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Abstract— The ability to follow or move alongside a person
is a necessary skill for an autonomous mobile agent that works
with human users. To accomplish the task, the robot must be
able to track and follow the person it is accompanying while
maneuvering through obstacles without collision. Also, the robot
must be able to respect user preferences and exhibit behaviors
that are intuitive and socially acceptable. That is, the robot is
required to make complex decisions on-line, in environments
that are almost always dynamic and uncertain in the presence
of pedestrians.

This paper discusses a versatile motion planning algorithm
for person pacing, which refers to the capability to walk next to
another person at user-preferred distance and orientation [1].
The algorithm is based on the Model Predictive Equilibrium
Point Control (MPEPC) framework [2] which allows a robot
to navigate gracefully in dynamic, uncertain, and structured
environments.

We show that with a simple task description for person
pacing, an agent with the MPEPC navigation algorithm can
make intelligent decisions on-line, maximizing the expected
progress toward achieving the task while minimizing the action
cost and the probability of collision. We present navigation
examples generated from real data traces, where a wheelchair
robot exhibits very reasonable behaviors across a wide range
of situations.

I. INTRODUCTION
To be genuinely useful to human users, an autonomous

agent must be able to carry out high-level navigational
instructions on its own (e.g. “go to my office desk,” or
“follow the guide.”) However, autonomous navigation is a
difficult challenge since the environment is almost always
dynamic and uncertain, e.g. structured indoor environments
with multiple pedestrians. The robot needs to perceive the
environment, identify and track dynamic objects, constantly
make intelligent decisions to avoid collision with static and
dynamic hazards and make progress while conforming to
user preferences.

In this paper, we introduce a navigation algorithm for
person pacing, which refers to the capability to walk next
to another person at desired distance and orientation [1].
Person pacing is an important skill for a service robot,
especially for passenger carrying applications such as an
autonomous wheelchair where a passenger commonly wants
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to accompany a person side by side. People walking in
groups have a strong tendency to walk abreast, although
exact formation varies depending on characteristics of group
members [3]. It is also widely accepted that people have pre-
ferred inter-personal distances (so-called personal zones [4])
which depend on the relationship between them. Likewise,
several studies [5] [6] [7] [8] have found that people have
varying preferences for distance and approach angles when
interacting with a robot, which depends on individual traits,
robot characteristics as well as type of the interaction.

Existing literature on this topic tends to focus on person
following, where the objective is simplified to maintain
relative distance without considering orientation. Note that
when following a person from behind, the robot is implicitly
given the free space in the wake of the leading person,
thus obstacle avoidance may be easier. For person following,
there are published methods based on P- or PID-control
and its variants [9] [10] [11] [12] [13], simple distance and
distance-and-velocity based control laws [14] [15], a finite
state machine [16], and on-line probabilistic roadmap [17]
[18], and a variant of pure pursuit [19]. For person pacing,
there is a classical method based on velocity obstacle [20].
However, smoothness and comfort of robot motion, and
adaptation to user-specified clearance and orientations are
largely neglected in the existing literature.

Our goal is to develop a versatile motion planning algo-
rithm that is able to generate behaviors that are appropriate
across a wide range of situations, while respecting the user-
specified distance and orientation preferences. The algorithm
must consider the robot and the person’s current config-
uration, observed location and velocities of pedestrians,
and static structures in the environment, while moving as
smoothly and comfortably as possible.

The Model Predictive Equilibrium Point Control (MPEPC)
[2] is an on-line local trajectory planning and control algo-
rithm for robot navigation in dynamic and uncertain environ-
ments [2] [21]. We show that with a simple task description
for person pacing, an agent with the MPEPC algorithm can
make intelligent decisions on-line, maximizing the expected
progress toward achieving the task while minimizing the
action cost and the probability of collision. We present
navigation examples generated from real data traces, where a
wheelchair robot exhibits very reasonable behaviors moving
in tandem with another person in an open hall and in a tight
corridor with multiple pedestrians.

