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Abstract— An autonomous vehicle intended to carry passen-
gers must be able to generate trajectories on-line that are safe,
smooth and comfortable. Here, we propose a strategy for robot
navigation in a structured, dynamic indoor environment, where
the robot reasons about the near future and makes a locally
optimal decision at each time step.

We propose the model predictive equilibrium point control
(MPEPC) framework, in which the ideas of time-optimality and
equilibrium point control are combined in order to generate
solutions quickly and responsively.

Our approach depends on a carefully designed compact
parameterization of a rich set of closed-loop trajectories, and
the use of expected values in cost definitions. This allows us to
formulate local navigation as a continuous, low-dimensional,
and unconstrained optimization problem, which is easy to
solve. We present navigation examples generated from real data
traces.

I. INTRODUCTION

The ability to navigate within an environment is crucial
for any autonomous mobile agent to survive, to interact
with the world, and to achieve its goals. Indeed, people are
required to perform navigation tasks routinely across a wide
range of settings: moving up to a desk in a structured office
environment; walking through a crowded railway station;
and even using an external vehicle such as driving a car
to commute.

The fundamental goal of autonomous navigation is simple:
getting from place A to place B, with little or no human
input. However, solving the problem may require solving a
number of difficult sub-problems: (P1) finding a navigable
route through space from A to B; (P2) determining whether
it is possible for the robot to move along the path without
any part of the extended robot shape colliding with any
hazards in the static environment; (P3) making decisions in
real time to (P4) avoid collisions with dynamic obstacles,
such as pedestrians or vehicles whose motion are inherently
uncertain; (P5) determining the motion commands so the
robot will move as planned; (P6) to satisfy human users, by
ensuring that the motion is efficient, safe, and comfortable
(even “graceful”). Note that some of the sub-problems may
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have conflicting objectives, such as constraining the mo-
tion command vs. quickly avoiding dynamic obstacles. Due
to conflicting sub-objectives and high complexity, the full
problem of navigation remains a difficult challenge. Thus, a
typical approach has been to focus on solving one or two of
the subproblems.

In a static or quasi-static environment, planning algo-
rithms have seen impressive improvements in the past few
decades. Sampling based methods, such as rapidly exploring
random trees (RRT) [1] can work in a high-dimensional
continuous configuration space and finds a feasible path if it
exists, given sufficient time. A recent variant, RRT∗ [2], can
guarantee asymptotic optimality as the number of samples
grows. Heuristic search like A∗ is also very popular, which
typically performs greedy search on grid-based maps. Good
heuristics often lead to very efficient search, and majority of
participants in the DARPA Urban Grand Challenge used A∗

and its variants [3]. Most of these methods can be described
as control-decoupled since the control problem of following
the planned path is solved elsewhere. The paths found by
the algorithms require non-trivial and often expensive post
processing to make the path smooth and admissible to the
controller. In a dynamic environment, the plan often needs
to be recomputed entirely when dynamic obstacles block the
path or when the target moves.

In highly dynamic environments, local and immediate
motions become more important to avoid collisions, so
reactive, control-oriented methods are often more desirable.
Some early work includes potential field methods [4] and
VFH [5], where a robot is reactively pushed away from
obstacles and pulled toward the goal. With the potential field,
robot motion can be computed everywhere in the map very
quickly, as the field is a property of the map that is computed
independently. Navigation function based methods [6] and
gradient methods [7] can eliminate local minima associated
with naive potential fields, but it may be expensive and
difficult to compute the field in the full configuration space
of the robot. Other reactive methods, such as DWA [8] or VO
[9], search the velocity space directly and choose velocities
that are guaranteed to avoid collision. VO can guarantee
the motions to be collision-free given perfect knowledge of
dynamic obstacles. With reactive methods in general, the
motion commands are computed based on a single time step,
so the resulting acceleration and jerk can be arbitrarily large
which is not suitable for passenger-oriented applications.

Only limited attention has been given to planning comfort-
able motion. Gulati [10] provides the most comprehensive
result to date, solving a full optimization problem over the
entire trajectory space to minimize a discomfort metric,



which is computationally expensive. Other works [11] [12]
are typically modifications of existing control laws to render
the trajectory more comfortable.

