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Abstract

We propose a complexity measure for assembly supply chains, based on the concept of
information entropy. This complexity measure takes into account factors such as the supply
chain configuration, the level of variety offered by each node of the supply chain, and the
demand ratios across all the variants offered by a node. We investigate the relationship between
the complexity and the cost of an assembly supply chain. We first study the degree of consistency
between the cost and complexity criteria when comparing assembly supply chains with the same
configuration but different levels of product variety. We show that the cost and the complexity
are equivalent under certain conditions, in the sense that both of them rank a given set of
supply chains in the same order. Even when these conditions do not hold, our numerical
study demonstrates that the cost and complexity criteria rank supply chains consistently in
an overwhelming majority of cases. Furthermore, the inconsistencies occur mostly when the
supply chains have very small cost differences. We then study how well the cost and complexity
criteria agree when comparing assembly supply chains with the same level of product variety, but
different configurations. In such cases, we show that the consistency between cost and complexity
criteria is not very reliable. Overall, our results suggest that the complexity measure is a good
proxy for the cost of an assembly supply chain when evaluating alternative levels of product
variety that will be delivered by a given supply chain configuration, but not so when evaluating
alternative supply chain configurations to deliver a given level of product variety.

1. Introduction

In many industries, previous decades brought about an explosion of product variety. For example,

the number of distinct vehicle models offered in the US rose from 44 in 1969 to 168 in 2005

(Ward’s Automotive Yearbook, 1970 & 2006). The number of styles of running shoes went from

five in the early 70s to 285 in the late 90s (1998 Annual Report of the Federal Reserve Bank

of Dallas). The growth of product variety brings with it many challenges. For instance, several

studies suggest that high product variety has a negative effect on manufacturing performance such

as increasing manufacturing complexity, lowering productivity and degrading quality (MacDuffie

et al., 1996; Fisher and Ittner, 1999). Many manufacturing firms have adopted modular product

designs to cope with the challenges posed by high variety. A modular design decomposes the product

into several modules with standard interfaces, and high product variety is achieved through the
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combinational assembly of different modules. In doing so, modular designs support a large variety

of end products while still maintaining high volume for each module, thereby creating economies

of scale in production of modules and components (see, for example, Swaminathan, 2001).

One important trend in supply chain management, enabled by modular product designs, is the

emergence of modular assembly supply chains. In a modular assembly supply chain, the manufac-

turer apportions the product into different modules, most of which are outsourced to and assembled

by suppliers. The manufacturer does only the final assembly of a few modules. For instance, Volvo’s

S80 model is assembled from 23 different modules, delivered directly to the final assembly line by

17 different assembly units, 11 of which are operated by suppliers (Fredriksson, 2006).

In many instances, most notably when bringing a new product to the market, a manufacturing

firm must make design decisions about how to modularize the product and what level of variety to

offer for each module. Of course, such modularization and variety decisions influence the cost to be

incurred across the entire supply chain. Thus, a manufacturing firm would benefit from getting a

handle on the costs that correspond to different modularization and variety decisions. However, cost

models require the estimation of many parameters, e.g., manufacturing costs, holding and shortage

costs, transportation costs, production and transportation leadtimes. Furthermore, sophisticated

cost models present many analytical challenges due to the network structure of an assembly supply

chain, and even more so when product variety is taken into account. Hence, such cost models

are difficult to develop, analyze and utilize when making modularization and variety decisions in

assembly supply chains.

In this paper, we propose a new performance measure for assembly supply chains: complexity.

This complexity measure is based on information entropy as applied to an assembly supply chain and

recognizes the product variety to be offered by the manufacturer. We explore if, when and to what

degree this complexity measure is consistent with cost. In particular, we illustrate the usefulness of

this complexity measure by considering two different scenarios. First, we consider a manufacturer

who has already settled on a given network of suppliers, but needs to compare different levels of

product variety to be offered by the supply chain. We then analyze the agreement between the cost

and complexity criteria when evaluating different levels of product variety. Second, we consider a

manufacturer that has already decided to offer a given assortment of variants, but needs to choose

whether to use a modular or non-modular assembly supply chain to deliver that assortment. Once

again, we analyze the agreement between the cost and complexity criteria when choosing from a

modular or non-modular supply chain.

When comparing supply chains with the same configuration but different levels of product va-

riety, we show that the cost and the complexity are equivalent under certain conditions, in the

sense that both of them rank a given set of supply chains in the same order. We also conduct
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an extensive numerical study to check how the agreement between cost and complexity is affected

by different factors (e.g., number of echelons, number of suppliers, the distribution of consumer

demand across variants offered by the manufacturer, etc.). Even when the sufficient conditions for

equivalence do not hold, our numerical study demonstrates that the cost and complexity criteria

rank supply chains consistently in an overwhelming majority of cases. Furthermore, the inconsis-

tencies occur mostly when the supply chains have very small cost differences. In contrast, when

comparing supply chains with the same level of product variety, but different configurations, we

show that the consistency between the cost and complexity criteria is not very reliable. Overall,

our results suggest that the complexity measure is a good proxy for the cost of an assembly supply

chain when evaluating alternative levels of product variety that will be delivered by a given supply

chain configuration, but not so when evaluating alternative supply chain configurations to deliver

a given level of product variety.

The paper is organized as follows. In Section 2, we review the related literature. In Section 3, we

introduce our complexity measure and we describe the cost model that will serve as a benchmark.

We then study the relationship between cost and complexity as a function of variety (in Section 4)

and as a function of supply chain configuration (in Section 5). Section 6 concludes the paper. All

the proofs are included in Appendix B of the online supplement.

2. Literature Review

An assembly system is a tree-structured network, where each node produces a single item and

has at most one successor. Early research on assembly systems seeks to characterize the optimal

ordering policy at each node of the system to minimize the total system cost. Schmidt and Nahmias

(1985) use a finite-horizon model to explore an assembly system with two components. Rosling

(1989) studies the periodic review, infinite-horizon inventory problem and shows that the assembly

system can be reduced to an equivalent serial system. Subsequent research has explored more

elaborate assembly systems, for example, assembly systems in which not only the demand but also

the supply may be random (e.g. Gurnani et al., 1996; Bollapragada et al., 2004), assembly systems

in which inventory levels may be supplemented with returns (e.g. DeCroix and Zipkin, 2005) and

decentralized assembly systems (e.g. Bernstein and DeCroix, 2006; Gerchak and Wang, 2004). In

contrast to an assembly system, an assemble-to-order system is traditionally defined as a two-

echelon system, in which multiple products are assembled from a given set of components. For a

review of the research on assemble-to-order systems, see Song and Zipkin (2003). Assemble-to-order

systems present one additional challenge that is not present in the single-product assembly system:

allocating a component’s inventory among several different products that use the component (hence,
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the need to restrict attention to two-echelon systems).

The assembly supply chain we consider in this paper has elements of both an assembly system

(in that the supply chain has the same tree structure as the assembly system) and an assemble-to-

order system (in that each node of the supply chain produces multiple variants of its output, each

of which goes into multiple items in the downstream node). In a supply chain as complicated as

the one considered in this paper, even when one limits attention to a given ordering policy, it is still

very challenging to obtain an exact expression for inventory costs. As our main focus in this paper

is to introduce a complexity measure, we do not attempt to develop an exact expression for the

supply chain costs. To analyze the agreement between cost and complexity, we make simplifying

assumptions to obtain only a rough estimate of the costs that will be incurred in the supply chain.

In particular, we assume the nodes in the assembly supply chain can be decoupled, after which

each node follows an order-up-to policy to satisfy a certain service level objective.

One application of the proposed complexity measure is to make product variety decisions for an

assembly supply chain with a given network of suppliers. The operations literature has given scant

attention to the management of product variety in a supply chain. Kurtulus and Toktay (2005)

analyze if and when a retailer should delegate variety and pricing decisions to a manufacturer.

Singh et al. (2005) examine the effect of supply chain structure, in particular, the effect of drop-

shipping, on the optimal assortment. Aydin and Hausman (2009) consider the coordination of

product variety decisions in a single-retailer, single-manufacturer supply chain. Similar to these

papers, we use a demand model where the customer demand is allocated among many variants of

a product. Given that we are modeling an assembly supply chain, the supply relationships in our

model are significantly more complicated than in this earlier work. Instead of developing a detailed

analysis of cost-minimizing or profit-maximizing variety levels, we focus on the use of complexity

measure to evaluate alternative levels of product variety. In that sense, our work complements

the earlier literature by showing the usefulness of complexity measure when choosing the level of

variety.

Another application of the proposed complexity measure is to compare the efficiency of two

different supply chain structures: modular versus non-modular assembly supply chains. Such supply

chain configuration decisions received limited attention in the literature. Bernstein and DeCroix

(2004) analyze a modular assembly supply chain to determine the optimal transfer prices between

the manufacturers and subassemblers. They identify if and when a modular assembly supply chain

is more beneficial than a non-modular assembly supply chain. Thomas and Warsing (2007) consider

a service supply chain in which there is external demand not only for the modular end product, but

also for the components that make up the end product. They evaluate the savings that could be
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obtained if the supply chain adjusted its inventory levels not only by placing orders with external

vendors, but also by utilizing assembly and disassembly operations to shift the inventory from the

end product to the components or vice versa. Taking an empirical approach, Randall and Ulrich

(2001) use data from U.S. bicycle industry to examine the relationship among product variety,

supply chain structure and system performance. They show that firms that match their supply

chain structure to the type of variety they offer often outperform those that fail to make such

choices, where the performance is measured based on cost and revenue analysis. Salvador et al.

(2004) also use empirical data to explore how a firm’s supply chain, defined as the whole of its

supply, manufacturing and distribution networks, should be configured, when different degrees of

customization are offered. In a similar vein, we compare modular and non-modular assembly supply

chains, with the goal of illustrating the usefulness of the complexity measure.

With different applications in mind, several different definitions of complexity have been pro-

posed by researchers. See, for example, Suh (2005) for a complexity definition particularly appli-

cable in product design, and Cover and Thomas (1991) for a discussion of Kolmogorov complexity,

which is a measure of computational resources needed to describe a string of text. A commonly-

used complexity definition is based on the information entropy, proposed by Shannon (1948) in

the context of communication systems. Shannon’s information entropy is a measure of the uncer-

tainty surrounding the outcome of a random experiment. The information entropy has been used

to study complexity in several different areas, including communication networks, biology, and

physics. Shannon’s information entropy has been used to measure the complexity of manufacturing

systems as well. Deshmukh et al. (1998) derive an information-theoretic entropy measure of com-

plexity for a given combination and ratio of part types to be produced in a manufacturing system.

Zhu et al. (2008) study the operator choice complexity in mixed model assembly lines and develop

a methodology to find the optimal assembly sequence to minimize manufacturing complexity.

3. Model Description

Consider an assembly supply chain, where each node can have multiple suppliers, but a given node

cannot be a supplier to multiple nodes. Suppose there are n nodes in the assembly supply chain.

As a convention, we let node n be the final assembler. In keeping with our focus on product

variety, we assume that each node in the most upstream echelon can produce a number of variants.

A downstream node can potentially assemble any combination of the variants provided by its

suppliers, and each combination counts as a distinct variant. See Figure 1 for an illustration. We

assume that if variant v of node j is used when producing variant u of node i, then one unit of

variant v goes into one unit of variant u. This assumption is merely to simplify the exposition.
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Figure 1: Relationship between the demand vectors of upstream and downstream nodes. In this
figure, nodes j and j+1 are suppliers to node i. Each of node j and j+1 produces two variants, which
results in node i producing four different variants of its product, where each variant corresponds
to a distinct combination of the variants supplied by nodes j and j + 1.

We define the following notation:

Vi : the number of variants that node i can produce, i = 1, . . . , n.

Si : the set of nodes that are suppliers to node i, i = 1, . . . , n.

Aijv : the set of variants produced at node i that use variant v from node j, where node j is a

supplier to node i, i.e., j ∈ Si.

Let qiv denote the fraction of node-i demand that belongs to variant v = 1, . . . , Vi. Hereafter,

we refer to qiv as the demand share of variant v at node i. In addition, define the vector qi :=

(qi1, qi2, . . . , qi,Vi), which captures the mix ratio of the variants produced by node i. Hereafter, we

refer to qi as the demand vector of node i. The final assembler’s demand vector, qn, determines

how the demand at all other upstream nodes is allocated among several variants produced at those

nodes (see Figure 1). In particular, using the notation introduced so far, we have the following

relationship between the demand share of variant v at node j, qjv, and the demand vector of node

i, qi, where node j is a supplier to node i, (i.e., j ∈ Si):

qjv =
∑

u∈Aijv

qiu, j ∈ Si. (1)

3.1 Complexity Model of An Assembly Supply Chain

A measure of the assembly supply chain performance should take into account factors such as the

supply chain’s configuration, the number of variants produced at each node of the supply chain,

and the demand vector of each node. In an effort to capture these factors, we use a complexity

measure based on Shannon’s information entropy. The information entropy of a random experiment

is a measure of the uncertainty about the outcome of the random experiment (Shannon, 1948).

According to Shannon’s definition, the information entropy of a random experiment with r possible
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outcomes, whose probabilities of occurrence are p1, p2, ..., pr, is

H = −Υ
r∑
i=1

pi log2 pi, (2)

where the positive constant Υ amounts to a scaling factor.

In what follows, we offer two different complexity measures for an assembly supply chain, node-

based complexity and arc-based complexity, and we relate these complexity measures to Shannon’s

information entropy.