We describe the MPEPC framework, controller design and
trajectory parameterization in Section II, and present a novel
task description for person pacing in Section III, and our
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low-overhead pedestrian tracking with lidar in Section IV.
Results are shown in Section V.

II. MODEL PREDICTIVE EQUILIBRIUM POINT
CONTROL

The MPEPC framework for navigation [2] is an on-line
local trajectory planning and control algorithm that works
well in dynamic and uncertain environments. The MPEPC-
navigator is a receding-horizon model predictive planner,
where the search space for the planner is defined by a pose-
stabilizing feedback controller which was shown to work
well with a physical robot [22]. As will be explained in this
section, we use target pose and overall gain of the controller
to compactly parameterize a continuous space of realizable
closed-loop trajectories for the robot.

The MPEPC planner constantly replans as new informa-
tion becomes available. At each planning cycle, the planner
searches for the best trajectory that optimizes the expected
value of robot behavior within a fixed time horizon for a
given task.

A. MPEPC and Probabilistic Trajectory Evaluation

MPEPC formulates the problem of local navigation as a
continuous, low dimensional and unconstrained optimization
problem which is easy to solve. During the optimization
process, we evaluate each trajectory candidate based on
its expected utility for a given task, smoothly discrediting
trajectories that may lead to collision based on estimated
probability of collision along the trajectory.

Formally, we write

minimize
z∗=(x∗,ζ )

J(q,x∗,ζ ,T ) (1)

subject to q̇ = fπζ
(q,πζ (q,x∗)) (2)

q(0) = qI (3)

where q is the robot state, x∗ is the target pose for the
controller, ζ is the controller gain, and T is the time horizon.
Equation (1) is the multi-objective cost function for the
expected cost (or negative utility) of a given trajectory that
needs to be minimized, (2) is the dynamics of the robot under
the stabilizing control policy which determines control input
u = πζ (q,x∗), and (3) is the initial state of the robot at the
beginning of the planning cycle. MPEPC optimizes over the
space of trajectories parameterized by the controller target
and gain, z∗ = (x∗,ζ ).

B. Controller Design, Robot Model and Trajectory Parame-
terization

We use the controller-based trajectory parameterization to
efficiently narrow down the search space for the planner to
the space of trajectories that are smooth, and are realizable
by the controller.

The pose-stabilizing feedback controller that we use [2]
is based on the kinematic control law (4) developed in [22]
to provide fast, intuitive, smooth and comfortable motion.
We have shown that linear velocity v and angular velocity

Fig. 1. Egocentric polar coordinate system with respect to a vehicle. From
an observer situated on the vehicle and fixating at a target pose T, r is the
radial distance to the target, θ is the orientation of T with respect to the
line of sight from the observer to the target, and δ is the orientation of the
vehicle heading with respect to the line of sight. At r = 0, the line of sight
is aligned with the target. Here, both θ and δ have negative values.

ω satisfying the control law (4) will globally drive the robot
toward any target pose by singular perturbation [23]. We have

ω =−v
r
[k2(δ − arctan(−k1θ))+(1+

k1

1+(k1θ)2 )sinδ ]

(4)
where k1 and k2 are shape parameters1 and the egocentric
polar coordinates (r,θ ,δ )T describe the relation between a
robot pose and a target pose for the controller (Fig. 1).

The path curvature κ resulting from the control law is

κ =−1
r
[k2(δ − arctan(−k1θ))+(1+

k1

1+(k1θ)2 )sinδ ]

(5)
with a relation ω = κv which holds for planar motion.

One of the key features of the control law is that its
convergence property does not depend on the choice of
positive linear velocity v. We choose a curvature-dependent
linear velocity to make motion comfortable:

v(κ) = v(r,θ ,δ ) =
vmax

1+β |κ(r,θ ,δ )|λ
(6)

where the parameters β and λ determine how the vehicle
slows down at a high curvature point, and vmax is a user-
imposed maximum linear velocity, with v→ vmax as κ → 0.
It can be shown that all velocities, acceleration and jerks are
bounded under (4) and (6) so that the motion of the robot is
smooth and comfortable. Here, the parameters are fixed to
k1 = 1.5, k2 = 3, β = 0.4 and λ = 2.

