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Abstract

Motivation: In single-cell RNA-sequencing (scRNA-seq) experiments, RNA transcripts are extracted
and measured from isolated cells to understand gene expression at the cellular level. Measurements
from this technology are affected by many technical artifacts, including batch effects. In analogous
bulk gene expression experiments, external references, e.g., synthetic gene spike-ins often from the
External RNA Controls Consortium (ERCC), may be incorporated to the experimental protocol for use in
adjusting measurements for technical artifacts. In scRNA-seq experiments, the use of external spike-ins
is controversial due to dissimilarities with endogenous genes and uncertainty about sufficient precision of
their introduction. Instead, endogenous genes with highly stable expression could be used as references
within scRNA-seq to help normalize the data. First, however, a specific notion of stable expression at the
single cell level needs to be formulated; genes could be stable in absolute expression, in proportion to cell
volume, or in proportion to total gene expression. Different types of stable genes will be useful for different
normalizations and will need different methods for discovery.
Results: We compile gene sets whose products are associated with cellular structures and record these
gene sets for future reuse and analysis. We find that genes whose final product are associated with the
cytosolic ribosome have expressions that are highly stable with respect to the total RNA content. Notably,
these genes appear to be stable in bulk measurements as well.
Availability: The gene set database is available as part of the Supplement.
Contact: johanngb@umich.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Single-cell RNA-sequencing (scRNA-seq) experiments measure gene
expression at the cellular level, capturing details at a resolution previously
not possible. However, challenges arise due to unwanted variation that
scRNA-seq experiences. Some sources of unwanted variation include read
depth, capture efficiency, amplification biases, batch effects, and cell
cycle [Hicks et al., 2018, Phipson et al., 2017, Lun and Marioni, 2017,
Dabney and Meyer, 2012, Kolodziejczyk et al., 2015]. Methods have been
developed to remove some sources of unwanted variation, often using
certain sets of reference genes to aid in removing either specific or general
effects. For example, Chen and Zhou [2017] use Bayesian methods to
identify control genes that are unassociated with a factor of interest and
adjust the target genes based on the control genes. Buettner et al. [2015]

uses genes that have been annotated as associated with the cell cycle to
remove cell cycle effects from the data. Both Brennecke et al. [2013] and
Grün et al. [2014] propose using external spike-in references to remove
some of the technical noise present in the data. Finally, Lin et al. [2018]
propose using stably expressed genes as a form of negative controls to
remove unwanted variation using a procedure called scMerge.

Commercially generated, synthetic, external spike-in references (often
External RNA Controls Consortium (ERCC) spike-ins) can be used in bulk
gene expression experiments [Baker et al., 2005, Jiang et al., 2011, Risso
et al., 2014, Pine et al., 2016]. The ability to incorporate external spike-in
references in scRNA-seq varies based on the cell isolation protocol. Spike-
ins are not typically included in droplet-based isolation protocols but can
be in plate- and well-based isolation methods including the Fluidigm C1
system [Macosko et al., 2015, Bacher and Kendziorski, 2016, Lun et al.,
2016, Tung et al., 2017].
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Limitations to the use of spike-ins are not limited to scRNA-seq
contexts. A critique in both single cell and bulk experiments is that the
spike-ins possess qualities that are dissimilar to endogenous genes [Grün
and van Oudenaarden, 2015, Tung et al., 2017]. Spike-ins are designed to
exhibit artificially wide ranging characteristics, like length and proportion
of guanine and cytosine bases in the nucleic acid sequence, in order to
understand how these characteristics might affect downstream results.
Specific to scRNA-seq, the quantity of solution added for each cell is
much smaller, so minor pipetting errors (with the Fluidigm C1 system) or
other volume errors affect results much more than with a larger quantity
of solution [Tung et al., 2017]. The technical challenge of accurately
introducing and measuring a smaller volume of spike-ins reduces their
effectiveness as negative controls in scRNA-seq [Robinson and Oshlack,
2010].