In this paper, we view the problem of navigation as a con-
tinuous decision making process, where an agent with short-
term predictive capability reasons about its situation and
makes an informed decision at each time step. We introduce
the model predictive equilibrium point control (MPEPC)
framework which can be solved very efficiently utilizing a
compact parametrization of trajectory by an analytic feed-
back control law [13]. We build upon a model predictive con-
trol architecture where trade-offs between progress toward
the goal, quality of motion, and probability of collision along
a trajectory are fully considered. The algorithm provides real-
time control of a physical robot, while achieving comfortable
motion, static-goal-reaching and dynamic obstacle avoidance
in a unified framework.

II. MODEL PREDICTIVE EQUILIBRIUM POINT
CONTROL

For our navigation algorithm, we use a receding horizon
model predictive control (MPC) architecture (e.g., see [14],
[15], [16] for UAV examples, and [17], [18], [19], [20] for
ground vehicle examples). MPC is useful in dynamic and
uncertain environments as it provides a form of information
feedback, by continuously incorporating new information
with the receding time horizon and optimizing the prediction
of robot behavior within the time horizon. In the optimization
framework, tradeoffs between multiple objectives can be
expressed explicitly in the objective function.

The time horizon in MPC implicitly represents the pre-
dictive capability of the planner. If the planner believes the
world is static and well-known, the horizon can be extended
into infinity and the plan can be generated over the entire
distance, as in the case of many planners with a quasi-static
world assumption. If the anticipation is very difficult then
the horizon can be reduced to zero and the planner becomes
reactive.

A. Traditional MPC

Typical MPC starts with a cost metric:

J =
∫ T

0
l1(x(t),u(t), t)dt + l2(x f ) (1)

where l1 is a state-dependent cost function and l2 is a
terminal cost the estimating cost-to-go from terminal state
x f = x(T ) to the final destination. In MPC, the control input
u(t) is generally solved for as a constrained optimization
problem [21]:

minimize
u

J(x,u,T ) (2)

subject to ẋ = f (x,u) (3)
x(0) = xI (4)
u(t) ∈ U (5)
x(t) ∈ X (6)

where (3) is the system dynamics, (4) is the boundary
condition, and (5) and (6) are constraints on control and
states with space of admissible controls U and space of
admissible states X. For general non-linear systems, the
optimization problem can be a very difficult to solve, as the
cost function is not convex and the dimensionality of the
problem can grow very quickly.

For example, to directly optimize a trajectory over a
5s horizon for a non-holonomic vehicle in a structured
environment with a digital controller commanding linear and
angular velocities (u= (v,ω)T ) at 20Hz, the optimizer needs
to search over a 200-dimensional space while satisfying
complex kinematic and dynamic constraints (5) and collision
constraints (6). Thus, many existing methods rely on coarse
discretization of control inputs [22] to make the problem
tractable, which can lead to good results (e.g. [18]) but at
the expense of motion capability.

With above formulation (2), the optimizer is searching
for an open-loop solution, leaving the system susceptible to
fast disturbances between planning cycles. There are other
sophisticated methods that try to optimize over the space of
control policies u = π(x) in order to retain the benefit of
feedback [23] [24], which is also very difficult in general
since the space of non-linear control laws can be very large
and difficult to parametrize well.

B. Model Predictive Equilibrium Point Control

The dynamics of a stable system f∗ with an equilibrium
point x∗, i.e., x→ x∗ as t→ ∞, can be written as

ẋ = f∗(x,x∗) (7)

and the trajectory of the system is determined by its initial
condition and the location of the equilibrium. One way to
enforce such condition is to impose a stabilizing feedback
control policy

u = π(x,x∗) (8)

which always steers the system toward x→ x∗, so that given
the the control goal x∗,

ẋ = f (x,u)

= fπ(x,π(x,x∗)) (9)
= f∗(x,x∗) (10)

where fπ denotes the dynamics of the system under the
control policy π . Note that in (10), the equilibrium essentially
acts as a control input to the system, i.e., the system can be
controlled by changing the reference, or the target equilib-
rium point, x∗, over time. Such method is often referred to
as equilibrium point control (EPC) (e.g., [25], [26]).1

MPC and EPC can complement each other very nicely.
We formulate the model predictive equilibrium point control

1The EPC framework is often inspired by equilibrium point hypothesis
(EPH) [27], which a well-known hypothesis in biomechanics that locomo-
tion is controlled by adapting the equilibrium point of a biomechanical
system over time.