Node-based Complexity: Let HN denote the node-based complexity of the supply chain

and define it as

HN = −
n∑
i=1

Vi∑
v=1

qiv
n

log2

qiv
n
. (3)

One possible interpretation of this complexity measure is the following. Suppose, for each node,

we form a pool of variants produced by that node, where each variant is represented in a quantity

proportional to its demand share. Consider the random experiment where we first pick a node at

random, and we then pick one item from this node’s pool. The probability of picking variant v of

node i is qiv/n (since we pick node i with probability 1/n and variant v of node i with probability

qiv). The information entropy of this random experiment is given by (3) and yields our node-based

complexity measure. Loosely speaking, the node-based complexity indicates the level of uncertainty

about what variant in the supply chain will be demanded next.

Arc-based Complexity: The node-based complexity has the attractive property that it takes

into account the number of nodes in the supply chain as well as the split of demand among the

variants. However, there is one aspect of the supply chain that is ignored by the previous definition.

Two supply chains may have the same number of nodes, but they can be very different from one

another due to the configuration of supply relationships among the nodes. See, for example, Figure

2 for an illustration. In order to better capture the information about supply chain configuration,

we offer an alternative complexity measure, the arc-based complexity. Let Li denote the number of

suppliers of node i, i.e., Li ≡ |Si|. In order to have a complete picture of the flows into the supply

chain, we also assume that there is a virtual supplier that is linked to each of the nodes in the

most upstream echelon of the supply chain. Hence, Li = 1 for all suppliers i in the most upstream

echelon. Let K denote the number of arcs in this supply chain, including those that connect the

virtual supplier with the suppliers in the most upstream echelon, i.e., K =
∑n

i=1 Li . We let HA

denote the arc-based complexity and define it as follows:

HA = −
n∑
i=1

∑
j∈Si

Vi∑
v=1

qiv
K

log2

qiv
K

(4)
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Figure 2: Two assembly supply chains with the same number of nodes, but distinct configurations.
Node-based complexity ignores how the nodes are linked to form a certain configuration, which
motivates the need for arc-based complexity.

This complexity measure can also be interpreted in the context of Shannon’s information en-

tropy. Suppose again, for each node, we form a pool of variants produced by that node, where

each variant is represented in a quantity proportional to its demand share. Consider the random

experiment where we first pick an arc of the supply chain at random, and we then pick one item

from the pool of this arc’s end-node. The probability of picking a certain arc a, which connects

node i to a supplier node j ∈ Si, and then picking variant v from the pool of node i is qiv/K (since

we pick arc a with probability 1/K and variant v of node i with probability qiv). It can be shown

that the information entropy of this random experiment is given by (4), which yields our arc-based

complexity measure and the arc-based complexity defined by (4) can be simplified as follows (see

Appendix A of the online supplement for a derivation):

HA = −
n∑
i=1

Vi∑
v=1

Li
qiv
K

log2

qiv
K
. (5)

Loosely speaking, the arc-based complexity indicates the level of uncertainty about the next flow

of material that will occur in the supply chain.

The complexity measures we propose are useful to the extent that they agree with a more

direct performance measure like cost. In the next subsection, we describe a simple cost model for

an assembly supply chain that will be used as a benchmark to study the effectiveness of node-based

and arc-based complexity measures.

3.2 Cost Model of An Assembly Supply Chain

Several types of costs can be incurred in an assembly supply chain, including inventory costs,

manufacturing costs and transportation costs. In this section, we describe a simple cost model for

an assembly supply chain based on inventory costs only. This simple cost model will be used to

analyze the effectiveness of the complexity measure in evaluating supply chain performance. That

is, we will analyze whether more costly supply chains rank higher on the complexity scale as well.

In the conclusion section, we discuss certain assumptions under which our results extend to include

other types of costs such as manufacturing and transportation costs.
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3.2.1 Overview of the Cost Model

We assume that each node in the supply chain keeps inventory of its own variants, but no inventory

of the inputs from the suppliers. Hence, every time node i decides to replenish the inventory of one

of its variants, it must first buy the necessary inputs and then assemble those. The assumption

that the nodes do not hold any component inventory comes close to reality in environments where

the supply chain partners, utilizing lean production principles, are located close to one another.

At the other extreme, one could assume that all the nodes keep inventory of components, but no

inventory of the finished goods. This assumption would be close to reality in environments where

all supply chain partners assemble to order. All of the results in the next section continue to hold

if we assume that only component inventories are held.

In an assembly system, the ordering decisions for an item tend to depend on the inventory

levels for other items that it will be assembled with. This feature of an assembly system makes

it challenging to characterize the optimal inventory decisions. In addition to this difficulty that

is inherent in any assembly system, our assembly supply chain presents further challenges due to

the presence of product variety. In our assembly supply chain, each item supplied by a node is

an input to multiple variants at the downstream node. This one-to-many relationship brings up

an important challenge: After receiving the delivery of an input, how should a node allocate the

delivered quantity among many variants that must share the supply of this input? The allocation

policy and inventory levels at upstream locations interact in complicated ways to determine the

inventory costs, making it hard to analytically characterize the inventory cost of the supply chain.

In order to obtain a simple enough cost benchmark, we utilize a cost model that relies on two

simplifying assumptions. First, we assume that each node uses an order-up-to policy for each variant

so as to achieve a certain a service level objective for that variant. Such policies are practical and

they are commonly used. Second, and perhaps more restrictively, we assume that the appropriate

order-up-to levels can be determined by decoupling the assembly supply chain into a collection of

standalone nodes. We utilize the decoupling assumption to create a tractable cost benchmark. The

higher the service levels across the supply chain, the closer to reality the decoupling assumption is

and the better the approximations obtained. Similar assumptions have been used by others when

analyzing inventory costs in the presence of product variety. For example, to model a production

environment with delayed differentiation, Lee and Tang (1997) consider a model where a series of

common operations eventually fork into two distinct series of operations to produce two distinct

products. In their model there exists buffer inventory between each pair of operations, and the

buffer at each operation needs to satisfy a certain service level objective. Lee and Tang (1997) also

make a decoupling assumption, essentially assuming that the buffer size at each operation can be
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determined independent of other operations. We next describe the details of our cost model.

3.2.2 Derivation of the Supply Chain Cost

We assume that each node uses a periodic-review, order-up-to policy in an infinite-horizon setting

with leadtime. The order-up-to level for each variant at each node is chosen to satisfy what is

commonly called a type-1 service level objective, that is, the probability of meeting the demand

in full in a given period. For simplicity, we assume that all variants at all nodes have the same

type-1 service level objective, denoted by α, where 0 < α < 1. It would not be difficult to extend

the model so that the service level objectives differ across variants and/or nodes. The leadtime for

replenishing the inventory of a variant covers the span of activities starting with the purchase of

the inputs and ending with the assembly of the variant. Let li denote the leadtime to replenish the

inventory of a variant at node i.

The timing of events is as follows: (1) At the beginning of a period, each node i = 1, . . . , n

receives the units that it ordered li periods ago. (2) Each node then reviews the inventory positions

of its variants (inventory on hand plus pipeline inventory that has been ordered but not yet received)

and orders enough of each variant to bring its inventory position to the desired order-up-to level.

(3) The demand for each variant at each node is realized. (4) After the demands are realized, node

i incurs an overage cost of cio per unit of leftover inventory and a unit underage cost of ciu per unit

of shortage. We assume that all the unmet demand is backordered. Notice our implicit assumption

that the underage and overage costs are the same across all the variants of node i.

As for the demand model, suppose that the total per-period demand faced by the final assembler

(node n) follows a Poisson distribution with rate λ. Given the final assembler’s demand vector,

denoted by qn := (qn1, qn2, · · · , qn,Vn), the demand for variant v of the final assembler also follows

a Poisson distribution with rate λqnv, v = 1, 2, · · · , Vn. Furthermore, the per-period demands are

independent across variants. Hence, using the normal approximation to Poisson random variables,

we assume that the per-period demand for variant v of the final assembler is normal with mean

and variance λqnv, v = 1, . . . , Vn, and the per-period demands are independent across variants.

This approximation is valid when λ is large. Furthermore, for analytical convenience, we assume

that the per-period demands of a variant are independent and identically distributed (i.i.d.) over

periods. Similarly, for the remaining nodes 1 through n−1, we assume that the per-period demand

for variant v of node j is normally distributed with a mean and variance λqjv, v = 1, . . . , Vj ,

where qjv is given by (1). Notice that the final assembler’s demand vector influences both the

mean and variance of the demands at upper echelons, since the demand shares of variants at upper

echelons are determined by the final assembler’s demand vector. We assume that, at each of nodes
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1 through n−1, the demands are independent across variants and, for a given variant, the demands

are independent across periods.

Using standard arguments from inventory theory, the order-up-to level for variant v of node i

is given by

y∗iv = (li + 1)λqiv + z(α)
√

(li + 1)λqiv, (6)

where z(α) is α-fractile of the standard normal distribution, i.e., z(α) is such that ΦN (z(α)) = α

where ΦN (·) is the cumulative distribution function (c.d.f.) of the standard normal distribution.

Furthermore, the expected per-period inventory cost for variant v of node i is given by

Iiv =
√

(li + 1)λqiv
[
(cio + ciu)αz(α)− ciuz(α) + (cio + ciu)φN (z(α))

]
(7)

where φN (·) is the probability density function (p.d.f.) of the standard normal distribution. For

notational convenience, we let

Ci := (cio + ciu)αz(α)− ciuz(α) + (cio + ciu)φN (z(α)),

and we refer to Ci as the cost coefficient of node i. Then, the expected per-period inventory cost

of the entire assembly supply chain is given by

I =
n∑
i=1

Vi∑
v=1

Iiv =
n∑
i=1

Vi∑
v=1

Ci
√

(li + 1)λqiv. (8)

Thanks, in particular, to our decoupling assumption, this cost expression is simple. The sim-

plicity of the cost expression, however, does not necessarily make it an easy tool for practical

purposes. To obtain the supply chain costs through this expression, one would need to estimate

the unit underage cost, the unit overage cost and the leadtime for each node of the supply chain.

In contrast, the complexity measures we introduced earlier do not require the estimation of these

parameters.

4. Complexity versus Cost When Choosing Variety

Consider a final assembler who is committed to working with a given network of suppliers and needs

to decide what level of variety to offer through this already finalized supply chain. In this section,

we analyze if, when and to what degree the cost and the complexity criteria lead to consistent

recommendations for such a supply chain. Different variety decisions lead to different demand

vectors. Hence, we ask the following question: Given a set of supply chains that share the same

configuration but that differ from one another in the number of variants and demand vectors, does

the complexity criterion rank these supply chains in the same order as the cost criterion would?

First, we show that, under certain conditions, complexity and cost are equivalent. We then conduct

an extensive numerical study to further investigate the agreement between the cost and complexity.
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4.1 Conditions for Equivalence between Complexity and Cost

To help compare supply chains, we define some additional notation. Suppose we have m supply

chains to compare. Let V k
i be the number of variants offered by node i = 1, . . . , n in supply chain

k = 1, . . . ,m. Let qki denote the demand vector at node i of supply chain k. In addition, let Ik, Hk
N

and Hk
A denote, respectively, the cost, node-based complexity and arc-based complexity of supply

chain k. The following proposition states one condition under which the cost and complexity are

equivalent.

Proposition 1. Consider a set of m supply chains that have the same configuration but differ from

one another in the number of variants and the demand vectors of the nodes. Suppose all m supply

chains have the property that the demand shares are equal across all variants of the final assembler,

i.e., qknj = 1
V k

n
for j = 1, . . . , V k

n . The ordering of these supply chains according to cost is the same

as the ordering of them according to node-based complexity and arc-based complexity, i.e., Ik > I l

iff Hk
N > H l

N and Ik > I l iff Hk
A > H l

A.

Proposition 1 implies that, under the condition that demand shares at the final assembler are

evenly distributed, both the cost criterion and the complexity criterion will rank a given set of

supply chains in the same order. In what follows, we show such equivalence holds under a less

restrictive condition as well. Consider the case where the demand shares of all the variants offered

by the final assembler are the same except for one dominant variant whose demand share is larger

than all the others. In this case, the equivalence between the cost and the complexity continues to

hold.

Proposition 2. Consider a set of m supply chains that use the same configuration and offer the

same set of variants, but differ from one another in the demand vectors of their nodes. Suppose

all supply chains have the property that the demand shares of all variants of the final assembler

are equal except for one dominant variant (indexed to be variant 1), whose demand share is larger

than the demand shares of all the other variants, i.e., qkn1 ≥ qkn2 = . . . = qk
n,V k

n
for k = 1, . . . ,m.

The ordering of these supply chains according to cost is the same as the ordering of them according

to node-based complexity and arc-based complexity, i.e., Ik > I l iff Hk
N > H l

N and Ik > I l iff

Hk
A > H l

A.

To obtain another generalization on when the cost and the complexity are equivalent, we turn

to majorization theory, which is useful in comparing how disordered two vectors are. In preparation

for our next result, we first provide a formal definition of majorization. Let x = (x1, x2, ..., xd) and

y = (y1, y2, ..., yd) be two d dimensional real vectors. Let (x(1), x(2), ..., x(d)) indicate the vector
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obtained by sorting the entries of vector x in decreasing order. We say y majorizes x, denoted as

y � x, if the following two conditions are satisfied:

k∑
i=1

x(i) ≤
k∑
i=1

y(i), k = 1, 2, ..., d− 1, and
d∑
i=1

x(i) =
d∑
i=1

y(i). (9)

In our setting, majorization has a meaningful interpretation: If one demand vector majorizes

another, the majorizing vector represents a more predictable demand pattern than the majorized

vector. This interpretation has been used in the literature when analyzing the effect of variety on

inventory costs; for example, van Ryzin and Mahajan (1999) interpret that a majorized demand

vector represents a more fashionable product’s demand, where consumer choice is less predictable

and, therefore, more evenly scattered across variants. In our context, majorization provides a

meaningful way to compare supply chains through their demand vectors. The next proposition

utilizes the majorization theory to describe another scenario where the cost and complexity criteria

are equivalent.