By adding a slowdown rule near the target pose with

v = min(
vmax

rthresh
r , v(κ)) (7)

with some user-selected distance threshold rthresh, the target T
becomes a non-linear attractor that the vehicle will exponen-
tially converge to.2 The maximum linear velocity parameter
vmax can be understood as a gain value which determines the
strength of the non-linear attractor. For our experiments, we
use rthresh = 1.2m.

1k1 determines how fast the orientation error is reduced relative to the
distance error. E.g. k1 = 0 reduces the controller to pure way-point following.
k2 is a gain value.

2With (7), v = v(κ) when r > rthresh since v(κ)≤ vmax. Also, v∼ r near
r = 0 canceling 1/r in (4) and rendering the system exponentially stable.
Proofs shown in [22].
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Fig. 2. Left: The wheelchair robot (0.76× 1.2m). The wheelchair is
differentially driven, such that linear and angular velocity are controlled
independently. The robot is underactuated such that the linear velocity is
always aligned with the orientation of the robot (i.e. the robot cannot move
sideways). The motor becomes saturated at linear and angular accelerations
of 0.4m/s2 and 1.0rad/s2. The robot model for forward prediction fully
reflects these constraints. Right: Randomly selected 300 samples from
the continuous space of smooth and realizable closed-loop trajectories,
parametrized by the four dimensional vector z∗ = (r,θ ,δ ,vmax)

T over a time
horizon [0,T ]. The trajectories shown are generated from the dynamically
simulated vehicle (with non-holonomic constraints and actuator saturations)
under the stabilizing kinematic controller.

Now, we have a 4-dimensional vector

z∗ = (T,vmax)
T

= (r,θ ,δ ,vmax)
T (8)

which completely describes any target of the vehicle system
in the configuration-time space, and the trajectory of the
vehicle converging to that target. Thus z∗ also parametrizes
a space of smooth trajectories generated by the feedback
control, (4) - (7). The configuration-time space for the robot
is 4-dimensional, so our parameterization is as compact as
possible.

Although the control law is kinematic, the model for
the MPEPC is constructed to closely match the non-linear
dynamics of the physical wheelchair robot (Fig. 2, Left).
For forward estimation of the robot trajectory, we simu-
late the response of the combined controller-robot system
via the dynamic model which includes internal controller
gains, torque saturations and input deadzones. The resulting
estimated future trajectory of the robot (Fig. 2, Right) is
evaluated for the expected progress, the cost of action and
the cost of collision as shown in the next section.

III. TASK DESCRIPTION FOR PERSON PACING
AND TRAJECTORY EVALUATION

A. Person Pacing

We want our robot to be able to accompany a person at
user-defined distance and orientation. Furthermore, we want
to be able to accommodate cases when there are more than
one desired orientation, e.g. when walking on either side of
the target person is equally desirable.

Let ρ(t) be the estimated radial distance between the robot
and the target person at time t, and η(t) ∈ (−π,π] denote
the estimated relative orientation of the robot as measured
from the heading of the target person at time t. We introduce

Fig. 3. (Best viewed in color) Example cost surfaces for person pacing
which encode the user specified desired distance and orientation. The person
to follow is depicted as a circle in the middle, with arrow indicating the
person’s heading. Red-to-blue color represents high-to-low cost. The cost
surface is attached to the estimated pose of the person. See text for details.
Left: A cost surface with the user specified desired orientation of π/2rad
(on the left side of the person) and the desired distance of 1m. Right: The
desired distance is the same at 1m, but with the preferred orientation of
±π/2rad (on either side of the person).

a straightforward cost metric F(·) for person pacing (which
is in a unit of distance),

F(t) = |ρ(t)−ρd |+ c1 ·ρd · |g(η(t)−ηd)| (9)

where ρd and ηd denote the user-specified desired distance
and orientation in the person-frame,3 c1 is the weight for the
orientation error, and g(·) is a function that wraps any angle
to interval (−π,π].