Endogenous genes that are reasonably stably expressed have been
proposed for use in normalization of microarray data [Eisenberg and
Levanon, 2003, 2013, Gagnon-Bartsch and Speed, 2012]. However, it is
unclear that the single cell expression of these same genes exhibit the same
stability as in bulk experiments. For example, a gene may be expressed
with a bursting mechanism, increasing its variability [Jiang et al., 2017,
Suter et al., 2011, Fukaya et al., 2016]. Bulk expression data might identify
the gene as stably expressed, but that same classification at the single cell
level would be inappropriate.

There is a need to discover single cell-specific stably expressed genes.
Lin et al. [2017] propose a method of creating an index at the single
cell level for generating a set of stably expressed genes across all cell
conditions. Desired characteristics of stably expressed genes from Lin et al.
[2017] include a distribution with a small proportion of measurements with
low values and a small variance among the measurements with high values
as estimated from parameters of a Gamma-Gaussian model.

The goals of this paper are: (1) to clarify the notion of "stable
expression" at the single cell level, and in particular to define multiple
such notions, (2) to propose a method in which to identify a set of genes
that exhibit stable expression, (3) to organize sets of genes based on the
cellular component with which the final gene product is associated, and
(4) to suggest the set of cytosolic ribosomal genes as stably expressed with
respect to total RNA content.

2 Approach

2.1 Notions of Stability

We first consider explicitly what it means for a gene to be stable. The
idea of stable expression has previously been addressed either implicitly
or without much elaboration. However, the notion of stability at the single
cell level is inherently ambiguous and requires a precise definition. We
consider multiple notions of stability.

One notion of a stably expressed gene would be that the gene is
expressed at a constant absolute level. In other words, the number of RNA
molecules present within each cell should be approximately constant, e.g.,
each cell has about 10 RNA molecules of that gene. We refer to this notion
of stability as "absolute stability." Genes that are absolutely stable could
replace the external spike-ins, as they are expected to be present at a fixed
absolute amount in each cell. Like spike-ins, these genes could be used to
pick up certain technical effects, such as reaction efficiency.

A second notion of stable expression would be that genes are expressed
at a constant proportion with respect to cell volume; that is, they are stable
in terms of concentration. We refer to this as "stable in concentration."
In addition to picking up technical effects, genes that are stable in
concentration could also pick up and adjust for effects that are associated
with cell size.

Yet another notion of a stably expressed gene would be that the gene
is expressed at a constant proportion with respect to the total RNA content
of the cell from all genes. We refer to this as "stable in proportion to total
RNA content," or, when it is clear from context, simply as "proportionally
stable." In practice, we expect that sets of genes that are stable in
concentration will be similar to sets of genes that are proportionally stable,
provided that total RNA scales with cell size; in that case, both are likely
to pick up cell size effects.

The notions of stability described above are biological in nature; they
make no reference to measurements of gene expression, such as those
provided by scRNA-seq data. In a hypothetical, extremely high quality
dataset, these biological notions of stability would map clearly to features
of the data. An absolutely stable gene would have a small standard
deviation in terms of raw counts; a proportionally stable gene would have
a small standard deviation after dividing the raw counts by total cell count.

Real data, however, is subject to technical factors that strongly affect
the observed counts. In particular, some factors, like reaction efficiency,
have a strong global effect on all counts for a given cell, effectively
introducing a random scaling factor for each cell. Thus in real data, genes
that are absolutely stable will not necessarily appear particularly stable in
terms of their raw counts.

Normalizing the raw counts by the total cell count can adjust for the
random scaling effect, and such normalizations are common (e.g., rpkm
is a variant of this). After normalizing by total cell count, however, the
notion of stability that is most relevant is proportional stability. That is,
genes that appear stable in the normalized data would be those genes
that are proportionally stable, and genes that are in truth absolutely
stable would not necessarily appear stable in the data. Indeed, for this
reason – that normalization by total cell count is effectively necessary
to adjust for global technical effects, but that normalization by cell total
also obscures absolutely stable expression – absolutely stable genes are
especially difficult to identify. Note also that similar comments apply to
efforts to discover stably expressed genes in bulk tissue.