(MPEPC) framework by augmenting MPC with EPC, where
the optimization problem can be cast as:

minimize
z∗=(x∗,ζ )

J(x,x∗,ζ ,T ) (11)

subject to ẋ = fπζ
(x,πζ (x,x∗)) (12)

x(0) = xI (13)
x(t) ∈ X (14)

where x∗ is the target equilibrium point of the system
under a stabilizing control policy πζ where ζ represents
manipulatable parameters in πζ (e.g., control gains).

For robot navigation with MPEPC, x∗ is a target pose, or
a motion target, in the neighborhood of the robot. The robot
moves toward the motion target under the stabilizing control
policy πζ . The robot navigates by continuously updating and
moving toward a time-optimal motion target, so that it can
reduce the cost-to-go to the final destination while satisfying
all the constraints. The robot will converge to a motion target
if the target stays stationary.2

The main benefit of the approach is that with a careful
construction of the stabilizing control policy, the equilibrium
point x∗ can provide a compact, semantically meaningful,
and continuous parametrization of good local trajectories.
Therefore, we can search over the space of z∗, or equiva-
lently, the space of trajectories parametrized by x∗ under
the control policy πζ , as opposed to searching for the entire
sequence of inputs u. We retain the benefit of feedback,
which ensures more accurate prediction and robustness to
disturbances. Control constraints (5) do not appear because
it can be incorporated into design of πζ (x,x∗).

With MPEPC, we try to combine the optimality and the
predictive capability of MPC (real-time information feedback
by replanning with the receding horizon) with the simplicity
and robustness of EPC (compact parameterization and low-
level actuator feedback by the stabilizing controller).

In [13] we developed a feedback control law (15) which
guides a robot from an arbitrary initial pose to an arbitrary
target pose in free space, which allows us to formulate
the navigation problem within the MPEPC framework. We
introduce the robot system and the control policy in section
III. The detailed description of the objective function is given
in section IV, where we introduce probabilistic weights and
absorb collision constraints (14) to the cost definition, formu-
lating local navigation as a continuous, low dimensional and
unconstrained optimization problem which is easy to solve.
Results are shown in section V.

III. SYSTEM OVERVIEW

A. The Wheelchair Robot

Our primary target application is an assistive wheelchair.
We want to design an intelligent wheelchair capable of safe
and autonomous navigation, which can provide necessary

2The equilibrium point (the motion target) is not to be confused with the
final destination. Figuratively speaking, MPEPC-based navigation is similar
to controlling a horse with a carrot and a stick.

Fig. 1. Egocentric polar coordinate system with respect to the observer.
Here, both θ and δ have negative values.

level of motor assistance to individuals suffering from phys-
ical and mental disabilities. We require the motion to be
safe and comfortable, avoiding all collisions and limiting
the velocity, acceleration and jerk. In our lab, we have a
differentially-driven wheelchair robot equipped with a laser
range finder that builds local metrical and global topological
maps [28] (Fig. 2, Left).

B. Feedback Control Policy and Trajectory Parametrization

Suppose an observer is situated on a vehicle and fixating
at a target T at a distance r away from the vehicle. Let θ

be the orientation of T with respect to the line of sight from
the observer to the target, and let δ be the orientation of
the vehicle heading with respect to the line of sight. The
egocentric polar coordinates (r,θ ,δ )T completely describe
the relation between the robot pose and the target pose, as
shown in Fig. 1.

In [13], it is shown that linear velocity v and angular
velocity ω satisfying the following control law (15) will
globally drive the robot toward a target at (r,θ ,δ )T by
singular perturbation [29].

ω =−v
r
[k2(δ − arctan(−k1θ))+(1+

k1

1+(k1θ)2 )sinδ ]

(15)
(15) describes a generalized pose-following control law with
shape and gain parameters k1 and k2.3 The path curvature κ

resulting from the control law is

κ =−1
r
[k2(δ − arctan(−k1θ))+(1+

k1

1+(k1θ)2 )sinδ ]

(16)
with a relation ω = κv which holds for planar motion.

