
Feedback Motion Planning via Non-holonomic RRT∗ for Mobile Robots

Jong Jin Park1 and Benjamin Kuipers2

Abstract— Here we present a non-holonomic distance func-
tion for unicycle-type vehicles, and use this distance function
to extend the optimal path planner RRT∗ to handle non-
holonomic constraints. The critical feature of our proposed
distance function is that it is also a control-Lyapunov function.
We show that this allows us to construct feedback policies
that stabilizes the system to a target pose, and to generate
the optimal path that respects the non-holonomic constraints
of the system via the non-holonomic RRT∗. The composition
of the Lyapunov function that is obtained as a result of this
planning process provides stabilizing feedback and the cost-to-
go to the final destination in the neighborhood of the planned
path, adding much flexibility and robustness to the plan.

I. INTRODUCTION

For efficient and intelligent navigation, a mobile robot
planning a path must have a good measure of how far
a given pose (position and orientation) in navigable space
is to another pose. For mobile robots with non-holonomic
constraints (e.g. robots that cannot move sideways), the
widely-used Euclidean distance in Cartesian coordinates is
clearly not a sufficient metric for this, since it fails to capture
the constraints and does not reflect the true cost-to-go of the
system. (Fig.1.)

This incompatibility of the Euclidean distance for non-
holonomic systems is a well-known problem. In fact, it
has been shown that for sampling-based planners such as
RRT [1] the space is efficiently explored only when this
distance function reflects the true cost-to-go [2]. But this
has been getting more attention recently (e.g., see [3] [4] [5]
[6]) since the introduction of RRT∗ [7], the sampling-based
motion planner that guarantees asymptotic optimality, which
critically requires a proper distance function. In the original
formulation [7] Euclidean metric was used to measure dis-
tance, which is a proper metric only for holohomic systems.

Several attempts have been made to extend RRT∗ to non-
holonomic systems, where many recent works focus on some
specific form of steering function that connects two states and
the cost-to-go under the control. In [4], the distance between
a pair of states is measured based on a fixed-final-state/free-
final-time controller and a cost function on time and control
effort. In [5] and [8], LQR-based cost functions are used

This work has taken place in the Intelligent Robotics Lab in the Computer
Science and Engineering Division of the University of Michigan. Research
of the Intelligent Robotics lab is supported in part by grants from the
National Science Foundation (CPS-0931474, IIS-1111494, IIS-1252987,
and IIS-1421168).

1J. Park is with the Department of Mechanical Engineering, University
of Michigan, Ann Arbor, MI 48109, USA jongjinp@umich.edu

2B. Kuipers is with Faculty of Computer Science and En-
gineering, University of Michigan, Ann Arbor, MI 48109, USA
kuipers@umich.edu

Fig. 1. Consider two poses p0 and p1. Although p1 is nearer the robot in
Euclidean distance, it is harder to get to due to differential constraints. In
this paper, we propose a directed distance function applicable to unicycle-
type vehicles, that properly reflects the true cost-to-go of the system under
the non-holonomic constraint.

Fig. 2. (Best viewed in color) An example minimum-distance path (bold
line) found by our non-holonomic RRT∗ after 1000 vertices, using the
proposed distance function (10). The path exactly connects the starting pose
at top left facing right (red triangle) and destination pose at bottom right
facing downward (blue triangle) in a cluttered 14m×8m office environment.
The vertices explored (grey) are also shown. Note that our algorithm rejects
candidate paths with shorter Euclidean distance, such as paths that cross
below the rightmost obstacle and reach the destination facing in the wrong
direction.

to measure distance. Both [4] and LQR-based methods [5]
[8] rely on local linearization of dynamics for non-linear
systems. In [6], an approximation of the path-integrated cost
is used as the distance metric, where the approximation is
learned from simulated trajectories of a differential-drive
vehicle under a stabilizing control law. A different approach
[3] was proposed by the authors of [7], which does not
concern the steering or the cost-to-go. The key idea of [3]
is to use a weighted Euclidean box which is narrower in the
direction the motion is constrained, rather than an Euclidean
ball, when identifying nearby neighbors, thus resulting in
less number of bad candidate connections and improved
efficiency of the RRT∗.