Importantly, note that a stably expressed gene can be viewed as the
opposite of a differentially expressed gene or a highly variable gene. That
is, the notion of stability, whether implicit or explicit, also implies the
notion of instability or variability. In practical terms, the normalization
that is applied to the data may not simply "clean" the data, but also alter
the biological interpretation of the data, and determine which biological
questions can (and cannot) be answered by the data. For example,
normalizing the data against a set of absolutely stable genes would
allow one to identify "absolutely differentially expressed genes," while
normalizing the data against a set of proportionally stable genes would
allow one to identify "proportionally differentially expressed genes." These
two sets of differentially expressed genes could be quite different. Thus,
finding sets of genes that exhibit different notions of stability would allow
for different types of normalization, which provide different biological
insights.

2.2 Localization of Stable Genes

The final product of a gene (protein, ribosomal RNA, etc.) is often localized
to specific structure(s) within the cell, e.g., nucleus, cell membrane, etc.
We may therefore associate a gene with the location(s) where that gene’s
final product(s) are active.

We hypothesize that certain structures may be enriched with genes that
are absolutely stable, while other structures may be enriched with genes
that are stable in concentration. For example, because each cell has one
nucleus, there may be a set of nuclear genes that are constant in absolute
expression. In contrast, there may be a set of genes enriched in the cytosol
that are reasonably constant in concentration.
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We perform our analysis under the hypothesis that structures are
important for identifying stably expressed genes. We therefore create gene
sets for each cell structure and assess the sets as a whole.

3 Methods

3.1 Mapping Genes to Cell Structures

The Gene Ontology Consortium maintains a database that specifies the
cellular component(s) with which each gene’s final product is associated
[Xin et al., 2016, Wu et al., 2013]. Many of the annotations provided by
the Gene Ontology Consortium are highly detailed (e.g., "mitochondrial
respiratory chain complex I"); we coarsen these annotations into ten
categories corresponding to major cellular structures; see the Supplement
for details. The ten categories are: nucleus, endoplasmic reticulum, Golgi
body, cytoplasm, membrane, ribosome, mitochondria, mitochondrial
ribosome, ribonucleoprotein complex, and cytosolic ribosome. We allow
a single gene to be associated with more than one cellular structure, and
some genes are not associated with any category. We will refer to these
sets of genes as "nuclear genes", "cytoplasm genes," etc.

3.2 Expression Data

We downloaded six datasets containing human cells processed by three
different lab groups and from four different tissue types from Gene
Expression Omnibus; see the Supplement for more details [Edgar et al.,
2002, Arguel et al., 2017, Das et al., 2017, Tung et al., 2017]. We selected
these datasets because they were conducted with the Fluidigm C1 platform
and included ERCC spike-ins. Note also that all but one of these datasets
make use of unique molecular identifiers (UMIs) [Kivioja et al., 2012]. We
filter to the genes that are expressed at least once in all datasets to ensure
that genes are expressed in a wide variety of tissue types and to compare
the datasets more directly.

3.3 Absolute Stability

Genes that are absolutely stable would ideally appear stable in the data
in terms of raw counts; however, as noted in Section 2, due to technical
factors that result in strong variation in library size from well to well,
simply looking for genes that are stable in terms of raw counts is not a
feasible way to discover absolutely stable genes. Instead, we leverage the
stable absolute "expression" of the ERCC spike-ins, and find absolutely
stable genes by looking for those genes that have a high correlation with
the ERCCs.

More specifically, for each of the six datasets we perform the following
analysis. We begin with raw counts of UMIs. We transform the raw counts
by log + 1. In addition, for each cell we also compute the sum of the raw
UMIs of all ERCCs; we refer to this as the "ERCC total." Finally, for
each gene, we compute Pearson’s correlation (across all cells) between
that gene’s (log + 1) expression and the log of the ERCC total.