One of the key features of the control law is that the
convergence property does not depend on the choice of
positive linear velocity v. We choose a curvature-dependent
choice of linear velocity to make motion comfortable:

v(κ) = v(r,θ ,δ ) =
vmax

1+β |κ(r,θ ,δ )|λ
(17)

where the parameters β and λ determine how the vehicle
slows down at a high curvature point, and vmax is a user-
imposed maximum linear velocity, with v→ vmax as κ → 0.

3k1 determines how fast the orientation error is reduced relative to distance
error. k1 = 0 reduces the controller to pure way-point following. k2 is a gain
value.



It can be shown that all velocities, acceleration and jerks
are bounded under (15) and (17) so that the motion of the
robot is smooth and comfortable. For our experiments, we
use k1 = 1.5, k2 = 3, β = 0.4 and λ = 2.

By adding a slowdown rule near the target pose with

v = min(
vmax

rthresh
r , v(κ)) (18)

with some user-selected distance threshold rthresh, the target
T becomes a non-linear attractor that the vehicle will expo-
nentially converge to,4 where the maximum linear velocity
parameter vmax can be understood as a gain value which
determines the strength of the non-linear attractor. For our
experiments, we use rthresh = 1.2m.

Now, we have a 4-dimensional vector

z∗ = (x∗,vmax)

= (r,θ ,δ ,vmax)
T (19)

which completely describes the target of the vehicle system
in the configuration-time space, and the trajectory of the
vehicle converging to that target. Thus z∗ also parametrizes
a space of smooth trajectories generated by the feedback
control, (15) - (18). As the configuration-time space for the
robot is 4-dimensional, we have the most compact degree
of freedom with our parameterization. We emphasize that
the trajectories parametrized by z∗ are smooth and realizable
(by the controller) by construction; e.g., the constraint (5) is
satisfied for any motion target x∗ at the control level.

IV. MPEPC NAVIGATION

In our setting, the problem of navigation for the robot is to
find the motion target and velocity gain which generates the
most desirable trajectory over the lookahead horizon at each
planning cycle, so that the robot can make the most progress
to the final destination while satisfying comfort and collision
constraints. Formally, let

qz∗ : [0,T ]→C (20)

be a trajectory of the robot parametrized by z∗ within a finite
time horizon T , where C ' R2×S1 is the configuration space
of the robot. The optimization problem for the predictive
planner is to select z∗ which minimizes the following sum
of expected costs over the trajectory qz∗([0,T ]):

E[φ(qz∗)] = E[φcollision]+E[φaction]+E[φprogress] (21)

where φcollision is the cost of collision, φaction is the cost of
action, and φprogress is the negative progress.5 We introduce
the cost definition in the following subsections.

4With (18), v = v(κ) when r > rthresh since v(κ)≤ vmax. Also, v∼ r near
r = 0 canceling 1/r in (15) and rendering the system exponentially stable.
Proof shown in [13].

5We use the optimal control framework to deal with the tradeoffs between
the objectives, rather than to achieve the absolute optimality.

Fig. 2. (Best viewed in color) Left: Differentially driven wheelchair robot
(0.76m x 1.2m), equipped with laser range finder and SLAM capability.
Right: Sampled trajectories parametrized by z∗ (19), generated by a dy-
namically simulated vehicle operating under the stabilizing control policy
(15) - (18) in a SLAM-generated map. The wheelchair is depicted as a
black rectangle. Green to red color gradient indicates low to high expected
navigational cost (21). See text for details.

A. Probability of Collision

Due to uncertainty in the motion of the robot and dynamic
objects, it is highly desirable to incorporate the notion of
probability into the cost function. Accurate representation of
robot and object motion uncertainties is an interesting and
important problem [30] [31], but we do not attempt to solve
it here. We use a simplified model for the probability of
collision.

Suppose a robot is expected to travel along a trajectory
qz∗ at time t. We model the probability pi

c of collision of the
robot with the i-th object in the environment over a small
time segment [t, t +∆t] as a bell-shaped function:

pi
c(di(t),σi) = exp(−di(t)2/σi

2) (22)

where di(t) is the minimum distance from any part of
the robot body to any part of the i-th object at time t
which is computed numerically, and σi is an uncertainty
parameter. We treat the static structure as a single object
in the environment.

