be controlled by
changing the reference, or the target equilibrium point, x∗,
over time. Such method is often referred to as equilibrium
point control (EPC) (e.g., [24], [25]).3

For robot navigation with MPEPC, x∗ is a target pose, or
a motion target, in the neighborhood of the robot. The robot

2For navigation, (5) basically represents collision constrains. In following
subsections, we introduce probabilistic weights and absorb (5) to the cost
definition, formulating local navigation as a continuous, low dimensional
and unconstrained optimization problem.

3The EPC framework is often inspired by equilibrium point hypothesis
(EPH) [26], which a well-known hypothesis in biomechanics that locomo-
tion is controlled by adapting the equilibrium point of a biomechanical
system over time.



Fig. 3. Egocentric polar coordinate system with respect to the observer.
Here, both θ and δ have negative values.

moves toward the motion target under the stabilizing control
policy πζ . The robot navigates by continuously updating and
moving toward a time-optimal motion target, so that it can
reduce the cost-to-go to the final destination while satisfying
all the constraints. The robot will converge to a motion target
if the target stays stationary.4

The main benefit of the approach is that with a careful
construction of the stabilizing control policy, the equilibrium
point x∗ can provide a compact, rich, and semantically
meaningful parametrization of local trajectories in contin-
uous domain. Note that constraints on control inputs u do
not appear because it can be incorporated into design of
πζ (x,x∗).

In the next subsection, we build upon a feedback control
law (6) developed in [27] to construct the pose-stabilizing
feedback control policy (1) suitable for MPEPC navigation.

C. Pose Stabilizing Control Policy

Suppose an observer is situated on a vehicle and fixating
at a target T at a distance r away from the vehicle. Let θ

be the orientation of T with respect to the line of sight from
the observer to the target, and let δ be the orientation of
the vehicle heading with respect to the line of sight. The
egocentric polar coordinates (r,θ ,δ )T completely describe
the relation between the robot pose and the target pose, as
shown in Fig. 3.

In [27], it is shown that linear velocity v and angular
velocity ω satisfying the following control law (6) will
globally drive the robot toward a target at (r,θ ,δ )T by
singular perturbation [28].

ω =−v
r
[k2(δ − arctan(−k1θ))+(1+

k1

1+(k1θ)2 )sinδ ]

(6)
(6) describes a generalized pose-following control law with
shape and gain parameters k1 and k2.5 The path curvature κ

resulting from the control law is

κ =−1
r
[k2(δ − arctan(−k1θ))+(1+

k1

1+(k1θ)2 )sinδ ]

(7)

4The equilibrium point (the motion target) is not to be confused with the
final destination. Figuratively speaking, MPEPC-based navigation is similar
to controlling a horse with a carrot and a stick.

5k1 determines how fast the orientation error is reduced relative to distance
error. k1 = 0 reduces the controller to pure way-point following. k2 is a gain
value.

Fig. 4. Randomly selected 300 samples from the continuous space
of smooth and realizable closed-loop trajectories, parametrized by the
four dimensional vector z∗ = (r,θ ,δ ,vmax)

T over a time horizon [0,T ].
The trajectories are generated from dynamically simulated vehicle (with
non-holonomic constraints and actuator saturations) under the stabilizing
kinematic controller.

with a relation ω = κv which holds for planar motion.
One of the key features of the control law is that the

convergence property does not depend on the choice of
positive linear velocity v. We choose a curvature-dependent
choice of linear velocity to make motion comfortable:

v(κ) = v(r,θ ,δ ) =
vmax

1+β |κ(r,θ ,δ )|λ
(8)

where the parameters β and λ determine how the vehicle
slows down at a high curvature point, and vmax is a user-
imposed maximum linear velocity, with v→ vmax as κ → 0.
It can be shown that all velocities, acceleration and jerks
are bounded under (6) and (8) so that the motion of the
robot is smooth and comfortable. For our experiments, we
use k1 = 1.5, k2 = 3, β = 0.4 and λ = 2.

By adding a slowdown rule near the target pose with

v = min(
vmax

rthresh
r , v(κ)) (9)

with some user-selected distance threshold rthresh, the target
T becomes a non-linear attractor that the vehicle will expo-
nentially converge to,6 where the maximum linear velocity
parameter vmax can be understood as a gain value which
determines the strength of the non-linear attractor. For our
experiments, we use rthresh = 1.2m.