If there is no specific preference for the orientation
(or when the heading of the person to follow is inde-
terminate), the problem reduces to person following and
F(t) = |ρ(t)−ρd |. If there are more than two desired ori-
entations, we replace the orientation error |g(η(t)− ηd)|
with min(|g(η(t)−ηd1|, |g(η(t)−ηd2)|, ...). Example cost
surfaces are shown in Fig. 3.

B. Trajectory Evaluation
In our setting, the problem of person pacing for the planner

is to find the most desirable trajectory parameterized by the
4-dimensional vector z∗ at each planning cycle, so that the
robot can make the most progress for a given task while
minimizing discomfort and the chance of collision.

Formally, let
qz∗ : [0,T ]→C (10)

be a trajectory of the robot parametrized by z∗ within a finite
time horizon T , where C ' R2×S1 is the configuration space
of the robot. The optimization problem for the predictive
planner is to select z∗ which minimizes the following sum
of expected costs over the trajectory qz∗([0,T ]):

J(x,z∗,T ) = E[φ(qz∗)]

= E[φprogress +φaction +φcollision] (11)

where φprogress is the negative progress, φaction is the cost of
action, and φcollision is the cost of collision.

3The desired orientation is defined with respect to the heading of the
target person, and is not a function of robot orientation in the reference
frame.
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1) Probability of Collision: Suppose a robot is expected
to travel along a trajectory qz∗ at time t j. We model the
probability pi

c of collision of the robot with the i-th object
in the environment over a small time segment [t j, t j +∆t],
including the target person the robot is following, as a bell-
shaped function:

pi
c(di( j),σi) = exp(−di( j)2/σi

2) (12)

where j is a shorthand notation for the j-th sample pose
of the robot at time t j along the trajectory with tN = T ,
di( j) is the minimum distance from any part of the robot
body to any part of the i-th object at time t j which is com-
puted numerically, and σi is an uncertainty parameter. We
treat static structures as a single object in the environment.

From (12), we define the survivability ps( j), which rep-
resents the probability that the robot motion over the small
time segment along the trajectory will be collision free, as

ps( j)≡
m
Π
i
(1− pi

c(di( j),σi)) (13)

where m is the number of obstacles including the static
structure. In our experiments, we use empirically chosen
values for the uncertainty parameters: σ = 0.1 for the static
structure, which represents robot position/simulation uncer-
tainties; and σ = 0.2 for dynamic objects, which represents
combined uncertainties of the robot and dynamic objects.

2) Expected Cost of a Trajectory: The negative progress
φprogress( j) over qz∗([t j, t j +∆t]) can be written as

φprogress( j) = F(t j +∆t)−F(t j) (14)

where the relevant values of ρ(t j) and η(t j) is computed
from the estimated pose of the robot qz∗(t j) and the estimated
pose of the target person at time t j from the tracker result.

With (13) and (14), we can write the expected negative
progress E[φprogress] as an integral of the negative progress
weighted by the survivabiliy,

E[φprogress]≡
N

∑
j=1

ps( j) ·φprogress( j) (15)

To guarantee the robot will never voluntarily select a trajec-
tory leading to collision, after any sample with pi

c(k) = 1,
we set pi

c( j) = 1 (thus ps( j) = 0) for all j ≥ k.
Similarly, with (12), we can write the expected cost of

collision as

E[φcollision]≡
N

∑
j=1

m

∑
i

pi
c( j) ·φ i

collision( j) (16)

where φ i
collision( j) is the agent’s idea for the cost of collision

with the i-th object at the j-th sample. In this paper, we treat
all collisions to be equally bad and use φ i

collision( j) = 0.1 for
all i, j.