In this paper, we present a parameterized closed-form dis-
tance function from a pose (position and orientation) to a tar-
get pose for unicycle-type vehicles (e.g. differentially driven
mobile robots), and an optimal sampling-based planner using
the distance function (the non-holonomic RRT∗), where the

free parameters in the distance function controls the shape
of the resulting path. The critical feature of our proposed
distance function is that it is also a control-Lyapunov func-
tion (CLF) for the system, which makes it a natural measure
of cost-to-go. We show that it is straightforward to develop
feedback policies given the distance function, and develop a
non-holonomic RRT∗ based on this distance and the derived
policy. With our approach, the non-holonomic RRT∗ not
only generates an optimal path but also a composition of
Lyapunov functions (so-called funnels [9] [10] [11] [12])
that provides stabilizing feedback and the cost-to-go to the
final destination in the neighborhood of the planned path,
adding much flexibility and robustness to the plan.

In Section II, we introduce the distance function and the
coordinate system the distance function is defined in, and
present a Lyapunov stability analysis based on two-time scale
decomposition. The non-holonomic RRT∗ algorithm using
this distance function is presented in Section III, followed
by results and discussion in Section IV.

II. EGOCENTRIC POLAR COORDINATES AND
NON-HOLONOMIC DISTANCE

We define our distance function on a smooth manifold
defined by the egocentric polar coordinates [13]. This ego-
centric polar coordinate system (Fig.3.) describes the relative
location of the target pose observed from a vehicle with
radial distance r, orientation of the target φ, and orientation
of the vehicle δ, where angles are measured from the line
of sight vector from the vehicle to the target. Formally, we
write

Tp0
: (x, y, θ)T 7→ (r, φ, δ)T (1)

to denote the mapping from the usual Cartesian coordinates
to the egocentric polar coordinates, where p0 is the pose of
the target and p = (x, y, θ)T is the pose of the vehicle.

The kinematics of the vehicle in the egocentric polar
coordinates can be written as(

ṙ

φ̇

)
=

(
−v cos δ
v
r sin δ

)
(2)

δ̇ =
v

r
sin δ + ω (3)

where (2) describes the dynamics of the vehicle in the
position subspace, and (3) describes the dynamics of the
vehicle in the heading (steering) subspace. This essentially
decomposes the system to a slow (position) subsystem and
a fast (steering) subsystem. Note that in the slow subsystem
(2), the heading δ is a (virtual) control.

In the position subspace, we use the following weighted
norm to measure how far a point (r, φ)T is to the origin
(target pose):

l−(r, φ) =
√
r2 + k2φ φ

2 (4)

where kφ is a positive constant that represent the weight
of φ with respect to r. Note that this is a metric in
polar coordinates, and the orientation of the target pose is
incorporated in φ.

Fig. 3. Egocentric polar coordinate system with respect to the vehi-
cle. From an observer situated on a vehicle fixating at target pose p0,
r is the radial distance to the target, θ is the orientation of p0 with respect
to the line of sight from the observer to the target, and δ is the orientation
of the vehicle heading with respect to the line of sight. Here, both θ and δ
have negative values. At r = 0, we take the line of sight to be aligned with
the target orientation and set φ = 0, and δ is the the vehicle orientation
measured from the target orientation.

It is trivial to show that (4) is a CLF for the virtual control
δ, as there always exists some heading that reduces this
positive definite function. For example, simply setting the
desired heading at δ∗ = 0 (which points directly to target
pose) results in the classic turn-travel-turn approach. Here
we show the origin is Lyapunov-stable under the following
feedback examples, assuming non-zero positive velocity v:

δ∗s (φ) = atan(−kφφ) (5)
δ∗g(r, φ) = atan(−k2φφ/r2) (6)

where (5) is the heading that reduces r and φ very smoothly
at ratio φ̇/φ = kφṙ/r (see [13]), and (6) is the gradient
of (4) along (2). As will be shown in the results, these
are very distinct and useful steering strategies, with (5)
generating very smooth curves and (6) generating curves
that quickly approaches the target pose and then aligns to
the target orientation. Each of these feedback control laws
for the heading (5)-(6), which specifies a heading vector at
every point in the position space by construction, describes a
stabilizing vector field. This vector field encodes a collection
of paths converging to the target over the entire space, with
tangents of the paths aligned with the vector field (Fig.4). We
use this to connect two nodes in the RRT tree, in Extend()
and Steer() processes as described in Section III.