Now, we have a 4-dimensional vector

z∗ = (T, vmax)

= (r,θ ,δ ,vmax)
T (10)

which completely describes the target of the vehicle system
in the configuration-time space, and the trajectory of the
vehicle converging to that target. Thus z∗ also parametrizes
a space of smooth trajectories generated by the feedback
control, (6) - (9). As the configuration-time space for the
robot is 4-dimensional, we have the most compact degree
of freedom with our parameterization. We emphasize that
the closed-loop trajectories parametrized by z∗ (Fig. 4) are
smooth and realizable (by the controller) by construction; i.e.

6With (9), v = v(κ) when r > rthresh since v(κ)≤ vmax. Also, v∼ r near
r = 0 canceling 1/r in (6) and rendering the system exponentially stable.
Proof shown in [27].



Fig. 5. (Best viewed in color) The wheelchair (a black rectangle) evaluating
trajectory candidates in a crowded hall. Green to blue to red color gradient
indicates low to high expected navigational cost (12). See text for details.

the constraints on control input are satisfied for any motion
target x∗ at the control level.

Compared to traditional MPC-based approaches [29], [30]
which typically search over an open-loop solution over a
discretized sequence of control inputs u, our representation
is much more compact and we retain the benefit of feedback.
It ensures more accurate prediction of future robot trajectory
and robustness to fast disturbances. With the MPEPC, it
is also possible to benefit from desirable properties in the
control law, which in our case is smoothness and comfort in
motion [27].

D. Decision-Theoretic Trajectory Evaluation

In our setting, the problem of navigation for the robot is to
find the motion target and velocity gain which generates the
most desirable trajectory over the lookahead horizon at each
planning cycle, so that the robot can make the most progress
to the final destination while minimizing discomfort and the
chance of collision. Formally, let

qz∗ : [0,T ]→C (11)

be a trajectory of the robot parametrized by z∗ within a finite
time horizon T , where C ' R2×S1 is the configuration space
of the robot. The optimization problem for the predictive
planner is to select z∗ which minimizes the following sum
of expected costs over the trajectory qz∗([0,T ]):

J(x,z∗,T ) = E[φ(qz∗)]

= E[φprogress +φcollision +φaction] (12)

where φcollision is the cost of collision, φaction is the cost of
action, and φprogress is the negative progress (Fig. 5). We
use the optimal control framework to deal with the tradeoffs
between the objectives, rather than to achieve the absolute
optimality.

We put the problem into a standard decision-theoretic
framework by using the expected values in our cost defini-
tion.7 The use of expected values lets us properly deal with
model and observation uncertainties.

7While it is difficult to find an example of MPC-based planning which
uses expected values in the cost, it seems very natural to use expected values
as MPC, by definition, is optimizing the prediction of robot behaviors.

1) Probability of Collision: Due to uncertainty in the
motion of the robot and dynamic objects, it is highly
desirable to incorporate the notion of probability into the
cost function. Accurate representation of robot and object
motion uncertainties is an interesting and important problem
[14] [13], but we do not attempt to solve it here. We use a
simplified model for the probability of collision.

Suppose a robot is expected to travel along a trajectory
qz∗ at time t. We model the probability pi

c of collision of the
robot with the i-th object in the environment over a small
time segment [t, t +∆t] as a bell-shaped function:

pi
c(di(t),σi) = exp(−di(t)2/σi

2) (13)

where di(t) is the minimum distance from any part of the
robot body to any part of the i-th object at time t, which
is computed numerically. σi is an uncertainty parameter. We
treat the static structure as a single object in the environment.

With (13), we can define the survivability ps(t) of the
robot over qz∗([t, t +∆t]):

ps(t)≡
m
Π
i
(1− pi

c(t)) (14)

where m is the number of obstacles including the static struc-
ture. Thus ps(t) represents the probability that qz∗([t, t +∆t])
will be collision-free with all obstacles. In our experiments,
we use empirically chosen values for the uncertainty param-
eters: σ = 0.1 for the static structure, which represents robot
position/simulation uncertainties; and σ = 0.2 for dynamic
objects, which represents combined uncertainties of the robot
and dynamic objects.