For the action cost, we use a usual quadratic cost on
velocities:

φaction =
N

∑
j=1

(c2v2( j)+ c3ω
2( j))∆t (17)

Fig. 4. Robot evaluating a candidate future trajectory. The expected
negative progress of a candidate robot trajectory (red) is evaluated by
integrating the negative progress (14) over the moving cost surface (Fig. 3)
attached to the estimated trajectory of the target person (green), weighted
by the estimated survivability (13) along the candidate robot trajectory. The
total expected cost also considers the expected cost of collision (16) and
the quadratic cost of action (17). The cost function is generated with user-
specified desired distance and orientation (9). See text for details.

where c3 and c4 are weights for the linear and angular
velocity costs, respectively. For the expected cost of action,
we assume E[φaction] = φaction.

The overall expected cost of a trajectory is the sum of (15),
(16), and (17), as given in (11). The probability weights pi

c
and ps (12) - (13) can be understood as mixing parameters,
which properly incorporates the collision constraint into the
cost definition. The use of probability weights renders the
collision term completely dominant when the robot is near
an object, while letting the robot focus on progress when
the chance of collision is low. With (11), the optimization
problem (1) is now in continuous, low-dimensional and
unconstrained form.

For our experiments, the weights are fixed to c1 = 0.75,
c2 = 0.2, and c3 = 0.1.

C. Implementation

We have used off-the-shelf optimization packages4 for
implementation. For our experiments, the receding horizon
was set at T = 5s, the plan was updated at 2Hz, and the
underlying feedback controller ran at 20Hz.

In practice, we found the performance of the optimizer
(for both speed and convergence to the global minimum)
depends greatly on the choice of the initial conditions. Thus
the optimization process is implemented in two phases. First,
we coarsely sample the search space5 to find a good initial
condition. The best candidate from the pre-sampling phase
is passed to a gradient-based local optimizer as an initial
condition for the final output.

With our problem formulation the computational cost
for the numerical optimization is small, achieving real-time
performance. With our C++ implementation on a 2.66-GHz
laptop, a typical evaluation of a trajectory takes less than a
millisecond. In our experiments, on average ∼ 62 trajectories
were evaluated per optimization (see Section V).

4fmincon in MATLAB and NLopt [24] in C++.
5For speed, we use a dozen pre-selected sample trajectories (including

the optimum from the previous time step and typical turns) in MATLAB.
We sample by Controlled Random Search with local mutation [24] in C++.
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IV. REAL-TIME PEDESTRIAN TRACKING

Here we briefly describe our implementation of the pedes-
trian tracker, although the main focus of the paper is on
versatile motion planning. Our tracker is a low-overhead
solution at minimal computational cost using an on-board
laser sensor. The tracker can detect and track multiple
pedestrians in the sensor’s field of view and can handle
occlusions for a short period of time.

From the static map of the environment and a current laser
scan (which is typically very noisy, e.g. Fig. 5), we first
identify portions of the laser scans that are not explained by
the static map. In our current implementation, laser rays that
fall in cells which were previously marked as free space are
classified as dynamic [25].

We cluster rays in the dynamic scan by identifying con-
nected components, and the resulting clusters are validated
for a pedestrian model based on size and shape (similar
to identification of leg candidates in [26] [27] [28]). The
validated clusters are tracked via Kalman Filters for position
and linear velocity. Future trajectory of detected pedestrians
are estimated using constant velocity model.

To estimate the heading of the person, we assume that
the heading of a person is aligned with the estimated linear
velocity if the speed is larger than a threshold (> 0.1m/s).
Otherwise the heading of the person is indeterminate. We
handle temporary occlusions by keeping track of an object
for a short period of time even when it is not observed. An
example result is shown in Fig. 6.

V. RESULTS

In this section, we show three example scenarios that are
typical in real life situations. The wheelchair robot navigates
in challenging environments with the proposed algorithm,
under varying user preferences in the distance ρd and the
orientation ηd . The maps and the pedestrian trajectories in
the experiments are collected from the physical wheelchair
robot, and the robot behaviors are simulated using the real
data traces.

In Fig. 7, the robot starts at some distance away from the
target pedestrian and quickly sets itself up on the left side
of the person, with the desired distance and orientation of
ρd = 1.5m and ηd = π/2. The mission is relatively easy,
and the robot is able to follow the person smoothly near the
desired distance and orientation (Fig. 8, Right). The full set
of trajectories explored over the navigation run is shown on
Fig. 7, Right. Overall, the robot moves smoothly, except a
brief slowdown near 14s (Fig. 8, Left) to avoid collision with
a pedestrian coming across.