Proposition 3. Consider a set of m supply chains that have the same configuration but differ

from one another in the demand vectors of the final assemblers. Suppose the supply chains have

the property that, for any given node in the uppermost echelon, the demand vector of supply chain

1 majorizes that of supply chain 2 which majorizes that of supply chain 3 and so on, i.e., q1
i �

q2
i � . . . � qmi for all nodes i in the uppermost echelon. The ordering of these supply chains

according to cost is the same as the ordering of them according to node-based complexity and arc-

based complexity, i.e., Ik > I l iff Hk
N > H l

N and Ik > I l iff Hk
A > H l

A.

One interpretation of Proposition 3 is the following: If a set of supply chains can be ordered

according to the demand variability faced by the most-upstream suppliers, then the cost and com-

plexity criteria will rank these supply chains in the same order. The underpinnings of this result

are two intuitive observations: First, loosely speaking, the higher the demand variability faced by

a supplier, the higher the cost incurred by the supplier and the higher the contribution of this

supplier to the complexity of the supply chain. In that sense, higher cost and higher complexity go

hand in hand as demand variability increases. Second, as we show in the proof of Proposition 3,

if the uppermost echelons of supply chains can be ordered according to their demand variability,

the same ordering cascades down the supply chain to lower echelons, which essentially means that

the supply chains themselves can be ordered according to the demand variability they face. As

a consequence, supply chains with higher demand variability end up being simultaneously more

costly and more complex.
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Figure 3: An example where complexity and cost are inconsistent. Here qA3 � qB3 , supply chain
B has higher cost but with lower complexity. Both supply chain A and B have the same cost
coefficients C1 = C2 = 1 and C3 = 8

Given Proposition 3, one may wonder if a similar result holds when the demand vectors of the

final assemblers are ordered according to the majorization criterion. In other words, is the following

claim true?

Claim: Assume supply chains A and B have the same configuration. If the final assembler’s

demand vector in supply chain A majorizes the final assembler’s demand vector in supply chain B,

then the supply chain with the higher cost also has higher complexity.

Unfortunately, the above claim is not true. The condition that the demand vector of one

final assembler majorizes that of another is not strong enough, because such an ordering does not

propagate up the supply chain to upper echelons, making it impossible to say that one supply chain

faces more demand variability than the other. Figure 3 shows a counterexample to the above claim.

In this example, the demand vector of the final assembler in supply chain A majorizes the demand

vector of the final assembler in supply chain B. Here, supply chain A has lower cost, but higher

complexity.

The counterexample shows that there are instances where the supply chain with higher com-

plexity could have lower cost, causing an inconsistency between how the cost and the complexity

criteria rank supply chains. This is not surprising given that the cost and the complexity are two en-

tirely different functions. Nonetheless, the results of this section show that the cost and complexity

share a similar enough structure that they will rank a given set of supply chains consistently under

certain conditions. In the next subsection, we conduct a numerical study to further investigate the

the degree of agreement between cost and complexity.

4.2 Numerical Analysis of the Consistency between Complexity and Cost

We first investigate how five different factors affect the consistency between the complexity and

the cost of a two-echelon supply chain. These five factors are: complexity definition, number of

suppliers to the final assembler, underage and overage cost difference between two consecutive
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echelons, number of variants offered by suppliers in the uppermost echelon, and the evenness of the

final assembler’s demand vector. We first present our results for a two-echelon supply chain and

subsequently analyze the effect of the number of echelons.

4.2.1 Design of Numerical Study

Consider two supply chains that differ from one another only in their demand vectors. (One can

generate many such supply chain pairs by randomly generating a demand vector for each of the

two final assemblers, which then determines the demand vectors of all the other nodes.) For a

given pair of supply chains, if the supply chain with higher cost has higher complexity as well, we

say cost and complexity are consistent. Otherwise, we say cost and complexity are inconsistent.

By checking many pairs of supply chains, one can observe how common inconsistencies are and

how the likelihood of an inconsistency depends on the five factors identified above. To perform a

systematic analysis, we conduct a numerical experiment using a 25 full factorial design (where each

of the five factors can take two values and all 32 combinations of factor values are considered).1

Table 1 shows the levels allowed for each factor in our experiment, which we discuss next:

First, the complexity definition can be one of two types: Node-based or arc-based complexity.

Second, the number of suppliers to the final assembler is either two or three.

Third, we assume that all nodes in the uppermost echelon provide the same number of variants,

which can be either two or three.

Fourth, we let the underage and overage cost difference between the two echelons to be high

or low. We refer to this factor as cost disparity hereafter. To obtain high and low levels for cost

disparity, we start by assuming that the final assembler’s cost coefficient is at least as big as the sum

of the suppliers’ cost coefficients. Such an assumption is justified since the cost coefficient is based

on underage and overage costs, and the final assembler puts together components from suppliers

and adds further value to the product, thus inflating the overage and underage costs beyond those

of the components from the suppliers. We say the cost disparity is low if the final assembler’s

cost coefficient is the sum of the suppliers’ cost coefficients, and high if the final assembler’s cost

coefficient is twice the sum of the suppliers’ cost coefficients.

The fifth and last factor in our experiment is the evenness of the final assembler’s demand

vector. To obtain two different degrees of evenness, we use the following procedure to generate the

demand vectors. Given that the final assembler offers Vn variants, we draw Vn random numbers,

denoted as Rv, v = 1, 2, ..., Vn, from the uniform distribution, U(a−Kb, a+Kb) (where a > Kb > 0
1A full two-level factorial design is an experiment in which several factors, each of which can take two values, vary

independently, and the experiment is conducted for all possible combinations of the levels across all such factors. It
is used to study the effect of each factor on the response variable, as well as the effects of interactions between factors
on the response variable (Wu and Hamada, 2000).
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so that all the random numbers are positive). We then obtain the final assembler’s demand vector

qn from random numbers Rv, v = 1, 2, ..., Vn by letting qnv := RvPVn
k=1Rv

. Given this procedure,

observe that the choice of K influences how even the resulting demand vector will be. We let

K = 1 to obtain a more even demand vector and K = 8 to obtain a less even demand vector.

Levels
Factor - +
1. Complexity definition Arc-based Complexity Node-based Complexity
2. Number of suppliers 2 3
3. Number of variants 2 3
4. Cost disparity between two echelons Ci =

∑
j∈Si

Cj Ci = 2
∑

j∈Si
Cj

5. Evenness of the demand vector K=8 K=1

Table 1: Design of Experiments. We use a two-level, full factorial experiment.

Under each combination of the five factors, 10, 000 pairs of supply chains are generated where

each pair consists of two supply chains that differ from one another in terms of their demand

vectors. For each supply chain pair, we determine whether cost and complexity are consistent.

We then determine the inconsistency percentage among these 10,000 pairs. This entire experiment

(10,000 pairs for each of 32 combinations) is then replicated three times.

In this numerical study we fix the leadtime parameters so that the leadtime to replenish the

inventory of a variant at node i is Li periods, where Li is the number of suppliers to node i

(equivalently, the number of inputs that are assembled by node i). Recall that the leadtime covers

the span of activities starting with the purchase of the inputs and ending with the assembly of the

variant. Therefore, one would expect that the larger the number of inputs that go into a variant,

the longer the time it takes to replenish the variant’s inventory. This effect is what we wish to

capture in a simple way through our assumption that the replenishment leadtime for a variant is

equal to the number of inputs that go into the variant.

4.2.2 Results of the Numerical Study

Table S-1 in Appendix C of the online supplement shows the inconsistency percentage, also called

inconsistency rate, for each replication of each of the 32 combinations. Using this data, we determine

the statistical significance of each of the five factors (at a 99% confidence level), reported in Table

2. The statistical analysis is based on ANOVA (analysis of variance). For a given factor, the effect

column in Table 2 is the change in the average inconsistency rate when the factor’s value changes

from ‘-’ to ‘+’. For example, the average inconsistency rate increases by 0.00635% when the number

of suppliers increases from two to three. We next discuss the results for each of the five factors

listed earlier.

First, the complexity definition has a statistically significant effect on the inconsistency rate.
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Term Effect t-Statistics p Value
Constant 130.94 < 0.0001

Complexity definition 0.00659 18.89 < 0.0001
Number of suppliers 0.00635 18.20 < 0.0001
Number of variants 0.00076 2.18 0.033

Cost disparity between two echelons 0.00252 7.22 < 0.0001
Uniformity of the demand vector -0.02700 -77.35 < 0.0001

Table 2: Estimated Effects, t-Statistics and p-Value (%). A positive (negative) effect implies that
when the factor’s value changes from ‘-’ to ‘+’, the inconsistency rate increases (decreases).

Observe from Table 2 that the inconsistency rate is lower under arc-based complexity than under

node-based complexity. In that sense, the arc-based complexity is a better performance measure

of an assembly supply chain than node-based complexity. To see why this is the case, first recall

our assumption that a node with a larger number suppliers faces a larger lead time, resulting in

higher costs for those nodes. Hence, nodes with more suppliers contribute more to the supply chain

cost. Now, notice that, under node-based complexity, given by (3), the contributions of all nodes

to the supply chain complexity are weighted equally, whereas, under arc-based complexity, given

by (5), node i’s contribution to the supply chain complexity is weighted by the number of suppliers

to that node, Li. Because arc-based complexity gives more weight to nodes with larger number of

suppliers, it comes closer to capturing the supply chain cost compared to node-based complexity.

Second, the number of suppliers is also statistically significant, and an increase in the number

of suppliers results in an increase in the inconsistency rate. As the number of suppliers further

increases, one would hope that the inconsistency rate does not grow indefinitely, but stabilizes

instead. To resolve this question, we re-ran our experiment with two new values for the number of

suppliers: four and five (as opposed to two and three suppliers in the original experiment). For this

experiment where the number of suppliers can be either four or five, the inconsistency data and

the results of the statistical analysis are summarized in Tables S-2 and S-3 in Appendix C of the

online supplement. When the number of suppliers goes from four to five, the number of suppliers

no longer has a statistically significant effect on the inconsistency rate. This is encouraging because

it implies that there is a natural bound on how large the inconsistency rate can grow as the number

of suppliers increases.

Third, the effect of the number of variants is not statistically significant.

Fourth, the cost disparity between two echelons is statistically significant and the higher the

cost disparity, the higher the inconsistency rate. However, similar to the effect of the number

of suppliers, the effect of the cost disparity also becomes statistically insignificant once the cost

disparity becomes large enough. For an experiment where the cost coefficient of the final assembler
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Figure 4: Two new levels of Factor ‘B,’ the number of echelons, which can be two (-) or three (+).

is either four or five times as large as the sum of the suppliers’ cost coefficients (as opposed to the

original experiment where the final assembler’s cost coefficient was either equal to the sum of the

suppliers’ cost coefficients or twice as large), the inconsistency data and the results of the statistical

analysis are summarized in Tables S-4 and S-5 in Appendix C of the online supplement.

Finally, the evenness of the final assembler’s demand vector has a statistically significant effect

on the inconsistency rate: the more even the demand vector, the smaller the inconsistency rate.

To see the intuition behind this, recall from Proposition 1 that, if all variants of the final assembler

have the same demand share, then cost and complexity are equivalent. The larger the evenness

of the final assembler’s demand vector, the closer one comes to the scenario of evenly-distributed

demand, where cost and complexity are equivalent.

We have so far focused on a numerical experiment where supply chains have two echelons. To

determine the effect of the number of echelons, we run a similar experiment with five factors. In this

new experiment, we fix the number of suppliers for each node as two (thus, dropping the number of

suppliers from the list of factors). Instead, we add the number of echelons as a new factor and we

allow the number of echelons to be two or three, shown in Figure 4. Tables S-6 and S-7 in Appendix

C of the online supplement show the inconsistency data of this experiment and the results of the

significance test. Observe that the number of echelons increasing from two three has a statistically

significant effect on the inconsistency rate. Thus, one should be more careful about applying the

complexity measure to supply chains with larger number of echelons. However, it should be noted

that the magnitude of increase in inconsistency rate is is so small that the number of echelons does

not appear to be a major cause for concern: The inconsistency percentage increases by 0.198%

when the number of echelons increases from two to three.

4.2.3 The Cost of Inconsistencies

The previous discussion shows that inconsistencies between cost and complexity occur rarely. Even

though inconsistencies are rare, complexity may still be unreliable if it favors a supply chain that

is much more costly than another. We next analyze all the cases where cost and complexity

were inconsistent (among three replications of 10,000 examples for each of 32 different factor value
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Figure 5: Histogram of cost difference. Considering all the problem instances where cost and
complexity are inconsistent, more than 80% of those instances occur when the cost difference is less
than 0.2%.

combinations, resulting in a total of 960,000 examples). For each example where cost and complexity

were inconsistent, we check the cost difference between the two supply chains. The mean, median,

minimum, maximum and standard deviation of these cost differences (expressed as a percentage

of the less costly supply chain’s cost) are shown in Table 3. Notice that the largest cost difference

ever encountered is less than 1.21%. This provides good support for complexity as a measure of

the supply chain performance, because what we see here is that when cost and complexity are

inconsistent, the costs of the two supply chains are virtually the same. In addition, Figure 5 shows

a frequency diagram for the cost differences (again, expressed as a percentage). Notice that the

frequency diagram exhibits a long tail ending at the maximum cost difference of 1.21% and more

than half of the inconsistencies occur when cost difference is less than 0.1%.

median mean standard deviation max min
0.0583 0.1012 0.1286 1.2089 4.68× 10−8

Table 3: Cost difference statistics (%).