With (22), we can define the survivability ps(t) of the
robot over qz∗([t, t +∆t]):

ps(t)≡
m
Π
i
(1− pi

c(t)) (23)

where m is the number of obstacles including the static struc-
ture. Thus ps(t) represents the probability that qz∗([t, t +∆t])
will be collision-free with all obstacles. In our experiments,
we use empirically chosen values for the uncertainty param-
eters: σ = 0.1 for the static structure, which represents robot
position/simulation uncertainties; and σ = 0.2 for dynamic
objects, which represents combined uncertainties of the robot
and dynamic objects.

B. Expected Cost of a Trajectory

Given a 2D navigation function NF(·) and its gradient,
which encodes shortest distance plans from all starting points
to the destination in the static environment, the negative
progress φprogress(t) over qz∗([t, t +∆t]) can be written as6

φprogress(t) = NF(qz∗(t +∆t))−NF(qz∗(t)) (24)

6The 2D NF(·) only uses the position information from the pose qx∗ (t).



So that with (23) and (24), we can write expected negative
progress E[φprogress] over the static plan NF(·) which needs
to be minimized as

E[φprogress]≡
N

∑
j=1

ps( j) ·φprogress( j)+ c1∆θ(qx∗(T )) (25)

where j is a shorthand notation for the j-th sample pose
at time t j along the trajectory, with tN = T . The last term
∆θ(qx∗(T )) is a weighted angular difference between the
final robot pose and the gradient of the navigation function,
which is an added heuristic to motivate the robot to align
with the gradient of the navigation function. To guarantee
the robot will never voluntarily select a trajectory leading to
collision, we set pi

c( j ≥ k) = 1 (thus ps( j ≥ k) = 0) after any
sample with pi

c(k) = 1.
Note that without ps and ∆θ(·), the negative progress

reduces to φprogress = NF(qx∗(T )) − NF(qx∗(0)), where
NF(qx∗(0)) is a fixed initial condition which acts as a
normalizer and does not affect the optimization process.
NF((qx∗(T )) is the terminal cost (which corresponds to
l2(x f ) in (1)) we want to minimize, which is the underesti-
mated cost-to-go to the final destination encoded by NF(·).

Similarly, with (22), we can write the expected cost of
collision as

E[φcollision]≡
N

∑
j=1

m

∑
i

pi
c( j) · c2φ

i
collision( j) (26)

where c2 is a weight and φ i
collision( j) is the agent’s idea for

the cost of collision with the i-th object at the j-th sample.
In this paper, we treat all collisions to be equally bad and
use φ i

collision( j) = 0.1 for all i, j.
For the action cost, we use a usual quadratic cost on

velocities:

φaction =
N

∑
j=1

(c3v2( j)+ c4ω
2( j))∆t (27)

where c3 and c4 are weights for the linear and angular
velocity costs, respectively. For the expected cost of action,
we assume E[φaction] = φaction.

The overall expected cost of a trajectory is the sum of
(25), (26), and (27), as given in (21). In light of (11) and
(19), we have

J(x,z∗,T ) = E[φ(qz∗)]

= E[φcollision +φprogress +φaction] (28)

The probability weights pi
c and ps (22) - (23) can be un-

derstood as a mixing parameter which properly incorporates
the collision constraint (14) into the cost definition. The use
of expected values renders the collision term completely
dominant when the robot is near an object, while letting
the robot focus on progress when the chance of collision
is low. With (28), the optimization problem (11) is now in
continuous, low-dimensional and unconstrained form.

V. RESULTS AND DISCUSSION

A. Implementation with Pre-sampling for Initial Condition

We have used off-the-shelf optimization packages7 for
implementation. For our experiments, the receding horizon
was set at T = 5s, the plan was updated at 1Hz, and the
underlying feedback controller ran at 20Hz.

In practice, we found the performance of the optimizer (for
both speed and convergence to global minimum) depends
greatly on the choice of the initial conditions. We pre-sample
the search space with a dozen selected samples, including
the optimal target from the previous time step, stopping, and
typical soft/hard turns.8 The best candidate from the pre-
sampling phase is passed to a gradient-based local optimizer
as an initial condition for the final output.

With our problem formulation the computational cost for
the numerical optimization is very small, achieving real-time
performance. A typical numerical optimization sequence in
each planning cycle converged in < 200ms on a 2.66-GHz
laptop, with ∼ 220 trajectory evaluations on average in C++
(data not shown).