Fig. 9 shows the trajectory of the robot in the same
environment, but it is now instructed to pace the person
on the right, with the desired distance and orientation of
ρd = 1.5m and ηd = −π/2. The mission is more difficult
as the robot has less space to maneuver, but the robot can
successfully speed up, slow down, change its heading to
avoid a pedestrian and return to its desired position. The full
set of trajectories that were explored over the navigation run
is shown on Fig. 7, Right. As can be seen in this example,

Fig. 5. Left: A (noisy) scan from a laser range finder in an environment
with a single pedestrian, with the legs of a pedestrian in a red circle. Right:
Scan values projected onto map coordinates.

Fig. 6. Tracker result in a crowded hall from the wheelchair robot. Robot
pose is depicted as a black rectangle. Red circles and protruding lines denote
the current position and estimated velocities of the pedestrians being tracked.
Estimated future positions (up to 5 seconds) are shown by empty circles with
constant velocity model.

the robot with the proposed navigation algorithm is able to
temporarily move away from the user-specified distance and
orientation preferences to avoid collision with other obstacles
(Fig. 10, Right).

Fig. 11 show the most challenging example, where the
robot (0.76× 1.2m) has to move in a tight corridor (2m
wide) with multiple pedestrians. In this example no specific
preference in orientation is given, and the problem is reduced
to person following with the desired distance of ρd = 1.8m.
The example shown is very difficult as the robot needs to
move in confined space and there is a pedestrian quickly
moving in from behind. The robot is able to successfully
follow the person, speeding up, switching sides, slowing
down and veering as needed. See Fig. 11 - 13 for details.

Over the three example runs shown, 10240 trajectory can-
didates were evaluated in 166 planning cycles, averaging 61.7
trajectory evaluations per optimization, achieving real-time
performance. The robot exhibits very reasonable behaviors
in realistic scenarios using noisy data.

VI. DISCUSSION

Person pacing is a task that can greatly benefit from an
excellent on-line trajectory planning algorithm. For a robot
moving alongside a person, both the goal (target person) and
the obstacles (pedestrians) are mobile, and it is difficult to
accurately predict motion of a pedestrian for more than a few
seconds; the environment is highly dynamic and uncertain.
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Fig. 7. (Best viewed in color) In an open hall (13.5×18m) with multiple pedestrians (circles), the robot (rectangle) estimates the trajectories of dynamic
objects over the planning horizon (protruding lines) and paces the target person (green) on the left without collision. This is a relatively easy mission.
Left and Center: The trajectories overlaid with snapshots of the robot (rectangle) and the pedestrians (circles) at 1s intervals. The axis are in grid
coordinates (5cm per grid). The robot starts from the bottom pf the map, trying to pace the person in the middle on the left side. Right: Trajectories
sampled by the planner (gray), time-optimal plans selected at each planning cycle (blue) and the actual path taken (red).

Fig. 8. Left: Raw velocity estimates of the target person and the robot. The robot reaches the desired distance and orientation near 8s, and paces the
target person at a similar speed. The robot briefly slows down near 14s to avoid collision with a pedestrian coming across its path. Right: Distance and
orientation error for the person pacing, and distance to nearest obstacle over the trajectory. As the mission is relatively easy, the error stays low for most
of the trajectory.

Motion planning in dynamic and uncertain environments
is a challenging problem which, in our opinion, requires
probabilistic trajectory planning. For example, path planning
alone (e.g. RRT [29]) is not sufficient, since a path is
defined in the configuration space and does not include the
important timing information that is required to efficiently
follow or avoid dynamic objects. Potential-field methods can
be simple, but they have problems such as being trapped
in local minima, and are generally not suitable in highly
dynamic environments [16].