To show the origin is Lyapunov stable, we need to check
the sign of the derivative of the positive definite function (4)
along the position dynamics (2) under the control (5) - (6).
We have

d

dt
(l−(·)2) = 2rṙ + 2φφ̇

= −2rv cos (δ∗·) +
2v

r
φ sin (δ∗·)

strictly less than zero everywhere other than r = 0, since

cos (δ∗·) > 0, ∵ δ∗· ∈ (−π/2, π/2)
sgn(δ∗·) = −sgn(φ), ∀φ ∈ (−∞,∞)

(7)
due to property of atan(·) and r ≥ 0 and v > 0 by definition.
Thus d

dt l
−(·)2 is also negative definite, and the origin (target

pose) is Lyapunov stable under δ∗·.

Fig. 4. Example paths following the user-specified vector fields, and
visualization of (reduced) distance function. These stabilizing vector fields
and the shape of the resulting paths can be tuned to user’s preference
with a positive weight kφ, where higher kφ results in quicker reduction
in angular coordinate φ. Note that with (5) (bottom left) the paths always
curves in smoothly to the target pose regardless of initial position, but with
(6) (right column) large portion of the paths shown are almost straight
lines until it is near the target and then elbows in to the target orientation.
Top Left: Illustration of distance from various positions to a target pose at
(0, 0, 0)T (facing to the positive x-axis), assuming the heading is aligned
with the specified vector field, so the distance function (10) reduces to (9).
Note the singularity at origin and the high cost at positions along positive
x-axis, where the the vehicle have to make a large arc to move to the
target pose (kφ = 1.0). Bottom Left: Smooth curves following (5), with
φ̇/φ = kφṙ/r (kφ = 1.5). Target pose is depicted with a red arrow at
(2, 1.7, 0)T . Top Right: Sample paths following (6), the gradient of (9)
along the dynamics (2) (kφ = 0.8). Bottom Right: Sample paths following
(6) (kφ = 1.5). Note that the angular coordinate φ is reduced much quicker
compared to figure on top right.

These vector fields are examples of so-called funnels in
feedback motion planning [9]. A funnel [10] [11] can be
described as a (locally) valid feedback policy or a Lyapunov
function, which takes a broad set of initial conditions to
a local subgoal. Feedback motion planning is a process of
finding a sequential composition of funnels that takes the
system to the final destination, which can be more robust
and flexible than simple path planning. See [14] [15] for the
use of vector fields as funnels; [12] is an excellent example of
feedback motion planning based on local linearizations and
LQR policies. Existing approaches tend to focus on finding
local controllers due to usual difficulty in finding a general
Lyapunov function. One of the contribution of this paper is
the presentation of (9), which is a control-Lyapunov function
for unicycle-type vehicles, which is our funnel.

The domain of attraction for this Lyapunov function (i.e.
the mouth of the funnel) is the entire configuration space
for a unicycle in completely free space, but in cluttered
environments (or for curvature-constrained vehicles) it needs
to be estimated numerically. We can make a conservative
estimate by tracing the vector field, as shown in Fig.5.

Fig. 5. Estimating the domain of attraction for a Lyapunov function for
a unicycle by tracing the vector field in environment with obstacles. Here
a target pose(red arrow) is at (5, 5, π/2)T , and the paths follow (6) with
kφ = 1.2.