B. Experiments

We tested the algorithm in two typical indoor environ-
ments: a tight L-shaped corridor, and an open hall with
multiple dynamic objects (pedestrians). In the L-shaped
corridor, the proposed algorithm allows the robot to exhibit
wide range of reasonable motions in different situations,
e.g. to move quickly and smoothly in an empty corridor
(Fig. 4), and to stop, start and trail a pedestrian in order
to progress toward a goal without collision (Fig. 5). In the
hall environment, we show that the algorithm can deal with
multiple dynamic objects, and that changing a weight in
the cost definition can result in qualitatively different robot
behavior in the same environment (Fig. 7 - 8).

All sensor data are from actual data traces obtained by
the wheelchair robot. The position and velocity of dynamic
objects are tracked from traces of laser point clusters, and
the planner estimates the motion of the dynamic objects
using a constant velocity model over the estimation horizon
[0,T ]. Robot motion is dynamically simulated within the
environments generated from the sensor data.

Simulated navigation results in a tight L-shaped corridor
are shown in Fig. 4 - 6. The robot has the occupancy grid
map, the navigation function, and the proximity to static
obstacles as the information about the static world (Fig. 3).
The planner searches for the optimal trajectory parameter-
ized by z∗ in the neighborhood of the robot bounded by
0≤ r ≤ 8, −1≤ θ ≤ 1, −1.8≤ δ ≤ 1.8 and 0≤ vmax ≤ 1.2.
The weights in the cost function are set to c1 = 0.2, c2 = 1,
c3 = 0.2, and c4 = 0.1.

Fig. 4 shows a sequence of time-stamped snapshots of the
robot motion as it makes a right turn into a narrow corridor
(Top), the trajectories sampled by the planner (Bottom, gray),

7fmincon in MATLAB and NLopt in C++.
8Pre-sampling with likely movements seems to be more effective than

random sampling.



Fig. 3. The information about the static world available to the robot.
Top: Occupancy grid map (20×10m) with initial robot pose (blue) and the
final goal (green circle). Middle: Navigation function. Bottom: Proximity
to walls.

Fig. 4. (Best viewed in color) Top: Time-stamped snapshots of the motion
of the robot (0.76× 1.2m) in a L-shaped corridor with a small opening
(2m wide, smallest constriction at the beginning 1.62m). The robot moves
quickly and smoothly in a free corridor. See Fig. 6 for velocities and
accelerations along the trajectory. Bottom: Trajectories sampled by the
planner (gray), time-optimal plans at each planning cycle (blue), and the
actual path taken (red).

the time-optimal plans selected at each planning cycle (blue),
and the actual path taken (red). The robot moves swiftly
through an empty corridor along the gradient of the navi-
gation function near the allowed maximum speed (1.2m/s)
(Fig. 6, Top) toward the goal pose. Once the robot moves
within 2m of the goal pose the robot switches to a docking
mode and fixes the motion target at the goal. In this example,
the robot safely converges to the goal pose in about 18s.

In Fig. 5, the robot runs with the same weights in the cost
function but with a slow moving (∼ 0.5m/s) pedestrian in
the map. The tracked location (red circle) and the estimated

Fig. 5. (Best viewed in color) Top: The robot motion in 0 - 6 s. As a
pedestrian (red circle) begins to move, the robot stops briefly to avoid
collision (at t ∼ 6s). Velocities and accelerations shown in Fig. 6. Estimated
trajectory of the dynamic object is shown as red lines. Middle: As the
pedestrian moves into the corridor, the robot starts trailing the pedestrian at
about the same average speed, progressing toward the goal while avoiding
collision. Bottom: Trajectories sampled by the planner (gray), time-optimal
plans at each planning cycle (blue), and the actual path taken (red).

Fig. 6. (Best viewed in color) Top: Velocity and acceleration profiles for the
robot in the free corridor. The vehicle is given a very small weight on linear
velocity cost and moves close to the maximum allowed speed. Middle: In a
corridor with a pedestrian, the robot is able to stop, start again and trail the
pedestrian with the proposed algorithm, without changing any parameters.
Bottom: Linear velocity profile of the robot and the pedestrian (dynamic
object). The robot stops briefly at t ∼ 6s as the pedestrian blocks the way,
and trails the pedestrian nearly at the same speed as it moves.

trajectory (red line) of the dynamic object is shown. In
order to progress toward the goal without collision, the robot
effectively trails the pedestrian, stopping and restarting as
needed. A comparison of the robot speed and the pedestrian
speed is shown in Fig. 6, Bottom.