4.2.4 A Modified Numerical Study

It is remarkable that cost and complexity disagree so rarely (2.29% of all examples), and when they

do disagree, the cost difference is tiny as discussed above. One may wonder if such strong consistency

is an artefact of our numerical set-up. In particular, in our experiments, when randomly generating

the demand vector for a supply chain, we draw random numbers from a uniform distribution
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U(a −Kb, a + Kb). Because all the random numbers are coming from the same distribution, our

numerical set-up might be introducing a bias toward more even demand vectors, which would in

turn reduce the extent of inconsistencies. To remove this possible bias, we modify our numerical

experiment by introducing deliberately large differences between the random numbers that are used

to generate the demand vectors. To do so, when generating a set of Vn random numbers, denoted

as Rv, v = 1, 2, · · · , Vn, we draw Rv from a uniform distribution U(av − Kb, av + Kb), where

av > Kb > 0 and av = ev, v = 1, 2, · · · , Vn. Notice that the expected value of Rv is now av, which

grows exponentially in v. This numerical set-up ensures that there will be big differences between

Rv values, which will then lead to uneven demand vectors. Given this method of generating random

demand vectors, we run another experiment with a 24 full factorial design, where the four factors

are: complexity definition, number of suppliers, number of variants, cost disparity. The values of

these factors are the same as those described in Table 2. We find that the inconsistency rate now

increases to 7.05% of all examples. Once again, we focus on all the comparisons where the cost and

complexity were inconsistent, and determine the cost difference between the two supply chains in

each and every one of those cases. See Table 4 for the summary statistics of these cost differences.

As expected, this new study, which deliberately creates uneven demand vectors, leads to larger

cost differences. For example, the maximum cost difference in the event of inconsistency is now

10.97% and the mean cost difference is 1.47%. However, as the frequency diagram shows, the cost

differences still show a long-tailed pattern and 60% of the observations show less than a 2% cost

difference. In conclusion, even a deliberate attempt to induce uneven demand vectors does not

result in a significant discrepancy between cost and complexity.

median mean standard deviation max min
1.113 1.469 1.314 10.966 8.07× 10−5

Table 4: Cost Difference Statistics (%)

5. Complexity versus Cost When Choosing a Configuration

In Section 4 we studied the relationship between cost and complexity by comparing supply chains

that have the same configuration but different demand vectors. We now employ complexity to

compare two supply chains that have the same demand vector but different supply chain config-

urations. In particular, we will compare a prototypical modular supply chain with a prototypical

non-modular supply chain. See Figure 7 for a depiction of the modular and non-modular supply

chain configurations. The non-modular supply chain is a two-echelon supply chain where four sup-

pliers serve the final assembler, who then puts together the parts produced by the suppliers. In

comparison, in the modular assembly supply chain, there is a mid-echelon with two suppliers, each
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Figure 6: Histogram of cost differences in the modified numerical study. Considering all the problem
instances where cost and complexity are inconsistent, more than 80% of those instances occur when
the cost difference is less than 3%.

of which assembles parts produced by two suppliers in the upper echelon. The final assembler then

receives modules from the mid-echelon suppliers and assembles these modules.

We assume that all the nodes in the uppermost echelon of both the modular and non-modular

supply chains provide the same number of variants, denoted by γ. Consequently, the final assemblers

in both supply chains offer the same number of variants, γ4, and we assume that their demand

vectors are the same, since our goal is to compare the configurations only.

As for the cost model, recall that the cost coefficient of node i, which depends only on the unit

underage and overage costs and the service level, has been defined as

Ci := (cio + ciu)αz(α)− ciuz(α) + (cio + ciu)φN (z(α)).

Here, we slightly modify this notation. Let CNi denote the cost coefficient of node i in the non-

modular supply chain and CMi the cost coefficient of node i in the modular supply chain. (See

Figure 7 for the labeling of the nodes.) For ease of exposition, we assume that all nodes in the same

echelon have the same cost coefficient, i.e., CN1 = CN2 = CN3 = CN4 , CM1 = CM2 = CM3 = CM4 and

CM5 = CM6 . Furthermore, to make a fair comparison between the two supply chains, we assume

that the final assembler of both supply chains have the same cost coefficient, i.e., CM7 = CN7 , as do

the suppliers in the most upstream echelon, i.e., CN1 = . . . = CN4 = CM1 = . . . = CM4 .

In this section we assume that the leadtime to replenish the inventory of a variant at node i

is Li periods, that is, the number of suppliers to node i or, equivalently, the number of inputs
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Figure 7: Prototypical configurations for non-modular vs. modular assembly supply chains

that are assembled by node i. This assumption is meant to reflect the fact that the larger the

number of inputs that go into a variant, the longer the time it takes to assemble the variant. As a

consequence of this assumption, the replenishment lead time of the final assembler is four periods in

the non-modular assembly supply chain and two periods in the modular assembly supply chain. The

leadtime reduction in the modular supply chain helps the final assembler reduce its inventory costs

compared to the non-modular supply chain. On the flipside, however, there are two mid-echelon

suppliers in the modular assembly supply chain, which do not exist in the non-modular assembly

supply chain. These new suppliers inflate the total inventory cost of the modular assembly supply

chain compared to the non-modular one. Hence, when using cost as the criterion, the trade-off

in moving from a non-modular configuration to a modular one is the cost reduction achieved by

the final assembler in the modular supply chain versus the additional costs created by two new

suppliers.

Because the complexity criterion does not explicitly recognize the cost parameters, it is possible

that the complexity criterion will lead to markedly different choices between two configurations.

Nonetheless, the complexity criterion may be promising, because it leads to a similar trade-off as

the cost criterion:2 The complexity of each node is weighted by the number of links to that node,

meaning that the final assembler’s contribution to complexity is lower in the modular supply chain,

but the modular supply chain’s complexity is inflated by the addition of two new suppliers in the

mid-echelon.

Given that the complexity criterion follows a similar trade-off as the cost criterion, but does

not take into account any of the cost information, it is not clear whether the cost and complexity

criteria will yield similar results. The next proposition sheds some light on this question.

Proposition 4. Consider the modular and non-modular assembly supply chains shown in Figure

7 and assume that the final assemblers of the two chains have the same demand vector and the
2We observed in the last section that arc-based complexity performs better than node-based complexity. Hence,

in this section the complexity measure we use is the arc-based complexity.
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demand shares are equal across all the variants of the final assembler. Then:

(a) According to complexity criterion: If the number of variants offered by a node in the most

upstream echelon, γ, is two or more, then the modular assembly supply chain is better. If γ = 1,

then the non-modular assembly supply chain is better.

(b) According to cost criterion: There exists a threshold t such that if the number of variants

offered by a node in the most upstream echelon, γ, is greater than or equal to t, then the modular

assembly supply chain is better. If γ < t, then the non-modular assembly supply chain is better.

The proposition shows that cost and complexity may lead to different choices between modular

and non-modular configurations: The threshold t, which applies when the cost criterion is used,

may be different from one, in which case the cost and complexity criteria may disagree. The upside

of this proposition, however, is that the choice between non-modular and modular supply chains

exhibits the same trend with respect to the number of variants, γ, regardless of whether cost or

complexity is used: a larger number of variants favors the modular assembly supply chain.

Proposition 4 uses the assumption that the demand shares of all variants produced by the

final assembler are equal. We next relax this assumption and analyze how the choice between two

configurations depends on the demand share of a given variant under both the cost and complexity

criteria. In particular, consider one of the variants produced by a node in the most upstream

echelon, say, variant V1 of node 1. Let us write the demand vector of node 1 as (a1(1− p), a2(1−

p), ..., an−1(1 − p), p), where p is the demand share of variant V1 at node 1 and the remaining

demand at this node is shared arbitrarily by the other variants produced by the node. Proposition

5 describes how the choice between modular and non-modular configurations depends on p.

Proposition 5. Consider the modular and non-modular assembly supply chains shown in Figure 7

and assume that the final assemblers of the two chains have the same demand vector. Let (a1(1−

p), a2(1− p), ..., an−1(1− p), p) be the demand vector of node 1. Then:

(a) According to complexity criterion: One of the following is true:

(i) The non-modular supply chain is better for all p ∈ [0, 1], or

(ii) The modular supply chain is better for all p ∈ [0, 1], or

(iii) There exist p1 and p2 such that 0 ≤ p1 < p2 ≤ 1 and the non-modular supply chain is better

for p ∈ [0, p1), the modular supply chain is better for p ∈ [p1, p2) and the non-modular supply

chain is better for p ∈ [p2, 1].

(b) According to cost criterion: One of the following is true:

(i) The non-modular supply chain is better for all p ∈ [0, 1], or

(ii) The modular supply chain is better for all p ∈ [0, 1], or
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(iii) There exist p̂1 and p̂2 such that 0 ≤ p̂1 < p̂2 ≤ 1 and the non-modular supply chain is better

for p ∈ [0, p̂1), the modular supply chain is better for p ∈ [p̂1, p̂2) and the non-modular supply

chain is better for p ∈ [p̂2, 1].

The first observation from the proposition is that cost and complexity may lead to different

decisions depending on how similar or dissimilar p1 and p2 are to p̂1 and p̂2. Nonetheless, the

proposition shows that the structural behavior of the modular versus non-modular configuration

choice is the same under both cost and complexity. The intuition behind the result is as follows.

If p is close to zero, the implication is that there is very little demand for the final assembler’s

products that use this variant. Hence, it is almost as if those products do not exist, which is

effectively equivalent to reducing the variety offered by the supply chain. Hence, the non-modular

configuration is preferred. Likewise, when p is close to one, the demand shares of all other variants

at supplier 1 decreases, thus resulting in a number of products with practically no demand at the

final assembler. This again results in non-modular supply chain being preferred. However, when p

is moderate, the variant does not depress the variety offered by the supply chain in any way, which

motivates the use of modular configuration.

The previous propositions show that while cost and complexity may show similar behavior,

they may lead to different configuration choices because the decisions depend on thresholds that

may differ between cost and complexity. In particular, the thresholds for cost criterion depend

on the cost coefficients of the nodes whereas complexity does not pay any attention to the cost

coefficients. This negligence on complexity criterion’s part may cause significant inconsistencies

when it comes to configuration choice. To further understand the effect of cost coefficients on the

consistency between cost and complexity, we ask the following question: What can we say about

the effect of the final assembler’s cost coefficient on the consistency between cost and complexity?

The following proposition provides a partial answer to this question.

Proposition 6. Consider the modular and non-modular assembly supply chains shown in Figure

7 and, for a given set of parameters, suppose that both cost and complexity criteria favor the non-

modular supply chain. Then:

(a) If the final assembler’s cost coefficient decreases, then cost and complexity continue to be con-

sistent and both favor the non-modular supply chain.

(b) If the final assembler’s cost coefficient increases beyond a certain threshold, then cost begins to

favor the modular supply chain and complexity continues to favor the non-modular supply chain,

thereby creating an inconsistency between the two criteria.

One implication of the proposition is that whether cost and complexity agree depends very

much on what the cost coefficients are. In our numerical examples, we have observed that the
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consistency is very sensitive to the cost coefficients. In fact, the consistency is so sensitive to the

cost coefficient that cost and complexity may almost always agree for one set of cost coefficients and

may almost never agree for another set of cost coefficients, regardless of where the other parameters

are set such as number of variants and the demand vectors. Hence, one needs to be cautious when

using complexity to make configuration choices.

6. Conclusion

In this paper we proposed a complexity measure for assembly supply chains, based on the concept of

information entropy. This complexity measure takes into account factors such as the supply chain

configuration, the level of variety offered by each node of the supply chain, and the demand split

across all the variants offered by a node. We investigated the relationship between the complexity

and the cost of an assembly supply chain. In particular, we showed that, when comparing assembly

supply chains with the same configuration but different levels of product variety, the cost and the

complexity are equivalent under certain conditions. Even when these conditions do not hold, our

numerical study demonstrated that the cost and complexity criteria rank supply chains consistently

in an overwhelming majority of cases. The agreement between the cost and complexity criteria was

shown to be lesser when comparing assembly supply chains with the same level of product variety,

but different configurations. Overall, we found that the complexity measure is a good proxy for

the cost of an assembly supply chain when evaluating alternative levels of product variety that will

be delivered by a given supply chain configuration, but not so when evaluating alternative supply

chain configurations to deliver a given level of product variety.

In Section 4, we observed that complexity is a good proxy for cost when making variety decisions,

but our analysis in that section focused on a cost model where only inventory costs were accounted

for. It is not difficult to extend the results to the case where transportation costs are also accounted

for. In fact, as long as one is willing to assume that the transportation cost along an arc of the

supply chain depends only on the total volume that travels along that arc, but not on the volumes

of specific variants, all the results of Section 4 continue to hold. In order to extend the results to

the case where manufacturing costs are also included in the supply chain cost, it would be sufficient

to assume that the expected per-period manufacturing cost for variant v of node i is increasing

and concave in the demand share of the variant, qiv. This assumption is not unreasonable: Under

this assumption, given two nodes that differ only in terms of their demand vectors, the node

that produces many medium-volume products will incur larger manufacturing costs compared to a

node that produces a few high-volume products coupled with low-volume products. This outcome is

reasonable because it captures the economies of scale that a node can enjoy by offering high-volume

25



products.