The MPEPC framework provides a tool for on-line local
trajectory planning in dynamic and uncertain environments,
by constant replanning with information feedback6 and by
efficient optimization with compact parameterization of the
trajectory space. The overall algorithm is efficient since the
search space is small and does not require post-processing
to compute the control inputs. Planning and control is truly
integrated in our framework, as the planner only searches
in the space of closed-loop trajectories that are smooth and
realizable by construction.

The decision-theoretic trajectory evaluation, with the es-
timated probability of collision, allows easy integration of
user-preference into the objective function. With the prob-

6We have found the fast information feedback is crucial. The quality of
robot motion dropped significantly when the planning rate was slowed to
1Hz. Data not shown.

ability weights, any trajectory that may lead to collision is
smoothly discredited based on the estimated probability of
collision along the trajectory, regardless of the form of the
progress metric. This gives us great flexibility in terms of
cost design. As can be seen from the examples, the algorithm
works well with the straightforward progress metric (9)
which is a function of user preferences.

One limitation of the current implementation of the algo-
rithm is the constant velocity model for pedestrian behaviors.
Pedestrians can take a sharp turn around a corner, and can
actively avoid other agents, including the wheelchair robot.
As the model does not capture such agent intentions, the
resulting robot motion may appear too submissive which
may not be suitable for a wheelchair robot.7 We believe
that incorporation of intention estimation will significantly
improve the pedestrian behavior model, although it is out of
scope of this paper.

The proposed planner is able to generate very reasonable
behaviors by making locally optimal decisions with the
information available, i.e. the noisy tracker outputs and
the conservative model which predicts that other agents
will not make way for the robot. We plan to improve the
pedestrian model for the implementation of the algorithm on
the physical robot.

7We thank the reviewers for making this point.
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Fig. 9. (Best viewed in color) In an open hall (13.5×18m) with multiple pedestrians (circles), the robot (rectangle) estimates the trajectories of dynamic
objects over the planning horizon (protruding lines) and paces the target person (green) on the right without collision. The robot has to maneuver in a
tighter space and avoid an oncoming pedestrian. The robot successfully speeds up, slows down, changes its heading to avoid the pedestrian and returns to
its desired position. Left and Center: The trajectories overlaid with snapshots of the robot (rectangle) and the pedestrians (circles) at 1s intervals. The
axis are in grid coordinates (5cm per grid). The robot starts from the bottom, trying to pace the person in the middle on the right. Right: Trajectories
sampled by the planner (gray), time-optimal plans selected at each planning cycle (blue) and the actual path taken (red).

Fig. 10. Left: Raw velocity estimates of the target person and the robot. Overall, the robot moves smoothly to pace the target person, stopping (13s),
speeding up, and turning as needed to avoid collision. Right: Distance and orientation error for the person pacing, and distance to nearest obstacle over
the trajectory. Compared to Fig. 8, this figure shows that the robot is able to move away from the user-specified distance and orientation to avoid collision.

VII. CONCLUSIONS

In this paper, we have introduced a novel motion planning
algorithm for person pacing, which is one of the most
common and important navigation tasks when people inter-
act with other people, and with a service robot. We have
described the requirements for the movement of a robot
that has to accompany a human, and cast the task as a
low-dimensional, continous, and unconstrained optimization
problem for which we have developed a task-specific cost
function. We have demonstrated that the proposed algorithm
allows the robot to accompany a person across a wide range
of situations, while respecting user-specified distance and
orientation preferences.

To accomplish the task, the algorithm considers the robot
and the person’s current configuration, observed location
and velocities of pedestrians, and static structures in the
environment, making decisions on-line so that the robot can
move along with a person at desired distance and orienta-
tion smoothly and comfortably while maneuvering through
obstacles. The performance of the algorithm depends on the
integrated planning and control architecture of the MPEPC
framework, and the decision-theoretic trajectory evaluations
based on the estimated probability of collision.

The proposed algorithm is important as it addresses the
difficult problem of navigating in an uncertain and dynamic

environment safely and comfortably while avoiding hazards
and respecting user preferences, which is a necessary task
for autonomous passenger vehicles.
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