We then summarize the correlations by finding, for each gene, the
mean of the correlations across the six datasets. Thus, for each gene, we
now have an average correlation of that gene’s expression with the ERCC
total, and we regard this as a measure of that gene’s absolute stability.
To see if any cellular structures are enriched for stably expressed genes,
we plot histograms of the correlations subsetted by structure, and inspect
these histograms to see if any structures have especially high correlations.

3.4 Proportional Stability

We also attempt to find genes that are proportionally stable. Our method
is similar to the one for absolute stability but with an adjusted cell total
replacing the ERCC total. For a given structure S, we sum a cell’s overall

Fig. 1. Histogram of the correlations of all genes with the ERCC totals. The supplement
contains detailed histograms with separation based on the structure.

measured expression after removing the set of all genes associated with
structure S; we refer to this as an "adjusted cell total". For each gene, we
compute Pearson’s correlation (across all cells) between that gene’s (log
+ 1) expression and the log of the adjusted cell total.

Again, we summarize correlations by finding, for each gene, the mean
of the correlations across the six datasets. For each structure, we plot a
histogram of that structure’s correlations with that structure’s adjusted cell
total.

4 Results

4.1 Absolute Stability

Figure 1 shows a histogram of the correlations with the ERCC total;
histograms of correlations separated by gene sets can be found in
Supplementary Figures 2 and 3. The most notable observation is that the all
correlations were smaller in absolute value than 0.3. The weak correlations
indicate that no gene captures the same artifacts as the spike-ins, and vice
versa. One possible explanation for this is that the spike-ins are not exposed
to some technical effect(s) that endogenous genes are affected by. As cells
need to be lysed and RNA needs to be extracted from the cells, we believe
that technical factors affect the measurements for endogenous genes while
the spike-ins do not experience the same variability.

The spike-in measurements exhibit lower variability than the biological
measurements within our datasets. We compared the biological cell total
to the ERCC cell total on a log scale for each of the datasets (Figure 2). We
see that the variability for the ERCC measurements is considerably smaller
than the variability for the biological total of a cell. Figures examining
the mean and standard deviation of each of the genes and ERCC spike-
ins separates demonstrate that, again, the ERCC spike-ins have much
lower variability when compared to biological genes with similar overall
expression (Supplementary Figure 1).

Overall, the spike-ins appear to have measurements that are more
absolutely stable than the endogenous genes. Since each dataset captures
one type of cell and Figure 2 displays cell totals, technical effects likely
contribute most of the variation. The technical factors affecting the
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Fig. 2. Boxplots of the biological expression of a cell and the ERCC measurements
from each cell. The blue boxplots represent the log-transformed sum of the biological
expression for each cell, while the orange boxplots are the log-transformed sum of the
ERCC measurements for each cell. Separate boxplots are plotted for each dataset.

biological cell totals appear larger than technical factors affecting the spike-
ins, indicating that they do not appear to be capturing the same technical
effects that are affecting the biological measurements. Using spike-ins to
identify genes that are absolutely stably expressed is inappropriate.

4.2 Proportional Stability

We examine the measures of proportional stability in Figure 3 and
Supplementary Figure 4. Unlike the correlations with the ERCC
measurements, we see large correlations, with values ranging from -0.03
to 0.95. The cytosolic ribosomal genes exhibit the highest measures of
proportional stability based on their correlations.

Table 1 displays the distribution of cell structures among the genes in
our dataset. We also show the distribution of different subsets of genes,
including the genes of Eisenberg and Levanon [2003] and of Lin et al.
[2017]. Of the genes with the highest average correlations, 44 of the top
45 are cytosolic ribosomal genes. 61 of 101 cytosolic ribosomal genes are
in the top 100 genes by correlation; for comparison, 69 of 4,402 nuclear
genes, 51 of 470 housekeeping genes from Eisenberg and Levanon [2003],
and 37 of 967 single cell housekeeping genes from Lin et al. [2017] are in
the 100 genes with the highest correlations.