Our analysis in Section 5 showed that, when using complexity to choose between modular and

non-modular configurations, the consistency between cost and complexity is very sensitive to the

cost disparity between two echelons. This happens, because the complexity criterion uses no cost

information at all. One could of course improve the consistency between cost and complexity by

trying to reflect in the complexity definition the cost disparities that exist among the nodes of

the supply chain. For example, one may want to weigh more heavily the complexity contribution

of nodes whose unit holding and shortage costs are higher. While this may be an attractive

modification, it may also beat the purpose of using the complexity criterion in the first place,

because one of the important advantages of the complexity criterion is to absolve the decision

maker of the need to rely on cost data.
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Appendix A: Derivation of Arc-based Complexity

Random Experiment: For each node in the supply chain, we form a pool of variants produced by that

node, where each variant is represented in a quantity proportional to its demand share. Consider

the random experiment where we first pick an arc of the supply chain at random, and we then pick

one variant from the pool of this arc’s end-node.

Let Li denote the number of suppliers connected to node i in the supply chain, i = 1, 2, . . . , n.

Recall that we let Li = 1 for any node i in the uppermost echelon, corresponding to our convention

that there is a virtual supplier that is linked to the nodes in the uppermost echelon. As discussed

earlier, this convention allows us to capture the flows into the supply chain. Let us denote the virtual

supplier as node 0. Then the total number of arcs in the supply chain equals to K =
∑n

i=1 Li.

Let Rji represent the arc starting from node j = 0, 1, . . . , n − 1 and ending at node i = 1, . . . , n.

Then the probability of picking a certain arc Rji and then picking variant v from the pool of end

node i is qiv
K (since we pick arc Rji with probability 1

K and variant v of node i with probability

qiv). Substituting probabilities of all possible outcomes back into Shannon’s information entropy

equation (2), the information entropy of the random experiment yields our arc-based complexity:

HA = −
n∑
i=1

∑
j∈Si

Vi∑
v=1

qiv
K

log2

qiv
K

(S-1)

For any node i = 1, . . . , n,

−
∑
j∈Si

Vi∑
v=1

qiv
K

log2

qiv
K

= −Li
Vi∑
v=1

qiv
K

log2

qiv
K
.

Therefore, equation (S-1) can be rewritten as

HA = −
n∑
i=1

Vi∑
v=1

Li
qiv
K

log2

qiv
K

(S-2)

Appendix B: Proofs

Throughout the appendix, we make frequent use of the majorization theory. Hence, we start with

a definition of majorization.
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Definition 1. (Marshall and Olkin, 1979) For any real vector x = (x1, x2, . . . , xn) ∈ <n, let

x(1) ≥ x(2) ≥ . . . ≥ x(n) denote the components of x in non-increasing order.

B1.1 For x,y ∈ <n, we say x majorizes y, written as x � y if

k∑
i=1

x(i) ≥
k∑
i=1

y(i), k = 1, . . . , n− 1 and
n∑
i=1

x(i) =
n∑
i=1

y(i),

B1.2 x � y only if
∑
g(xi) ≤

∑
g(yi) for all continuous concave functions g : < → <.

Proof of Proposition 1

Given the demand shares are equal across all variants of the final assembler (indexed as node

n according to our convention), the demand vector of supply chain k’s final assembler is qkn =(
1
V k

n
, 1
V k

n
, ..., 1

V k
n

)
, where V k

n is the number of variants offered by supply chain k’s final assembler

and qkn is a vector of dimension V k
n . It now follows from (1) that all other nodes in supply chain k

also have evenly-distributed demand vectors, i.e., qki =
(

1
V k

i

, 1
V k

i

, ..., 1
V k

i

)
, i = 1, 2, · · · , n, where qki

is a vector of dimension V k
i .

First, consider two supply chains, indexed as 1 and 2, and suppose that supply chain 2’s final

assembler offers more variants than supply chain 1’s, that is, V 2
n > V 1

n . Then, each and every node

in supply chain 2 offers at least as many variants as its counterpart in supply chain 1, that is,

V 2
i ≥ V 1

i , i = 1, 2 . . . , n. To enable the use of majorization arguments when comparing the demand

vectors of these two supply chains, we define, for i = 1, . . . , n, vectors xi and yi, both of dimension

V 2
i , as follows:

xiv = q1
iv =

1
V 1
i

for v = 1, . . . , V 1
i and xiv = 0 for v = V 1

i + 1, . . . , V 2
i ,

yiv = q2
iv =

1
V 2
i

for v = 1, . . . , V 2
i .

Using the definitions of vectors xi and yi and the definition of node-based complexity, given by

(3), we can write3

H1
N = −

n∑
i=1

V 2
i∑

v=1

xiv
n

log2

xiv
n
,

H2
N = −

n∑
i=1

V 2
i∑

v=1

yiv
n

log2

yiv
n
.

Now, observe that −x log2 x is concave in x. In addition, notice that the vector xi majorizes the

vector yi for i = 1, . . . , n. Thus, we can apply the majorization theorem to obtain H2
N ≥ H1

N .

3Notice that if xiv = 0, then xiv
n

log2
xiv
n

= 0 as well.
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Using the definition of arc-based complexity, given by (5), we can write

H1
A = −

n∑
i=1

Li

V 2
i∑

v=1

xiv
K

log2

xiv
K
,

H2
A = −

n∑
i=1

Li

V 2
i∑

v=1

yiv
K

log2

yiv
K
.

Applying the majorization theorem yields H2
A ≥ H1

A.

Similarly, using the expression for supply chain cost I, given by (8), we can write

I1 =
n∑
i=1

Ci
√
λ(li + 1)

V 2
i∑

v=1

√
xiv,

I2 =
n∑
i=1

Ci
√
λ(li + 1)

V 2
i∑

v=1

√
yiv.

Observing that
√
x is concave in x and applying the majorization theorem, we obtain I2 ≥ I1.

In summary, given two supply chains whose demand vectors are evenly distributed, arc-based

complexity, node-based complexity and cost rank these two supply chains in the same order. Be-

cause the three orderings are the same when comparing an arbitrary pair of supply chains, they

will be the same when comparing an arbitrary number of supply chains.

Proof of Proposition 2

Since all supply chains are identical in terms of the number of variants offered by each node, we

drop the superscript k from the number of variants offered by node i of supply chain, and we write

Vi instead of V k
i . Consider two supply chains, where the demand vectors of the final assemblers

in supply chains 1 and 2 are, respectively, q1
n = (q1n1, q

1
n2, ..., q

1
n,Vn

) and q2
n = (q2n1, q

2
n2, ..., q

2
n,Vn

).

As required by the proposition, suppose that: (i) q1n1 ≥ q1n2 = . . . = q1n,Vn
and (ii) q2n1 ≥ q2n2 =

. . . = q2n,Vn
. Furthermore, without loss of generality, index the supply chains 1 and 2 so that: (iii)

q1n1 ≥ q2n1. Next, we will show that node-based complexity, arc-based complexity and cost rank

these two supply chains in the same order. To do so, we first prove that properties (i) through (iii)

are satisfied for nodes i = 1, . . . , n− 1 as well.

For a given node i = 1, . . . , n− 1, to see why (i) and (ii) hold, observe that one could divide the

variants offered by the final assembler into Vi disjoint subsets, each containing Vn/Vi variants of the

final assembler, and the demand shares of the variants in each subset add up to the demand share

of a variant at node i. As a result, at node i of supply chain k, there must be Vi−1 variants that all

have the same demand share and the remaining variant’s demand share is qkn1+ (1−qk
n1)

Vn−1 [(Vn/Vi)− 1],
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which is larger than the others. Let us index this variant with the larger share as variant 1. Now,

for a given node i = 1, . . . , n− 1, to see why (iii) holds, observe that

q1i1 − q2i1 = q1n1 + [(Vn/Vi)− 1]
1− q1n1

Vn − 1
− q2n1 − [(Vn/Vi)− 1]

1− q2n1

Vn − 1

=
(
q1n1 − q2n1

)(
1− (Vn/Vi)− 1

Vn − 1

)
≥ 0

Now that we have shown properties (i) though (iii) hold for any node i, we can conclude that q1
i � q2

i

for node i = 1, . . . , n. Applying the majorization theorem, we obtain H2
N ≥ H1

N , H2
A ≥ H1

A, and

I2 ≥ I1. Since the three orderings are the same for any arbitrary pair, it follows that the three

orderings are the same for an arbitrary number of supply chains.

Proof of Proposition 3:

For the purposes of this proof, we define Qi to be the set of suppliers in the uppermost echelon

whose variants are used in the module produced by node i. For a vectors x1,x2, . . . ,xa with dimen-

sions, respectively, m1,m2, . . . ,ma, define the operation Ω(x1, . . . ,xa) as the sorted component-wise

multiplication of vectors x1,x2, . . . ,xa, that is, the following vector with dimension Πa
j=1mj :

(x11x21 · · ·xa1,x11x21 · · ·xa2, . . . ,x1,m1x2,m2 · · ·xa,ma),

sorted in descending order. Using these definitions, notice that the demand vector of any given

node i can be written as qi = Ωj∈Qiqj . This definition will be useful in the proof that follows.

We first prove the result for two supply chains. Suppose that there are a suppliers in the most

upstream echelon in both supply chains, denoted as nodes 1, . . . , a. Assume that, as required by

the proposition, supply chains 1 and 2 have the same configuration and the demand vector of

each node in the uppermost echelon of supply chain 1 majorizes its counter-part in supply chain

2, q1
s � q2

s, s = 1, . . . , a. In this proof, we write the node-based complexity as a function of the

demand vectors of the nodes in the uppermost echelon, that is, we write HN (q1, . . . , qa) instead of

HN (q1, . . . , qn). (Note that this reduction of the argument list is possible because qa+1 through

qn can be recovered from q1, . . . , qa, using the Ω-operation defined above.) We will prove that, if

q1
s � q2

s, s = 1, . . . , a, then HN (q1
1, . . . , q

1
a) ≤ HN (q2

1, . . . , q
2
a), and HA(q1

1, . . . , q
1
a) ≤ HA(q2

1, . . . , q
2
a)

and I(q1
1, . . . , q

1
a) ≤ I(q2

1, . . . , q
2
a). The proof is conducted in two steps.

Step 1: Suppose for now that the demand vectors of nodes 2 through a are the same in both

supply chains, but node 1’s demand vector in supply chain 1 majorizes the demand vector of node
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1 in supply chain 2. That is, q1
1 � q2

1, q1
2 = q2

2, . . . , q
1
a = q2

a. For notational convenience, let

qj = q1
j = q2

j , j = 2, . . . , a. We next prove that q1
i � q2

i , i = a+ 1, . . . , n.

If the variants provided by node i do not use any variant from node 1, i.e, 1 /∈ Qi, then the

demand vectors of node i in both supply chains 1 and 2 are the same, i.e., q1
i = q2

i for i = a+1, . . . , n

such that 1 /∈ Qi. Hence, q1
i � q2

i holds trivially for i = a+ 1, . . . , n such that 1 /∈ Qi.

Consider now the case where one or more variants of node i use the variants from node 1, i.e.,

1 ∈ Qi. We can write q1
i = Ω

(
q1

1,Ωj∈Qi/{1}qj
)

and q2
i = Ω

(
q2

1,Ωj∈Qi/{1}qj
)
. Let A = q1

1, B = q2
1

and C = Ωj∈Qi/{1}qj and apply Lemma 1 to conclude that q1
i � q2

i .

Thus, q1
i � q2

i for i = 1, . . . , n. It now follows from the majorization theorem thatHN (q2
1, q2 . . . , qa) ≥

HN (q1
1, q2, . . . qa), HA(q2

1, q2 . . . , qa) ≥ HA(q1
1, q2, . . . qa) and I(q2

1, q2 . . . , qa) ≥ I(q1
1, q2, . . . qa).

Step 2: It follows from Step 1 that, if q1
i � q2

i for i = 1, . . . , a, then

HN (q2
1, q

2
2 . . . , q

2
a−1, q

2
a) ≥ HN (q1

1, q
2
2 . . . , q

2
a−1, q

2
a)

≥ HN (q1
1, q

1
2 . . . , q

2
a−1, q

2
a)

≥ . . . ≥ HN (q1
1, q

1
2 . . . , q

1
a−1, q

2
a)

≥ HN (q1
1, q

1
2 . . . , q

1
a−1, q

1
a)

Hence, HN (q2
1, . . . , q

2
a) ≥ HN (q1

1, . . . , q
1
a). Using the same line of arguments, we obtain

HA(q2
1, . . . , q

2
a) ≥ HA(q1

1, . . . , q
1
a) and I(q2

1, . . . , q
2
a) ≥ I(q1

1, . . . , q
1
a).

In Steps 1 and 2, we have proved that, given two supply chains that satisfy the conditions of the

proposition, arc-based complexity, node-based complexity and cost rank these two supply chains

in the same order. Because the three orderings are the same when comparing an arbitrary pair of

supply chains, they will be the same when comparing an arbitrary number of supply chains.