2) Expected Cost of a Trajectory: Given a 2D navigation
function NF(·) and its gradient, which encodes shortest
distance plans from all starting points to the destination in
the static environment, the negative progress φprogress(t) over
qz∗([t, t +∆t]) can be written as8

φprogress(t) = NF(qz∗(t +∆t))−NF(qz∗(t)) (15)

So that with (14) and (15), we can write expected negative
progress E[φprogress] over the static plan NF(·) which needs
to be minimized as

E[φprogress]≡
N

∑
j=1

ps( j) ·φprogress( j)+ c1∆θ(qx∗(T )) (16)

where j is a shorthand notation for the j-th sample pose
at time t j along the trajectory, with tN = T . The last term
∆θ(qx∗(T )) is a weighted angular difference between the
final robot pose and the gradient of the navigation function,
which is an added heuristic to motivate the robot to align
with the gradient of the navigation function. To guarantee
the robot will never voluntarily select a trajectory leading to
collision, we set pi

c( j ≥ k) = 1 (thus ps( j ≥ k) = 0) after any
sample with pi

c(k) = 1.
Note that without ps and ∆θ(·), the negative progress

reduces to φprogress = NF(qx∗(T )) − NF(qx∗(0)), where
NF(qx∗(0)) is a fixed initial condition which acts as a

8The 2D NF(·) only uses the position information from the pose qx∗ (t).



normalizer and does not affect the optimization process.
NF((qx∗(T )) is the terminal cost we want to minimize,
which is the underestimated cost-to-go to the final destination
encoded by NF(·).

Similarly, with (13), we can write the expected cost of
collision as

E[φcollision]≡
N

∑
j=1

m

∑
i

pi
c( j) · c2φ

i
collision( j) (17)

where c2 is a weight and φ i
collision( j) is the agent’s idea for

the cost of collision with the i-th object at the j-th sample.
In this paper, we treat all collisions to be equally bad and
use φ i

collision( j) = 0.1 for all i, j.
For the action cost, we use a usual quadratic cost on

velocities:

φaction =
N

∑
j=1

(c3v2( j)+ c4ω
2( j))∆t (18)

where c3 and c4 are weights for the linear and angular
velocity costs, respectively. For the expected cost of action,
we assume E[φaction] = φaction.

The overall expected cost of a trajectory is the sum of (16),
(17), and (18), as given in (12). The probability weights pi

c
and ps (13) - (14) can be understood as mixing parameters
which properly incorporates the collision constraint (5) into
the cost definition. The probability weights renders the
collision term completely dominant when the robot is near
an object, while letting the robot focus on progress when
the chance of collision is low. With (12), the optimization
problem (2) is now in continuous, low-dimensional and
unconstrained form.

III. RESULTS

In this section, we briefly show some example results.
In our lab, we have a differentially-driven wheelchair robot
equipped with a laser range finder that builds local metrical
and global topological maps [31] (Fig. 6).

A. Implementation with Pre-sampling for Initial Condition

We have used off-the-shelf optimization packages9 for
implementation. For our experiments, the receding horizon
was set at T = 5s, the plan was updated at 1Hz, and the
underlying feedback controller ran at 20Hz.

In practice, we found the performance of the optimizer (for
both speed and convergence to global minimum) depends
greatly on the choice of the initial conditions. Thus the
optimization process is implemented in two phases. First,
we coarsely sample the search space10 to find a good initial
condition. The best candidate form the pre-sampling phase
is passed to a graient-based local optimizer as an initial
condition for the final output.

With our problem formulation the computational cost for
the numerical optimization is very small, achieving real-time

9fmincon in MATLAB and NLopt [33] in C++.
10by a dozen pre-selected samples which include the optimal target from

the previous time step, stopping, typical soft/hard turns in MATLAB, and
by a coarse global optimization algorithm in C++.

Fig. 6. The wheelchair robot (0.76×1.2m). The wheelchair is differentially
driven, such that linear and angular velocity are controlled independently.
The robot is underactuated that the linear velocity is always aligned with
the orientation of the robot (i.e. the robot cannot move sideways). The
motor becomes saturated at linear and angular accelerations of 0.4m/s2 and
1.0rad/s2. The robot model for the forward prediction fully reflects the
constraints.

Fig. 7. Snapshots of the wheelchair moving through a crowd [32].

performance. A typical numerical optimization sequence in
each planning cycle converged in < 200ms on a 2.66-GHz
laptop, with ∼ 220 trajectory evaluations on average in C++
(data not shown).

Fig. 8. (Best viewed in color) Top: Time-stamped snapshots of the motion
of the robot (0.76× 1.2m) in a L-shaped corridor with a small opening
(2m wide, smallest constriction at the beginning 1.62m). The robot moves
quickly and smoothly in a free corridor. Bottom: Trajectories sampled by
the planner (gray), time-optimal plans at each planning cycle (blue), and
the actual path taken (red).