Now, given the stabilizing vector field in position space
characterized by the desired heading δ∗·, we can define
the heading error with respect to the vector field as

δe(r, φ, δ) = |δ − δ∗·| (8)

which is the distance between the robot orientation and the
desired heading δ∗·. With this we can define a CLF in the
full configuration space, where linear and angular velocities
are treated as control inputs,

l(r, φ, δ) = l−(r, φ) + kδ δe(r, φ, δ)

=
√
r2 + k2φ φ

2 + kδ|δ − δ∗·| (9)

where kφ and kδ are positive constants. Note that the choice
of kφ controls the shape of the local path segments via δ∗·,
and kφ and kδ influences the distance definition, i.e. how far
the origin is from a pose.

This is a CLF for kinematic inputs since there always
exists some linear and angular velocity (v, ω) that reduces
this positive definite function.1 2 Note that this is a weighted
L1 norm of the distances in position (4) and heading (8). The
choice of L1 norm is motivated by the fact that minimizing
L1 norm tends to reduce one of the terms first, while min-
imizing L2 norm tends to reduce all terms simultaneously.
As will be seen in the Section IV, this choice of L1 norm
tends to create very smooth path, as it strongly motivates the
planner to compose funnels that align well, i.e. have minimal
heading error at joints.

Now, we define the non-holonomic directed distance from
a pose p = (x, y, θ)T to a target pose p0 via (1) and (9)

Dist(p, p0) = l(Tp0
((x, y, θ)T)) (10)

1A unicycle can always rotate in place to align to the vector field, and
move forward if the heading is well aligned.

2Although out of scope of this paper, we note that it is straightforward to
develop kinematic control laws from the presented vector fields (the virtual
control for the position subsystem). The key idea is to guarantee that the
heading error (8) is reduced sufficiently faster than the position error (4) (via
two-time scale decomposition [16]) so that the vehicle always converges to
the virtual control, and ultimately to a small neighborhood of target pose.
See [13] for derivation of a smooth kinematic control law with the vector
field (5) as the virtual control for the position subsystem.

Recall that this measures the distance assuming vehicle is
moving forward. Flipping both p and p0 by 180 degrees
yields the distance for backward motion. This function is
positive definite but is not symmetric, i.e. Dist(p, p0) 6=
Dist(p0, p). Also, this distance function is similar to the radial
distance r when r � 1, while promoting alignment to target
orientation as r → 0.

In the next section, we use the heading control δ∗· as our
steering function and (9) as our distance and cost function to
construct non-holonomic RRT∗ for unicycle-type vehicles.

III. NON-HOLONOMIC RRT∗ FOR UNICYCLES

RRT∗ [7] is an incremental, sampling based planner with
guaranteed asymptotic optimality, originally developed for
holonomic systems. The algorithm (Alg. 1-3) is an extension
of the RRT∗ for unicycle-type vehicles, using the steering
and the distance function developed in the previous section.
It solves the optimal path planning problem by growing a
tree T = (V,E) with vertex set V of poses connected
by edges E of feasible path segments to find a path that
connects exactly to the destination pose with minimum cost,
using the set of basic procedures described below. X is the
configuration space of the vehicle, and x : [0, 1] → X is
a path in the configuration space. The notations generally
follows the RRT∗ algorithm presented in [17].

Sampling: The Sample() process samples a pose zrand ∈
Xfree from obstacle-free region of the configuration space.
The sampling is random with a goal bias, with which
the destination pose is sampled to ensure the path exactly
connects to the destination pose.

Distance: Dist(z, z0) as defined in (10) returns the directed
distance from a pose z to a target pose z0.

Cost: The cost function c(z, z0) measures the cost of the
path from a pose z to a pose z0. In this paper, we are
finding the minimum-distance path, so c(z, z0) = Dist(z, z0).
Cost(v) returns the accumulated cost of a node v ∈ V in the
tree from the root.

Nearest Neighbor: Given a pose z ∈ X and the tree
T = (V,E), v = Nearest(T , z) returns the node in the tree
where the distance from the node to the pose Dist(v, z) is
minimum.