Proof of Proposition 4:

For the purposes of this proof, let HA−N and HA−M denote the arc-based complexity of the non-

modular and modular supply chains, respectively. Likewise, let IN and IM denote the respective

costs of the non-modular and modular supply chains. In addition, let qNi and qMi denote demand

vector of node i under non-modular and modular supply chains, respectively. Here the numbering

of nodes follows the same convention introduced in Figure 7. Since the demand shares are equal

across all the variants of the final assembler, we get the following demand vectors:

qNi = qMi =
(

1
γ
,

1
γ
, . . . ,

1
γ

)
1×γ

, i = 1, 2, 3, 4 (S-3)
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qM5 = qM6 =
(

1
γ2
,

1
γ2
, . . . ,

1
γ2

)
1×γ2

(S-4)

qN7 = qM7 =
(

1
γ4
,

1
γ4
, . . . ,

1
γ4

)
1×γ4

. (S-5)

Proof of (a). Using the complexity criterion: Recall that the arc-based complexity of an

assembly supply chain is
∑n

i=1

∑Vi
v=1−Li

qiv
K log2

qiv
K . With some algebra, it can be checked that

the arc-based complexity can also be written as

log2K −
1
K

n∑
i=1

Li

Vi∑
v=1

qiv log2 qiv. (S-6)

By substituting in (S-6) the expression for qNi , i = 1, 2, 3, 4 given by (S-3), and the expression for

qN7 , given by (S-5), and letting K = 8, Li = 1, i = 1, . . . , 4 and L7 = 4, we obtain the following

expression for the complexity of the non-modular assembly supply chain:

HA−N =
5
2

log2 γ + log2 8.

Similarly, by substituting in (S-6) the expression for qMi , i = 1, 2, 3, 4 given by (S-3), the

expression for qMi , i = 5, 6 given by (S-4) and the expression for qM7 , given by (S-5), and letting

K = 10, Li = 1, i = 1, . . . , 4 and L5 = L6 = L7 = 2, we obtain the following expression for the

complexity of the modular assembly supply chain:

HA−M = 2 log2 γ + log2 10.

The complexity difference between non-modular and modular supply chains is

HA−N −HA−M =
1
2

log2 γ − 0.3219

When γ = 1, HA−N − HA−M < 0, and the non-modular assembly supply chain is better. When

γ ≥ 2, HA−N −HA−M > 0, and the modular assembly supply chain is better.

Proof of (b). Using the cost criterion: Since we assume the leadtime of node i is Li, the

number of inputs assembled at node i. Therefore the cost of an assembly supply chain is

I =
N∑
i=1

Vi∑
v=1

Iiv =
n∑
i=1

Vi∑
v=1

Ci
√

(Li + 1)λqiv. (S-7)

Because we assume all the nodes in the same echelon have the same cost coefficient, we let, for

notational convenience, CI = CNi = CMi , i = 1, 2, 3, 4 and CII = CMi , i = 5, 6 and CIII = CN7 =

CM7 .
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By substituting in (S-7) the expression for qNi , i = 1, 2, 3, 4 given by (S-3), and the expression

for qN7 , given by (S-5), we obtain the following expression for the cost of the non-modular assembly

supply chain:

IN = CIIIγ
2
√

5λ+ 4CI
√

2λγ.

Similarly, by substituting in (S-7) the expression for qMi , i = 1, 2, 3, 4 given by (S-3), the

expression for qMi , i = 5, 6 given by (S-4) and the expression for qM7 , given by (S-5), we obtain the

following expression for the cost of the modular assembly supply chain:

IM = CIIIγ
2
√

3λ+ 2CIIγ
√

3λ+ 4CI
√

2λγ.

The cost difference between non-modular and modular supply chain is,

IN − IM = −2γCII
√

3 + γ2CIII(
√

5−
√

3).

Define t := 2
√

3CII

(
√

5−
√

3)CIII
. If γ ≤ t , IN − IM ≤ 0 and non-modular assembly supply chain is better.

If γ > t , IN − IM > 0 and modular assembly supply chain is better.

Proof of Proposition 5:

For the purposes of this proof, let HA−N and HA−M denote the arc-based complexity of the non-

modular and modular supply chains, respectively. Likewise, let IN and IM denote the respective

costs of the non-modular and modular supply chains. In addition, let qNi and qMi denote demand

vector of node i under non-modular and modular supply chains, respectively. Here the numbering

of nodes follows the same convention introduced in Figure 7. For notational convenience, let

qiv = qNiv = qMiv , where i = 1, 2, 3, 4, 7, v = 1, 2, . . . , Vi. Let q5v = qM5v , v = 1, 2, . . . , V5 and

q6v = qM6v , v = 1, 2, . . . , V6.

Proof of (a). Using the complexity criterion: Recall that the arc-based complexity of an

assembly supply chain is

−
n∑
i=1

Vi∑
v=1

Li
qiv
K

log2

qiv
K

= log2K −
n∑
i=1

Li
K

Vi∑
v=1

qiv log2 qiv. (S-8)

By substituting K = 8, Li = 1 for i = 1, . . . , 4 and L7 = 4 in (S-8), we obtain the following

expression for the complexity of the non-modular assembly supply chain:

HA−N = log2 8− 1
8

4∑
i=1

γ∑
v=1

qiv log2 qiv −
4
8

γ4∑
v=1

q7v log2 q7v

Similarly, by substituting K = 10, Li = 1 for i = 1, . . . , 4, L5 = L6 = L7 = 2 in (S-8), we obtain

the following expression for the complexity of the modular assembly supply chain:
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HA−M = log2 10− 1
10

4∑
i=1

γ∑
v=1

qiv log2 qiv −
2
10

6∑
i=5

γ2∑
v=1

qiv log2 qiv −
2
10

γ4∑
v=1

q7v log2 q7v

Therefore, the complexity difference between non-modular and modular assembly supply chains is

HA−N −HA−M = log2

8
10
− 1

40

4∑
i=1

γ∑
v=1

qiv log2 qiv +
2
10

6∑
i=5

γ2∑
v=1

qiv log2 qiv −
3
10

γ4∑
v=1

q7v log2 q7v

Notice that qivs depend on p only for i = 1, 5, 7. Hence, the term

κ1 := log2

8
10
− 1

40

4∑
i=2

γ∑
v=1

qiv log2 qiv +
2
10

γ2∑
v=1

q6v log2 q6v

in the difference HA−N −HA−M does not depend on p, and we can rewrite HA−N −HA−M as

HA−N −HA−M = − 1
40

γ∑
v=1

q1v log2 q1v +
2
10

γ2∑
v=1

q5v log2 q5v −
3
10

γ4∑
v=1

q7v log2 q7v + κ1 (S-9)

We know the following about the demand vectors q1, q5, and q7:

q1 = (a1(1− p), a2(1− p), ..., aγ−1(1− p), p)1×γ ,where
γ−1∑
i=1

ai = 1

q5 =
(
a1(1− p)q21, . . . , aγ−1(1− p)q2γ , pq21, . . . , pq2γ

)
1×γ2

q7 =
(
a1(1− p)q21q31q41, . . . , aγ−1(1− p)q2γq3γq4γ , pq21q31q41, . . . , pq2γq3γq4γ

)
1×γ4

We substitute these demand vectors in (S-9) to obtain:

HA−N −HA−M =
1
8

(p
γ−1∑
i=1

ai log2 ai − (1− p) log2(1− p)− p log2 p) + κ1

− 1
10

γ−1∑
i=1

ai log2 ai +
2
10

γ∑
j=1

q2j log2 q2j −
3
10

γ∑
j=1

γ∑
k=1

γ∑
l=1

q2jq3kq4l log2 q2jq3kq4l

Notice that the term

κ2 :=
1
10

γ−1∑
i=1

ai log2 ai +
2
10

γ∑
j=1

q2j log2 q2j −
3
10

γ∑
j=1

γ∑
k=1

γ∑
l=1

q2jq3kq4l log2 q2jq3kq4l

does not depend on p. We can rewrite the complexity difference between non-modular and modular

assembly supply chains as:

HA−N −HA−M =
1
8

(
p

γ−1∑
i=1

ai log2 ai − (1− p) log2(1− p)− p log2 p

)
+ κ1 + κ2

S8



Figure 8: Four different scenarios of HA−N −HA−M

For ease of notation, let R :=
∑γ−1

i=1 ai log2 ai and f(p) := 1
8 (pR− (1− p) log2(1− p)− p log2 p).

With these definitions, note that HA−N −HA−M = f(p) + κ1 + κ2. It is not difficult to check that

f(0) = 0 and f(1) < 0. Furthermore:

f ′(p) =
1
8

(R− log2 p+ log2(1− p)),

f ′′(p) = − 1
8p(1− p) ln 2

< 0 for p ∈ (0, 1).

Observe from above that f(p) is concave in p. Define p∗ so that f ′(p∗) = 0. One can check that

p∗ = 2R

1+2R . Because R ≤ 0, we observe p∗ = 2R

1+2R ≤ 1/2. Therefore, the function f(p) reaches its

highest point for some p ≤ 1/2. This observation, combined with f(0) = 0 and f(1) < 0, implies

that the difference HA−N −HA−M = f(p) + κ1 + κ2 is concave in p and reaches its highest point

at some p < 1 and its lowest point at p = 1. Next, we use this information and we consider a series

of cases to show all the possibilities about the sign of HA−N −HA−M as a function of p.

Case 1. f(1) + κ1 + κ2 ≥ 0: See Figure 8 (a) for an illustration of this case. Given that HA−N−

HA−M reaches its lowest point at p = 1, it follows that, in this case, HA−N −HA−M ≥ 0 for all p.

Therefore, the modular assembly supply chain is better for any p.

Case 2. f(1) + κ1 + κ2 < 0: In this case, we need to consider two subcases.

Case 2(a). f(1) + κ1 + κ2 < 0 and f(0) + κ1 + κ2 ≥ 0: See Figure 8 (b) for an illustration of

this case. In this case, the function HA−N −HA−M starts out non-negative at p = 0 and ends up

being negative at p = 1. Since the function f(p) is strictly concave, there must exist t ∈ [0, 1] such
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that HA−N −HA−M ≥ 0 for p ≤ t and HA−N −HA−M < 0 for p > t.

Case 2(b). f(1) + κ1 + κ2 < 0 and f(0) + κ1 + κ2 < 0: There are two further subcases to con-

sider. If f(p∗) + κ1 + κ2 ≥ 0, then there must exist p1 and p2 such that HA−N − HA−M is

non-negative for all p ∈ [p1, p2] and negative elsewhere. (See Figure 8 (c) for an illustration of this

case.) If f(p∗) +κ1 +κ2 < 0, then it must be that HA−N −HA−M is negative for all p. (See Figure

8 (d) for an illustration of this case.)

Proof of (b). Using the cost criterion: We assume the leadtime of node i is Li, the number

of inputs assembled at node i. Then the cost of an assembly supply chain is

I =
n∑
i=1

Vi∑
v=1

Iiv =
n∑
i=1

Vi∑
v=1

Ci
√

(Li + 1)λqiv (S-10)

By substituting Li = 1 for i = 1, . . . , 4 and L7 = 4 in (S-10), we obtain the cost of the non-

modular assembly supply chain:

IN = CIII
√

5λ
V7∑
v=1

√
q7v + CI

√
2λ

4∑
i=1

Vi∑
v=1

√
qiv

Similarly, by substituting Li = 1 for i = 1, . . . , 4, L5 = L6 = L7 = 2 in (S-10), we obtain the

cost of the modular assembly supply chain:

IM = CIII
√

3λ
V7∑
l=1

√
q7l + CII

√
3λ

5∑
i=5

Vi∑
i=1

√
qiv + CI

√
2λ

4∑
i=1

Vi∑
v=1

√
qiv

Cost difference between non-modular and modular assembly supply chain is

IN − IM = CIII(
√

5−
√

3)
√
λ

V7∑
v=1

√
q7v − CII

√
3λ(

V5∑
v=1

√
q5v +

V6∑
v=1

√
q6v) (S-11)

Recall we have the following demand vectors:

q1 = (a1(1− p), a2(1− p), ..., aγ−1(1− p), p)1×γ ,where
γ−1∑
i=1

ai = 1

q5 =
(
a1(1− p)q21, . . . , aγ−1(1− p)q2γ , pq21, . . . , pq2γ

)
1×γ2

q7 =
(
a1(1− p)q21q31q41, . . . , aγ−1(1− p)q2γq3γq4γ , pq21q31q41, . . . , pq2γq3γq4γ

)
1×γ4

By substituting the demand vector q5 and q7 back into (S-11), we can rewrite the cost difference

between non-modular and modular assembly supply chains as

IN − IM = S ·R
√

1− p+R
√
p− T

S10



where S, R and T , constants with respect to p, are given by

S =
γ−1∑
i=1

√
ai,

R = CIII(
√

5−
√

3)
√
λ

γ∑
j=1

γ∑
k=1

γ∑
l=1

√
q2jq3kq4l − CII

√
3λ

γ∑
j=1

√
q2j ,

T = CII
√

3λ
V6∑
v=1

√
q6v.

Let g(p) = S ·R
√

1− p+R
√
p. With this definition, notice that IN − IM = g(p)− T . Taking

derivatives of G(p), we obtain:

g′(p) = − SR√
1− p

+
R
√
p

g′′(p) = −R
(
S

4
(1− p)−3/2 +

1
4
p−3/2

)
Notice from above that G(p) is concave if R ≥ 0 and convex if R < 0. Hence, we divide the proof

into two cases depending on whether R is negative or non-negative.