Fig. 7. (Best viewed in color) In an open hall (13.5× 18m) with multiple pedestrians (A-D, red circles), the robot (blue) estimates the trajectories of
dynamic objects over the planning horizon (red lines) and navigates toward the goal (green circle) without collision. Compared to Fig. 8 the robot moves
slower due to larger weights on the action cost (c3 = 0.4 and c4 = 0.2). Left and Center: Time-stamped snapshots of the robot and pedestrian. Right:
Trajectories sampled by the planner (gray), time-optimal plans selected at each planning cycle (blue) and the actual path taken (red).

Fig. 8. (Best viewed in color) Robot motion in the same environment as Fig. 7, but with low weights on the action cost (c3 = 0.04 and c4 = 0.02).
The robot moves more aggressively and cuts in front of the dynamic object marked C, which it passed behind in Fig. 7. Left and Center: Time-stamped
snapshots of the robot and pedestrian. Right: Trajectories sampled by the planner (gray), time-optimal plans selected at each planning cycle (blue) and the
actual path taken (red).

In Fig. 7 - 8, robot motion in an open hall with multiple
dynamic objects is shown. For these examples, the bound on
linear velocity gain is increased to vmax ≤ 1.9m/s. In Fig. 7,
the weights for the linear and angular velocity cost is set
higher (c3 = 0.4 and c4 = 0.2) so the robot prefers to move
slower, moving behind the pedestrian C as it passes and then
speeding up. In Fig. 8, with a small weight on the linear
velocity cost (c3 = 0.04 and c4 = 0.02) the robot is more
aggressive and does not slow down, cutting in front of the
slow-moving pedestrian C. The trajectories sampled by the
planner (gray), time-optimal plans at each planning cycle
(blue), and the actual path taken (red) are shown on the right.

As can be seen in the examples, the algorithm can generate
suitable trajectories across a range of situations exhibiting
very reasonable behavior. We note that in realistic setting,
for an agent with limited actuation capability (non-holonomic

and dynamic constraints) and without perfect knowledge of
the environment, it is not possible to guarantee absolute
collision avoidance. However, the algorithm still tries to
maximize expected progress while minimizing the effort and
probability of failure with the information and predictive
capability available.

The overall algorithm is very efficient and achieves real-
time performance (P3) since the search space is small and
does not require any post-processing to compute the control
inputs. In effect, the MPEPC framework allows the planner
to search simultaneously in the configuration space and
in the control space, as it operates within the space of
trajectories parametrized by a feedback control law; thus (P5)
is trivially satisfied. With MPEPC, it is possible to benefit
from desirable properties in the control law, which in our
case is smoothness and comfort in motion [13]. The weights



in the cost definition provide a way to handle the trade-offs
between competing sub-objectives, and a way to shape the
behavior of the robot (P6).

We have a hybrid model of the environment in the sense
that we explicitly differentiate between the static and dy-
namic parts of the environment. This factoring allows us to
quickly identify a navigable route in the static environment
in the form of navigation function (P1), which provides an
approximate cost-to-go to the goal from any part of the
navigable space. Collision with static and dynamic obstacles
are checked in real time within the local neighborhood of
the configuration-time space in a unified framework (P2),
(P4). We believe the overall system could be improved by
improving each module, e.g. better representation of motion
uncertainties and better approximation of the cost-to-go.

VI. CONCLUSION

In this paper, we view the problem of navigation as a con-
tinuous decision making process, where an agent with short-
term predictive capability generates and selects a locally op-
timal trajectory at each planning cycle in a receding horizon
control setting. By introducing a compact parameterization
of a rich set of closed-loop trajectories given by a stabilizing
control policy (15) - (18) and a probabilistic cost definition
(21) for trajectory optimization in the MPEPC framework
(11) - (14), the proposed algorithm achieves real time perfor-
mance and generates very reasonable robot behaviors.

The proposed algorithm is important as it addresses the
difficult problem of navigating in an uncertain and dynamic
environment safely and comfortably while avoiding hazards,
which is a necessary task for autonomous passenger vehicles.
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