Fig. 9. (Best viewed in color) In an open hall (13.5× 18m) with multiple pedestrians (A-D, red circles), the robot (blue) estimates the trajectories of
dynamic objects over the planning horizon (red lines) and navigates toward the goal (green circle) without collision. The robot begin traveling slowly in
the first few seconds, then begin speeding up to avoid collision with pedestrians, and then slows down near the end. Left and Center: Time-stamped
snapshots of the robot and pedestrian. Right: Trajectories sampled by the planner (gray), time-optimal plans selected at each planning cycle (blue) and the
actual path taken (red).

B. Experiments

The algorithm works well both in simulations (Fig. 8 - 9)
and in physical experiments (Fig. 7). In this paper, we only
show data from two simulated example runs for illustration:
one in a tight L-shaped corridor and another in a hall with
multiple pedestrians.11 All sensor data are from actual data
traces obtained by the wheelchair robot. Robot motion is
dynamically simulated within the environments generated
from the sensor data.

A navigation results in a tight L-shaped corridor are
shown in Fig. 8. The planner searches for the optimal
trajectory parameterized by z∗ in the neighborhood of the
robot bounded by 0≤ r ≤ 8, −1≤ θ ≤ 1, −1.8≤ δ ≤ 1.8
and 0≤ vmax ≤ 1.2. The weights in the cost function are set
to c1 = 0.2, c2 = 1, c3 = 0.2, and c4 = 0.1.

Fig. 8 shows a sequence of time-stamped snapshots of the
robot motion as it makes a right turn into a narrow corridor
(Top), the trajectories sampled by the planner (Bottom, gray),
the time-optimal plans selected at each planning cycle (blue),
and the actual path taken (red). The robot moves swiftly
through an empty corridor along the gradient of the naviga-
tion function toward the goal pose. Once the robot moves
within 2m of the goal pose the robot switches to a docking
mode and fixes the motion target at the goal. In this example,
the robot safely converges to the goal pose in about 18s.

In Fig. 9, robot motion in a hall with multiple dynamic
objects is shown. Here, we have 0≤ r ≤ 8, −1≤ θ ≤ 1,
−1.8≤ δ ≤ 1.8 and 0≤ vmax ≤ 1.9. The weights in the cost
function are set to c1 = 0.2, c2 = 1, c3 = 0.4, and c4 = 0.2.
The robot prefers to move slowly with the higher weights
for the action cost (c3 = 0.4 and c4 = 0.2). The robot is
able to move among multiple pedestrians, slowing down and
speeding up as needed.

11See [1] for more results in simulations. A publication on the physical
experiments is under review.

IV. DISCUSSION: FROM THEORY TO PRACTICE

The proposed MPEPC-navigation algorithm allows the
robot to navigate in dynamic and uncertain environment,
exhibiting very reasonable behaviors both in simulations
and in the physical robot. As stated in the introduction,
the algorithm depends on several important features: (1)
decomposition of the navigation task; (2) integrated planning
and control; (3) a pose-stabilizing feedback; and (4) the
decision-theoretic trajectory evaluation.

We start by decomposing the navigation task and the
relevant information. We explicitly differentiate the static and
dynamic part of the environment, and decompose the task of
navigation into static path planning and dynamic trajectory
generation. This way, the trajectoy planner can focus on the
small-scale neighborhood of the robot in the configuration-
time space. The decompostion sets the stage for real-time
operation required in dynamic environments.

Planning and control is truely integrated in the MPEPC
framework. The search space of for the local trajectory
planner (MPC) is defined by the pose-stabilizing controller
(EPC). In our work, the pose-stabilizing controller (6) - (9)
allows the robot to reach any pose in space while satis-
fying control constraints. It also provides a compact, rich
and semantically meaningful parameterization of the smooth
and realizable closed-loop trajectories in continuous domain
(Fig. 4). The EPC-based compact and efficient parameteri-
zation is the key to the real-time trajectory generation.

We observe that many of the existing path-planning
methods are control-decoupled, where the control problem
of following the planned path is not considered during
the planning phase. In such control-decopled approaches,
a solution form the planner often requires nontrivial and
expensive post-processing to make it admissible for the
controller. In the MPEPC, the planner searches the space
of realizable trajectories by construction, thus eliminating



Fig. 10. Effects of castor wheels and surface conditions to the wheelchair
motion, which are difficult to model. Top: Picture of the main and the
castor wheels, and trajectories of the wheelchair under constant open-loop
command of vcmd = 0.8m/s with the castor wheels aligned/misaligned. The
wheelchair can exhibit large orientational error when the castor wheels are
unaligned. Bottom: A typical surface condition in indoor environments,
and trajectories of the wheelchair under constant open-loop command of
vcmd = 1m/s and ωcmd = 1.3rad/s on carpeted and polished stone surfaces.

the need of the processing and minimizing the possiblity of
actutor overload/failures.