(i) R ≥ 0:

If R ≥ 0, then g′′(p) ≤ 0, and g(p) is concave. Let p∗ be the maximizer of g(p). One can

check that p∗ = R2

S2+R2 and p∗ ∈ (0, 1). In addition, g(0) = SR and g(1) = R. Because R ≥ 0

and S =
∑γ−1

i=1

√
ai ≥ 1, it follows that g(0) = SR ≥ g(1) = R. Using these observations, we

note that g(p) is concave and reaches its highest point at p∗ < 1 and its lowest point at p = 1.

Keeping this in mind, we now consider a number of subcases, depending on the value of T relative

to R ≤ SR ≤ g(p∗).

Case 1. T ≤ R: See Figure 9 (a) for an illustration of this case. The lowest point of IN − IM ,

which occurs at p = 1, is given by g(1) − T = R − T ≥ 0. Hence, IN − IM ≥ 0 for all p ∈ [0, 1],

and the modular assembly supply chain is better for all p ∈ [0, 1].

Case 2. R < T ≤ SR: See Figure 9 (b) for an illustration of this case. The function IN − IM is

equal to SR−T ≥ 0 at p = 0 and is equal to R−T < 0 at p = 1. Since the function g(p) is strictly

concave, there must exist t ∈ [0, 1] such that IN − IM ≥ 0 for p ≤ t and IN − IM < 0 for p > t.

Case 3. R ≤ SR < T ≤ g(p∗): See Figure 9 (c) for an illustration of this case. The function

IN−IM is equal to SR−T < 0 at p = 0, reaches g(p∗)−T ≥ 0 at its peak and is equal to R−T ≤ 0.

In other words, IN − IM starts negative, becomes positive and then again negative. Given g(p)

is concave, there must exist p1 and p2 such that IN − IM is non-negative for all p ∈ [p1, p2] and

negative elsewhere.
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Figure 9: Four different scenarios of IN − IM

Case 4. R ≤ SR ≤ g(p∗) < T : See Figure 9 (d) for an illustration of this case. The function

IN − IM is equal to g(p∗) − T < 0 at its peak. Therefore, IN − IM < 0 for all p, which implies

that the non-modular assembly supply chain is better for any p.

(ii) R < 0:

If R < 0, then g′′(p) > 0, and g(p) is convex. Let p∗ be the minimizer of g(p). One can check

that p∗ = R2

S2+R2 and p∗ ∈ (0, 1). In addition, g(0) = SR and g(1) = R. Because R < 0 and

S =
∑γ−1

i=1

√
ai ≥ 1, it follows that g(0) = SR ≤ g(1) = R. Using these observations, we note

that g(p) is convex and reaches its lowest point at p∗ < 1 and its highest point at p = 1. Since

g(1) = R < 0, then it follows that g(p) < 0 for all p ∈ [0, 1]. Hence, IN − IM = g(p)− T < 0 for all

p ∈ [0, 1] and the non-modular assembly chain has lower cost than modular assembly supply chain

for any p.

Proof of Proposition 6:

For the purposes of this proof, let IN and IM denote the respective costs of the non-modular

and modular supply chains. In addition, let qNi and qMi denote demand vector of node i under

non-modular and modular supply chains, respectively. Here the numbering of nodes follows the

same convention introduced in Figure 7. Notice that qNi = qMi for node i = 1, 2, 3, 4, 7, because

the supply chains are the same in terms of the final assembler’s demand vector. For notational

convenience, let qiv = qNiv = qMiv , where i = 1, 2, 3, 4, 7, v = 1, 2, . . . , Vi. Let q5v = qM5v , l = 1, 2, . . . , V5
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and q6v = qM6v , l = 1, 2, . . . , V6. Because we assume all the nodes in the same echelon have the same

cost coefficient, we let, for notational convenience, CI = CNi = CMi , i = 1, 2, 3, 4 and CII = CMi ,

i = 5, 6 and CIII = CN7 = CM7 . Recall that costs of an assembly supply chain as follows, if we

assume the leadtime of node i is Li, the number of inputs assembled at node i.

I =
n∑
i=1

Vi∑
v=1

Iiv =
n∑
i=1

Vi∑
v=1

Ci
√

(Li + 1)λqiv

By substituting Li = 1 for i = 1, . . . , 4 and L7 = 4 in the above equation, we obtain the cost of the

non-modular assembly supply chain:

IN = CI
√

2λ
4∑
i=1

Vi∑
v=1

√
qiv + CIII

√
5λ

V7∑
v=1

√
q7v

Similarly, by substituting Li = 1 for i = 1, . . . , 4, L5 = L6 = L7 = 2 in the above equation, we

obtain the cost of the modular assembly supply chain:

IM = CI
√

2λ
4∑
i=1

Vi∑
v=1

√
qiv + CII

√
3λ

5∑
i=5

Vi∑
i=1

√
qiv + CIII

√
3λ

V7∑
v=1

√
q7v

Cost difference between non-modular and modular assembly supply chain is

IN − IM = −CII
√

3λ

(
V5∑
v=1

√
q5v +

V6∑
v=1

√
q6v

)
+ CIII(

√
5−
√

3)
√
λ

V7∑
v=1

√
q7v (S-12)

Observe from (S-12) that IN − IM is an increasing function of CIII . Suppose that IN − IM < 0 at

a given value of CIII , which means that the cost criterion favors the non-modular assembly supply

chain. If we decrease the cost coefficient of the final assembler, CIII , we will continue to have

IN − IM < 0 (because IN − IM is a increasing function of CIII), so the cost criterion continues to

favor the non-modular supply chain. Since the complexity of a supply chain does not change when

CIII changes, part (a) of the proposition follows.

On the other hand, if we increase the cost coefficient of the final assembler, CIII , IN − IM will

eventually exceed zero. Hence, there is a threshold T such that IN − IM ≥ 0 for when CIII ≥ T ,

which means that the cost criterion favors the modular supply chain once CIII exceeds a threshold.

The complexity again does not depend on CIII . Hence, part (b) follows.

Lemma 1. Suppose m-dimensional vectors A = (a1, a2, ..., am) and B = (b1, b2, ..., bm) and n-

dimensional vector C = (c1, c2, ..., cn) are all sorted in descending order. If A � B, then Ω(A,C) �

Ω(B,C) where the operation Ω(x,y) is the vector obtained by component-wise multiplication of

vectors x and y, sorted in descending order.
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Proof of Lemma 1: Define (x1,x2, . . . ,xm)↓ as the vector (x1,x2, . . . ,xm) sorted in descending

order. We prove the result by induction on n, the dimension of the vector C. First, when n = 1,

in which case C = (c1), we have:

Ω(A,C) = (a1c1, a2c1, ..., amc1), (S-13)

Ω(B,C) = (b1c1, b2c1, ..., bmc1). (S-14)

Because A = (a1, a2, ..., am) � B = (b1, b2, ..., bm), it follows that

Ω(A,C) = (a1c1, a2c1, ..., amc1) � Ω(B,C) = (b1c1, b2c1, ..., bmc1).

Hence, the result holds when n = 1. Suppose that if n = k−1, in which case C = (c1, c2, . . . , ck−1),

the result holds. That is:

Ω(A,C) = (a1c1, ..., amc1, a1c2, ..., amc2, ..., a1ck−1, ..., amck−1)↓

� Ω(B,C) = (b1c1, ..., bmc1, b1c2, ..., bmc2, ..., b1ck−1, ..., bmck−1)↓.

In the remainder of the proof, define

T =
(
t1, t2, ..., tm·(k−1)

)
:= (a1c1, ..., amc1, a1c2, ..., amc2, ..., a1ck−1, ..., amck−1)↓

S =
(
s1, s2, ..., sm·(k−1)

)
:= (b1c1, ..., bmc1, b1c2, ..., bmc2, ..., b1ck−1, ..., bmck−1)↓

Notice that T � S by the induction assumption. To complete the induction, we will prove that

if n = k and C = (c1, c2, . . . , ck), then Ω(A,C) � Ω(B,C). Ω(A,C) is obtained by inserting

the numbers a1ck, . . . , amck in descending order into the vector T . Ω(B,C) is obtained similarly

by inserting the numbers b1ck, . . . , bmck in descending order into the vector S. To complete the

induction, we use yet another induction, this time on the pairs of numbers inserted into vectors T

and S. To clarify, we will first show that, after inserting the first pair of numbers, a1ck into T and

b1ck into S, the resulting vectors (T, a1ck)↓ and (S, b1ck)↓ are such that (T, a1ck)↓ � (S, b1ck)↓. We

will then make the induction assumption that after inserting g − 1 pairs of numbers, we still have

(T, a1ck, . . . , ag−1ck)↓ � (S, b1ck, . . . , bg−1ck)↓. We will then show that, after inserting the g-th pair

of numbers, agck and bgck, we have (T, a1ck, . . . , agck)↓ � (S, b1ck, . . . , bgck)↓. This will conclude

the proof of both the inner and outer induction, concluding the proof of Lemma 1.

Suppose the first pair of numbers to be inserted, a1ck and b1ck, are such that ti ≥ a1ck ≥ ti+1

and sj ≥ b1ck ≥ sj+1. Then, after inserting a1ck into T and b1ck into S, and sorting the vectors,

we get

(T, a1ck)↓ = (t1, t2, ..., ti, a1ck, ti+1, . . . , tm·(k−1))

(S, b1ck)↓ = (s1, s2, ..., sj , b1ck, sj+1, . . . , sm·(k−1)).
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We next show that (T, a1ck)↓ � (S, b1ck)↓. Consider two cases: i ≤ j or i > j.

Case 1: i ≤ j

To see why (T, a1ck)↓ � (S, b1ck)↓, note that:

(i) For z = 1, 2, ..., i, we have
∑z

l=1 tl ≥
∑z

l=1 sl since T � S.

(ii) For z = i+ 1, i+ 2, ..., j, we have
∑z−1

l=1 tl + a1ck ≥
∑z−1

l=1 tl + tz =
∑z

l=1 tl ≥
∑z

l=1 sl, where

the first inequality holds because (a) a1ck ≥ ti+1 by assumption and (b) ti+1 ≥ tz since the vector

T is sorted, and the second inequality holds because T � S.

(iii) For z = j + 1, j + 2, ...,m(k − 1) + 1,
∑z−1

l=1 tl + a1ck ≥
∑z−1

l=1 sl + b1ck because (a) T � S

implies that
∑z−1

l=1 tl ≥
∑z−1

l=1 sl, and (b) A � B implies that a1ck ≥ b1ck.

Case 2: i > j

To see why (T, a1ck)↓ � (S, b1ck)↓, note that:

(i) For z = 1, 2, ..., j, we have
∑z

l=1 tl ≥
∑z

l=1 sl since T � S.

(ii) For z = j+ 1, j+ 2, ..., i, we have
∑z

l=1 tl =
∑z−1

l=1 tl + tz ≥
∑z−1

l=1 sl +a1ck ≥
∑z−1

l=1 sl + b1ck.

The first inequality holds because T � S and ti ≥ a1ck, and the second inequality holds because

a1ck ≥ b1ck from A � B.

(iii) For z = i + 1, i + 2, ...,m(k − 1) + 1,
∑z−1

l=1 tl + a1ck ≥
∑z−1

l=1 sl + b1ck because (a) T � S

implies that
∑z−1

l=1 tl ≥
∑z−1

l=1 sl, and (b) A � B implies that a1ck ≥ b1ck.

Hence, we have shown that after inserting the first pair of numbers, a1ck and b1ck, it is true that

(T, a1ck)↓ � (S, b1ck)↓. We now make the induction assumption that, after inserting ag−1ck and

bg−1ck, it is true that (T, a1ck, a2ck, . . . , ag−1ck)↓ � (S, b1ck, b2ck, . . . , bg−1ck)↓. For the remainder

of the proof, define

T ′ = (t′1, t
′
2, . . . , t

′
m·(k−1)+(g−1)) := (T, a1ck, a2ck, . . . , ag−1ck)↓

S′ = (s′1, s
′
2, . . . , s

′
m·(k−1)+(g−1)) := (S, b1ck, b2ck, . . . , bg−1ck)↓

Thus, the induction assumption can be written as T ′ � S′. To complete the induction, we prove

that after inserting agck and bgck into T ′ and S′, it is true that

(T ′, agck)↓ = (T, a1ck, a2ck, . . . , ag−1ck, agck)↓

�(S′, bgck)↓ = (S, b1ck, b2ck, . . . , bg−1ck, bgck)↓

Suppose t′i ≥ agck ≥ t′i+1 and s′j ≥ bgck ≥ s′j+1. Then:

(T ′, agck)↓ = (T, a1ck, a2ck, . . . , ag−1ck, agck)↓ =
(
t′1, t

′
2, . . . , t

′
i, agck, t

′
i+1, . . . , t

′
m·(k−1)+(g−1)

)
(S-15)

(S′, bgck)↓ = (S, b1ck, b2ck, . . . , bg−1ck, bgck)↓ =
(
s′1, s

′
2, . . . , s

′
j , bgck, s

′
j+1, . . . , s

′
m·(k−1)+(g−1)

)
(S-16)
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We will consider two cases: i ≤ j, and i > j.

Case 1: i ≤ j

To see why (T ′, agck)↓ � (S′, bgck)↓, note that:

(i) For z = 1, 2, ..., i, we have
∑z

l=1 t
′
l ≥

∑z
l=1 s

′
l since T ′ � S′.

(ii) For z = i+ 1, i+ 2, ..., j, we have
∑z−1

l=1 t
′
l + agck ≥

∑z−1
l=1 t

′
l + t′z =

∑z
l=1 t

′
l ≥

∑z
l=1 s

′
l, where

the first inequality holds because (a) agck ≥ t′i+1 by assumption and (b) the vector T ′ is sorted

and, hence, t′i+1 ≥ t′z, and the second inequality holds because T ′ � S′.