Near-by nodes: Given a pose z, tree T = (V,E), and a
number n, we have

NearTo(T , z, n) ≡ {v ∈ V |Dist(v, z) ≤ L(n)} (11)

where L(n) = γ(log(n)n)(1/d) with constant γ and dimension
of the space d [7], where we have d = 3 for our configuration
space. This returns set of nodes from which the distance to
the pose z is small. Similarly,

NearFrom(T , z, n) ≡ {v ∈ V |Dist(z, v) ≤ L(n)} (12)

returns the set of nodes that is near from the pose z. This
distinction between NearTo() and NearFrom() is necessary
due to the use of directed distance.

Algorithm 1: T = (V,E)← Nonholonomic RRT∗(zinit)

1 T ← InitializeTree();
2 T ← InsertNode(∅, zinit, T);
3 for i = 1 toN do
4 zrand ← Sample(i);
5 znearest ← Nearest(T , zrand);
6 (znew, xnew)← Extend(znearest, zrand, ε);
7 if ObstacleFree(xnew) then
8 ZnearTo ← NearTo(T , znew, |V |);
9 zmin ← ChooseParent(ZnearTo, znearest, znew);

10 T ← InsertNode(zmin, znew, T);
11 ZnearFrom ← NearFrom(T , znew, |V |);
12 T ← ReWire(T , ZnearFrom, zmin, znew);

13 return T

Algorithm 2: zmin ← ChooseParent(ZnearTo, znearest, znew)

1 zmin ← znearest;
2 cmin ← Cost(znearest) + c(znearest, znew);
3 for znear ∈ ZnearTo do
4 x′ ← Steer(znear, znew);
5 if ObstacleFree(x′) then
6 c′ = Cost(znear) + c(znear, znew);
7 if c′ < Cost(znew) and c

′ < cmin then
8 zmin ← znear;
9 cmin ← c′;

10 return zmin

Algorithm 3: T ← ReWire(T , ZnearFrom, zmin, znew)

1 for znear ∈ ZnearFrom\{zmin} do
2 x′ ← Steer(znew, znear);
3 if ObstacleFree(x′) and

Cost(znew) + c(znew, znear) < Cost(znear) then
4 T ← ReConnect(znew, znear, T);

5 return T

Steering: We assume the vehicle follows the vector field,
e.g. the feedback control on the heading δ∗· described in
(5) and (6).3 We have x = Steer(z, z0) which generate a
path segment x that starts from z and end exactly at z0, and
(znew, xnew) = Extend(z, z0, ε) starts from z and extend the
path toward z0 until z0 is reached or the distance covered is ε,
and returns the new sample znew at the end of the extension.
Extend() is a standard RRT procedure for exploration. In
our experiments, we obtained best results when we used
Extend() for exploration (not forcing exact connection to a
target sample) and Steer() for choosing the best parent node
and to rewire graph, as described in Alg. 1-3.

3Assuming initial condition δe = 0, the heading control δ∗
· can be

exactly followed with ω = δ̇∗ − v
r
sin δ∗ via (3), where the positive

linear velocity v can be chosen so that the accelerations and velocities
are bounded. See footnote 2 in the previous section for discussion on more
general controllers.

Fig. 6. Incremental sampling process performed by the proposed algorithm,
using the distance function (10) via (5), with weights kφ = 1.2, kδ = 3.0.
From top right, counterclockwise: The tree constructed by the non-
holonomic RRT ∗ with 112, 163, 355, and 731 vertices. The algorithm
first found a path across the larger open space in top area, but eventually
finds shorter distance path through bottom, meanwhile improving the overall
smoothness of the path.

Fig. 7. A minimum-distance path in the tree of 907 vertices, with the
proposed algorithm using the distance function (10) via (6), with weights
kφ = 1.2 and kδ = 3.0. Note that with (6), the path is composed of L-
shaped segments, which quickly moves toward a target pose (the next node)
to reduce the radial distance and then elbows in to the target orientation.

Collision Checking: The ObstacelFree(x) function checks
whether a path x lies within the obstacle-free region of the
configuration space, considering the size and the shape of
the robot. Note that any mission-critical constraints (e.g. path
curvature, minimum clearance, etc.) that needs to be checked
can be added here.