The double feedback loop the in MPEPC adds to the ro-
bustness which can be critical in dynamic and uncertain envi-
ronments. MPC introduces information feedback by constant
replanning (at 1Hz in simulations and at 3Hz in physical
experiments), making it very attractive for applications in
dynamic environment. However, traditional MPCs usually
search for open-loop solutions, which makes the system sus-
ceptible to fast disturbances and unmodeled dynamics. For
example, we have found that castor wheels, floor finishing,
small bumps on the floor, etc., can have significant effect on
the wheelchair motion (Fig. 10), but are difficult to observe
or model. The low-level feedback provided by EPC (at 20Hz)
is very important for fast disturbance rejection.

In structured, dynamic and uncertain environments, the
probabilistic model for collision and the decision-theoretic
trajectory evaluations was critical to the success of our
algorithm. In typical path planning scenarios, it is common
to enforce collision avoidance by introducing a hard-bound
constraint on the minimum clearance to obstacles or on some
function of the clearance. But we have observed that when
combined with on-line replanning and model uncertainties,
such hard-bound constraint can make the navigation algo-
rithm brittle in highly structured or very crowded areas.
An example case is shown in Fig. 11. Performance of our
algorithm have greatly improved after we have introduced
the (very simple) stochastic model of collision pi

c (13) and
ps (14) which represents model and estimation uncertainties,
evaluating trajectories for their expected values.

The probability weights can be viewed as a mixing pa-
rameter, which lets the planner to smoothly transition its
focus between the progress and the collision based on the
proximity to nearby hazards, allowing proper incorporation

Fig. 11. (Best viewed in color) An example case of on-line trajectory
planning solved as a constrained optimization problem. Static structures
and the wheelchair robot are colored gray, and the hard bound on minimum
clearance to obstacles (the collision constraint) is illustrated as pink-colored
region. Left: To make a left turn, the trajectory planner found an optimal
solution that satisfies the collision constraint. In general, optimal solutions
are likely to be found on constraint boundaries, as shown in this example.
Right: At the next planning cycle, the solution found in the previous time
step (dashed line, blue) became invalid as the robot made a sharper turn
than its original plan due to disturbances and/or an incorrect model. Since
the vehicle is non-holonomic and the planner still needs to satisfy the
hard collision constraint, new solution found (solid line, green) involves
an oscillating s-curve, which is highly undesirable.

of the collision constraint into the cost definition. With EPC-
based trajectory parameterization and the use of expected
values (12), the optimization problem (2) is in continuous,
low-dimensional and unconstrained form, which is easy to
solve.

Customization of the robot behavior is also an important
topic for human-robot interaction. For an autonomous robot
to be trustworthy to humans, the robot must be able to modify
its behaviors so that it can comply with user preferences. In
our formulation, the weights in the cost definition provide an
easy way to handle the trade-offs between competing sub-
objectives, and a way to shape the behavior of the robot.

We believe the overall system could be improved by
improving each module, e.g. better representation of motion
uncertainties and better approximation of the cost-to-go.

V. CONCLUSION

In this paper, we view the problem of navigation as a con-
tinuous decision making process, where an agent with short-
term predictive capability generates and selects a locally op-
timal trajectory at each planning cycle in a receding horizon
control setting. By introducing a compact parameterization
of a rich set of closed-loop trajectories given by a stabilizing
control policy (6) - (9) and the use of expected values in the
cost definition (12) - (18) for trajectory optimization in the
MPEPC framework (2) - (5), the proposed algorithm achieves
real time performance and generates very reasonable robot
behaviors.

With MPEPC, we try to combine the optimality and the
predictive capability of MPC (real-time information feedback
by replanning with the receding horizon) with the simplicity
and robustness of EPC (compact parameterization and low-
level actuator feedback by the stabilizing controller). In
effect, the MPEPC framework allows the planner to search
simultaneously in the configuration space and in the con-



trol space, as it operates within the space of trajectories
parametrized by a pose-stabilizing feedback control law.

We believe true shared control of robotic vehicle is only
possible when the robot attains sufficient level of autonomy,
so that a human user can transfer authority when desired.
The proposed algorithm is important as it addresses the
difficult problem of navigating in an uncertain and dynamic
environment safely and comfortably while avoiding hazards,
which is a necessary task for autonomous passenger vehicles.
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