(iii) For z = j+1, j+2, ...,m(k−1)+g, the set {t′1, . . . , t′z−1, agck} can be divided into two disjoint

subsets, {t1, . . . , tz−g} and {a1ck, . . . , agck} (see (S-15)). Similarly, the set {s′1, . . . , s′z−1, bgck} can

also be divided into two disjoint subsets, {s1, . . . , sz−g} and {b1ck, . . . , bgck} (see (S-16)). Now, we

obtain
∑z−1

l=1 t
′
l + agck =

∑z−g
l=1 tl +

∑g
u=1 auck ≥

∑z−g
l=1 sl +

∑g
u=1 buck =

∑z−1
l=1 s

′
l + bgck, where

the inequality holds because (a)
∑z−g

l=1 tl ≥
∑z−g

l=1 sl by T � S and (b)
∑g

u=1 auck ≥
∑g

u=1 buck by

A � B.

Case 2: i > j

To see why (T ′, agck)↓ � (S′, bgck)↓, note that:

(i) For z = 1, 2, ..., j, we have
∑z

l=1 t
′
l ≥

∑z
l=1 s

′
l since T ′ � S′.

(ii) For z = j + 1, j + 2, ..., i, the set {t′1, . . . , t′z} can be divided into two disjoint subsets,

{t1, . . . , tz−y} and {a1ck, . . . , ayck}, where y ≤ g. Then,

z∑
l=1

t′l =
z−y∑
l=1

tl +
y∑

u=1

auck

=
z−g∑
l=1

tl +
z−y∑
l=z−g

tl +
y∑

u=1

auck

≥
z−g∑
l=1

tl +
g∑

u=y+1

auck +
y∑

u=1

auck

=
z−g∑
l=1

tl +
g∑

u=1

auck (S-17)

where the inequality holds because T ′ is sorted in descending order and tz−y ≥ ay+1ck. Now, the set

{s′1, . . . , s′z−1, bgck} can also be divided into two disjoint subsets, {s1, . . . , sz−g} and {b1ck, . . . , bgck}

(see (S-16)). We now note that
∑z

l=1 t
′
l ≥

∑z−g
l=1 tl+

∑g
u=1 auck ≥

∑z−g
l=1 sl+

∑g
u=1 buck =

∑z−1
l=1 s

′
l+

bgck, where the first inequality follows from (S-17) and the second inequality holds because (a)∑z−g
l=1 tl ≥

∑z−g
l=1 sl by T � S and (b)

∑g
u=1 auck ≥

∑g
u=1 buck by A � B.

(iii) For z = i+1, i+2, ...,m(k−1)+g, the set {t′1, . . . , t′z−1, agck} can be divided into two disjoint

subsets, {t1, . . . , tz−g} and {a1ck, . . . , agck} (see (S-15)). Similarly, the set {s′1, . . . , s′z−1, bgck} can

also be divided into two disjoint subsets, {s1, . . . , sz−g} and {b1ck, . . . , bgck} (see (S-16)). Now, we
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obtain
∑z−1

l=1 t
′
l + agck =

∑z−g
l=1 tl +

∑g
u=1 auck ≥

∑z−g
l=1 sl +

∑g
u=1 buck =

∑z−1
l=1 s

′
l + bgck, where

the inequality holds because (a)
∑z−g

l=1 tl ≥
∑z−g

l=1 sl by T � S and (b)
∑g

u=1 auck ≥
∑g

u=1 buck by

A � B..

Thus, we have proven the inner induction, which then proves the outer induction and concludes

the proof.
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Appendix C: Tables

Factor Inconsistency Rate ( %)
Complexity Num of Num of Cost Demand Rep Rep Rep

Run Definition Suppliers Variants Disparity Evenness 1 2 3
1 - - - - - 2.31 1.97 2.26
2 + - - - - 2.82 2.5 2.79
3 - + - - - 3.24 3.64 3.1
4 + + - - - 4.59 4.96 4.17
5 - - + - - 3.16 3.37 3.05
6 + - + - - 3.51 3.85 3.31
7 - + + - - 3.54 3.53 3.47
8 + + + - - 4.27 4.22 4
9 - - - + - 2.43 2.57 2.51
10 + - - + - 3.26 3.16 3.12
11 - + - + - 3.74 3.98 3.82
12 + + - + - 5.05 5.19 4.94
13 - - + + - 3.8 3.72 3.41
14 + - + + - 4.26 4.17 3.66
15 - + + + - 3.66 3.63 4.19
16 + + + + - 4.35 4.42 4.91
17 - - - - + 0.5 0.53 0.5
18 + - - - + 1.1 1.03 1.07
19 - + - - + 0.8 0.81 0.91
20 + + - - + 1.77 1.68 1.76
21 - - + - + 0.64 0.68 0.58
22 + - + - + 0.92 1.12 0.9
23 - + + - + 0.56 0.69 0.47
24 + + + - + 0.88 0.87 0.8
25 - - - + + 0.86 0.74 0.77
26 + - - + + 1.5 1.26 1.45
27 - + - + + 0.86 0.84 0.82
28 + + - + + 1.93 1.66 1.84
29 - - + + + 0.82 0.71 0.67
30 + - + + + 1.28 1.25 1.04
31 - + + + + 0.49 0.75 0.66
32 + + + + + 0.86 0.98 0.96

Table S-1: The percentage of inconsistencies for each of the 32 value combinations of the five factors
shown in Table 1. The possible values for each factor is as shown in Table 1. For each combination,
three replications are run.
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Factor Inconsistency Rate ( %)
Complexity Num of Num of Cost Demand Rep Rep Rep

Run Definition Suppliers Variants Disparity Evenness 1 2 3
1 - - - - - 3.78 3.75 3.61
2 + - - - - 5.19 5.19 5.11
3 - + - - - 3.87 3.7 4.14
4 + + - - - 5.82 5.42 5.93
5 - - + - - 3.71 3.67 3.81
6 + - + - - 4.56 4.27 4.7
7 - + + - - 3.67 3.72 3.58
8 + + + - - 4.55 4.66 4.38
9 - - - + - 4.36 4.01 3.95
10 + - - + - 5.66 5.42 5.52
11 - + - + - 3.92 3.66 4.07
12 + + - + - 5.71 5.46 5.92
13 - - + + - 3.76 3.48 3.78
14 + - + + - 4.69 4.34 4.44
15 - + + + - 3.45 3.65 3.8
16 + + + + - 4.33 4.46 4.78
17 - - - - + 0.86 0.62 0.82
18 + - - - + 1.8 1.47 1.75
19 - + - - + 0.56 0.54 0.57
20 + + - - + 1.42 1.36 1.3
21 - - + - + 0.57 0.61 0.57
22 + - + - + 0.77 0.69 0.61
23 - + + - + 0.51 0.57 0.6
24 + + + - + 0.62 0.75 0.8
25 - - - + + 0.76 0.79 0.69
26 + - - + + 1.54 1.72 1.53
27 - + - + + 0.58 0.67 0.63
28 + + - + + 1.33 1.31 1.38
29 - - + + + 0.53 0.63 0.64
30 + - + + + 0.83 0.85 0.9
31 - + + + + 0.65 0.49 0.57
32 + + + + + 0.8 0.73 0.68

Table S-2: The percentage of inconsistencies for each of the 32 value combinations of the five factors
shown in Table 1. The possible values for each factor is as shown in Table 1, except that the number
of suppliers is now four or five (as opposed two or three). For each combination, three replications
are run. Notice that the number of suppliers is no longer a statistically significant effect.

Term Effect t-Statistics p Value
Constant 186.28 < 0.0001

Complexity definition 0.865 30.53 < 0.0001
Number of suppliers -0.026 -0.91 0.365
Number of variants -0.520 -18.35 < 0.0001

Cost disparity between two echelons 0.048 1.71 0.093
Evenness of the demand vector -3.530 -124.57 < 0.0001

Table S-3: Estimated Effects, t-Statistics and p-Value (%) of S-2. A positive (negative) effect implies
that when the factor’s value changes from ‘-’ to ‘+’, the inconsistency rate increases (decreases).
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Factor Inconsistency Rate ( %)
Complexity Num of Num of Cost Demand Rep Rep Rep

Run Definition Suppliers Variants Disparity Evenness 1 2 3
1 - - - - - 2.92 2.64 2.93
2 + - - - - 3.45 3.21 3.46
3 - + - - - 3.59 4.19 3.59
4 + + - - - 4.94 5.51 4.66
5 - - + - - 3.48 3.88 3.51
6 + - + - - 3.87 4.38 3.83
7 - + + - - 3.71 3.73 3.64
8 + + + - - 4.44 4.42 4.17
9 - - - + - 2.77 2.82 2.81
10 + - - + - 3.6 3.41 3.42
11 - + - + - 3.92 4.18 3.97
12 + + - + - 5.23 5.39 5.09
13 - - + + - 4.02 3.93 3.77
14 + - + + - 4.48 4.38 4.02
15 - + + + - 3.73 3.66 4.27
16 + + + + - 4.42 4.45 4.99
17 - - - - + 0.89 0.95 0.81
18 + - - - + 1.49 1.45 1.38
19 - + - - + 0.97 1.04 1.16
20 + + - - + 1.94 1.91 2.05
21 - - + - + 0.88 0.99 0.9
22 + - + - + 1.2 1.49 1.22
23 - + + - + 0.63 0.77 0.5
24 + + + - + 0.97 0.97 0.85
25 - - - + + 1.05 0.85 0.94
26 + - - + + 1.69 1.37 1.62
27 - + - + + 0.91 0.95 0.9
28 + + - + + 1.98 1.79 1.92
29 - - + + + 0.98 0.77 0.77
30 + - + + + 1.44 1.31 1.14
31 - + + + + 0.5 0.76 0.69
32 + + + + + 0.87 1.01 0.99

Table S-4: The percentage of inconsistencies for each of the 32 value combinations of the five factors
shown in Table 1. The possible values for each factor is as shown in Table 1, except that the cost of
the downstream echelon is now four or five times as large as the sum of cost coefficients of the nodes
in the upstream echelon (as opposed to being the same as the sum or twice as large). For each
combination, three replications are run. Notice that the cost disparity is no longer a statistically
significant effect.

Term Effect t-Statistics p Value
Constant 137.13 < 0.0001

Complexity definition 0.647 17.49 < 0.0001
Number of suppliers 0.382 10.33 < 0.0001
Number of variants -0.082 -2.21 0.030

Cost disparity between two echelons 0.091 2.46 0.017
Evenness of the demand vector -2.797 -75.62 < 0.0001

Table S-5: Estimated Effects, t-Statistics and p-Value (%) of S-4. A positive (negative) effect implies
that when the factor’s value changes from ‘-’ to ‘+’, the inconsistency rate increases (decreases).
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Factor Inconsistency Rate ( %)
Complexity Num of Num of Cost Demand Rep Rep Rep

Run Definition Echelon Variants Disparity Evenness 1 2 3
1 - - - - - 1.97 2.1 2.14
2 + - - - - 2.59 2.64 2.76
3 - + - - - 3.99 3.61 3.81
4 + + - - - 4.59 4.16 4.42
5 - - + - - 3.13 3.59 3.12
6 + - + - - 3.63 3.96 3.48
7 - + + - - 1.42 1.51 1.58
8 + + + - - 1.61 1.68 1.92
9 - - - + - 2.77 2.49 2.65
10 + - - + - 3.42 3.14 3.37
11 - + - + - 4.35 4.66 4.27
12 + + - + - 4.92 5.31 4.74
13 - - + + - 3.65 3.45 3.66
14 + - + + - 4.12 3.99 4.05
15 - + + + - 2.94 3.27 3.23
16 + + + + - 3.18 3.67 3.43
17 - - - - + 0.49 0.49 0.53
18 + - - - + 1.01 1.05 1.32
19 - + - - + 0.8 0.87 1
20 + + - - + 1.18 1.13 1.23
21 - - + - + 0.69 0.52 0.52
22 + - + - + 1.03 0.89 0.9
23 - + + - + 0.7 0.76 0.8
24 + + + - + 0.67 0.71 0.76
25 - - - + + 0.98 0.64 0.77
26 + - - + + 1.58 1.34 1.4
27 - + - + + 1.01 1.21 1.1
28 + + - + + 1.37 1.51 1.29
29 - - + + + 0.74 0.67 0.71
30 + - + + + 1.07 1.05 1.17
31 - + + + + 1.07 1.1 1.07
32 + + + + + 1.13 1.11 1.06

Table S-6: The percentage of inconsistencies for each of the 32 value combinations of the five factors
shown in Table 1. The possible values for each factor is as shown in Table 1, except that the number
of suppliers is fixed at two and the factor of the number of suppliers is replaced with number of
echelons (number of echelons could either be two or three). Notice that number of echelons is a
statistically significant effect.

Term Effect t-Statistics p Value
Constant 143.02 < 0.0001

Complexity definition 0.399 13.40 < 0.0001
Number of echelons 0.198 6.64 < 0.0001
Number of variants -0.333 -11.20 < 0.0001

Cost disparity between two echelons 0.530 17.79 < 0.0001
Evenness of the demand vector -2.332 -78.35 < 0.0001

Table S-7: Estimated Effects, t-Statistics and p-Value (%) of S-6. A positive (negative) effect implies
that when the factor’s value changes from ‘-’ to ‘+’, the inconsistency rate increases (decreases).
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