Node Insertion: Given the current tree T = (V,E) and a
node v ∈ V , the InsertNode(v, z, T) adds z to V and create
an edge to v from z.

With theses basic processes, the non-holonomic RRT∗

explores the configuration space by sampling and extending
as the classic RRT [1] (Alg.1), and considers all nearby
nodes of a sample to choose the best parent node and
rewires the graph to streamline the tree as the RRT∗ (Alg.2-
3) where ChooseParent() and ReWire() processes guarantee
asymptotic optimality. We provide proper distance functions
and exact steering for unicycle-type vehicles.

Fig. 8. (Best viewed in color) The minimum-distance path found after 1000
vertices explored in cluttered 14m×8m office environment via (5) and (10),
with kφ = 1.2 and kδ = 3.0. The proposed algorithm is able to generate
highly smooth and intuitive paths without requiring any extra processing.

Fig. 9. (Best viewed in color) Multiple (suboptimal) solutions obtained
over several runs of RRT∗. Green to black color gradient indicates low to
high cost of the path.

Fig. 10. Visualization of implicit paths over the domain of attraction of each
Lyapunov function (so-called funnels) attached to each node in the graph.
These represents the nominal paths the vehicle will take when deviated from
the original path.

IV. RESULTS AND DISCUSSION

In this section we demonstrate the non-holonomic RRT∗

with varying steering functions (Fig. 6-10). Recall that the
distance function also depends on the steering function, so
that the planning is integrated with the control. Overall, the
algorithm is able to accommodate the two example controls
(5)-(6) very well, with (5) leading to very smooth and
elegant paths, while the use of (6) generates more aggressive
composition of L-shaped curves.

Fig. 6 illustrates the incremental sampling process, using
(5) with weights kφ = 1.2 and kδ = 3.0. Notice that the
quality of the path, especially the smoothness of the curve,
gradually improves as the number of vertices increase. The
high value of kδ heavily penalizes heading error between
the sampled pose and the subsequent path segment, which

enforces the overall smoothness. kφ determines the shape
of local path segments via steering. For comparison, Fig. 7
shows an example path obtained using (6) with the same
parameters kφ = 1.2, kδ = 3.0. Fig. 6-7 shows both (5) and
(6) produce satisfactory, yet qualitatively distinct, paths.

Fig. 8 shows an example minimum-distance path found
in cluttered office environment, using (5) for the steering
and for the distance definition. Shorter, smoother paths are
selected over longer, less smooth ones, as desired (Fig. 9).

Fig. 10 shows implicit paths over the domain of attraction
of each Lyapunov function along the nodes in the path,
constructed by tracing the stabilizing vector field attached
to each node. Note that at some pose z within the domain of
attraction of a node v, the cost-to-go to the final destination
is simply Cost(g) − Cost(v) + Dist(z, v) where g is the
goal node at the destination pose.

Compared to the original RRT∗ equipped with Euclidean
distance, the proposed algorithm is much more efficient due
to proper identification of the nearest and nearby neighbors.
We observed up to three times speedup, in agreement with
the results reported in [3].

Having a good measure for the distance between two
configurations is very important for planning an optimal
path, via sampling or over grid. To be a good measure, this
(distance) function must reflect the true cost-to-go between
configurations, and respect the constraints of the system. It
needs to be positive definite; it should always be possible
to be decreased with some control input, so that it does
not create local minima and can be used to generate exact
steering. That is, it needs to be qualified as a control-
Lyapunov function. It should be possible to extend RRT∗

to any system where a control-Lyapunov distance function
is available. We have provided such a distance measure for
unicycle-type vehicles.

V. CONCLUSION

Here we present a non-holonomic distance function for
unicycle-type vehicles, and use this distance function to
extend the optimal path planner RRT∗ to handle non-
holonomic constraints for unicycle-type vehicles. The critical
feature of our proposed distance function is that it is also a
control-Lyapunov function, so it better represents the true
cost-to-go between configurations and properly reflects the
constraints of the system. It allows us to readily generate
smooth, intuitive, and feasible paths. By using provably
stable control laws and the closed-form distance function that
properly reflects the constraints, our algorithm finds smooth
and precise paths that exactly reaches the goal for unicycle-
type vehicles, and provides stabilizing vector field and the
cost-to-go to the final destination around the planned path
by composition of local control-Lyapunov functions.

For future work, we are particularly interested in utiliz-
ing the global cost-to-go obtained by the composition of
the control-Lyapunov function. Availability of the control-
Lyapunov cost-to-go can be highly beneficial, since it guar-
antees that the robot will reach the goal as long as it reduces
this cost-to-go, while allowing much freedom in how to do

so. We are also interested in improving the current algorithm,
such as finding control-Lyapunov distance function for other
systems, using more efficient sampling process for faster
convergence, and extending the cost definition to account
for local curvature and proximity to obstacles.

REFERENCES

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.
98-11, Oct 1998.

[2] P. Cheng and S. M. LaValle, “Reducing metric sensitivity in random-
ized trajectory design,” in 2001 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 1. IEEE, 2001, pp.
43–48.

[3] S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning
for non-holonomic dynamical systems,” in 2013 IEEE International
Conference on Robotics and Automation (ICRA), 2013.

[4] D. J. Webb and J. v. d. Berg, “Kinodynamic RRT∗: Optimal mo-
tion planning for systems with linear differential constraints,” arXiv
preprint arXiv:1205.5088, 2012.

[5] G. Goretkin, A. Perez, R. Platt, and G. Konidaris, “Optimal sampling-
based planning for linear-quadratic kinodynamic systems,” in 2013
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2013, pp. 2429–2436.

[6] L. Palmieri and K. O. Arras, “Distance metric learning for rrt-based
motion planning for wheeled mobile robots,” in 2014 IROS Machine
Learning in Planning and Control of Robot Motion Workshop, Sep
2014.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Resaech, vol. 30,
no. 7, pp. 846–894, 2011.

[8] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“LQR-RRT∗: Optimal sampling-based motion planning with auto-
matically derived extension heuristics,” in 2012 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2012, pp.
2537–2542.

[9] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[10] M. T. Mason and J. K. Salisbury Jr, “Robot hands and the mechanics
of manipulation,” 1985.

[11] R. Burridge, A. Rizzi, and D. Koditschek, “Sequential composition
of dynamically dexterous robot behaviors,” International Journal of
Robotics Resaech, vol. 18, pp. 534–555, 1999.

[12] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback motion planning via sums-of-squares verification,” Int.
J. Rob. Res., vol. 29, no. 8, pp. 1038–1052, Jul 2010.

[13] J. Park and B. Kuipers, “A smooth control law for graceful motion of
differential wheeled mobile robots in 2D environment,” in 2011 IEEE
International Conferernce on Robotics and Automation (ICRA), May
2011, pp. 4896–4902.

[14] S. R. Lindemann and S. M. LaValle, “Simple and efficient algorithms
for computing smooth, collision-free feedback laws over given cell
decompositions,” The International Journal of Robotics Research,
vol. 28, no. 5, pp. 600–621, 2009.

[15] L. Zhang, S. M. LaValle, and D. Manocha, “Global vector field com-
putation for feedback motion planning,” in 2009 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2009, pp.
477–482.

[16] H. K. Khalil, Nonlinear Systems (3rd Edition), 3rd ed. New York,
NY, U.S.: Prentice Hall, 2002.

[17] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the rrt*,” in 2011 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2011, pp.
1478–1483.

[18] J. Park, C. Johnson, and B. Kuipers, “Robot navigation with model
predictive equilibrium point control,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2012.

[19] E. Glassman and R. Tedrake, “LQR-based heuristics for rapidly
exploring state space,” in Submitted to IEEE International Conference
on Robotics and Automation. ICRA, 2010.

[20] K. Konolige, “A gradient method for realtime robot control,” in 2000
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 1. IEEE, 2000, pp. 639–646.