Ribosomal genes, from which the cytosolic ribosomal genes are a
subset, have been previously identified as a plausible option for reference
genes for microarray experiments [Thorrez et al., 2008]. Thorrez et al.
[2008] note that the ribosomal genes do exhibit tissue-dependent variation
but are the most stable set of genes that they had encountered.

The expressions of the cytosolic ribosomal genes indicate that they
could be effective as reference genes, as most cells express cytosolic
ribosomal genes and at a fairly high level (Supplementary Figure 7).

Finally, we compare the correlations of cytosolic ribosomal genes
to those of GAPDH and Beta-actin, two genes that have previously
been identified as stable genes. Both GAPDH and Beta-actin appear
to have similar or smaller correlations as the cytosolic ribosomal genes

Fig. 3. Histograms of the average correlations of each gene over the six datasets considered,
with comparisons between the set of genes of interest and the remaining genes. Note that,
unlike Figure 1, the x-axis ranges from -0.05 to 0.95. Figures for the additional six strctures
can be found in Supplementary Figure 4.

Table 1. Distribution of Cell Structures Amongst Different Sets of Genes

Structure All Genes E & L Lin et al. Top 100 Cyto. Ribo.
Number of Genes 8,601 470 967 100 101

Nucleus 51% 60% 71% 69% 67%
Endoplasmic Reticulum 11% 14% 10% 12% 8%

Golgi Bodies 10% 11% 9% 1% 1%
Cytoplasm 30% 37% 32% 37% 34%
Ribosome 2% 8% 8% 63% 100%

Mitochondria 14% 22% 14% 20% 12%
Mitochondrial Ribosome 1% 1% 1% 0% 4%

Ribonucleoprotein 2% 5% 6% 18% 18%
Membrane 37% 51% 36% 63% 63%

Cytosolic Ribosome 1% 7% 4% 61% 100%

The distribution of the cell structures amongst different gene sets, to see if any structure is
enriched in a gene set. The Top 100 genes here correspond to the top 100 genes based on
their high correlations with the unadjusted cell total. Note that genes can be associated with
more than one structure; while the cytosolic ribosomal genes are found in the cytosolic
ribosome, they are not exclusively associated with that structure.

(on average), indicating that the proportional stability is similar to two
commonly used stable genes; the correlation for GAPDH is 0.82 and for
Beta-actin is 0.75. For a sense of how these correlations compare to those
for the cytosolic ribosomal genes, see Supplementary Figure 6 or examine
Panel 2 of Figure 3.
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4.3 Stability of Cytosolic Ribosomal Genes in Bulk Tissues

For assessment of the stability of cytosolic ribosomal genes in bulk samples
from many tissue types, we analyzed data collected with bulk sequencing
from the Genotype-Tissue Expression (GTEx) project [Carithers et al.,
2015]. The GTEx project systematically collected multiple tissue types
from many individuals for genetic profiling and analysis. The tissue types
are often subcategorized into additional specific subtissue types.

We examine the stability of different sets of genes by seeing how
strongly their expressions vary across tissue type. More specifically, for a
given set of genes, we compute the singular-value decomposition (SVD)
and plot the first two singular vectors to see how strongly the samples
cluster by tissue type. The more pronounced the clustering, the less stable
the expression. Prior to calculating the SVD, the GTEx samples are RPKM-
normalized, transformed with the log + 1, and centered by gene. In these
plots, clustering by tissue type indicates that the genes examined have some
differential expression between tissue types, whereas lack of clustering
provides evidence of stable expression across tissue types. We examine
the SVD plots to assess the stability of the cytosolic ribosomal genes
compared to all genes, the Eisenberg and Levanon [2003] genes, and the
Lin et al. [2017] genes.

We perform the SVDs for both single tissues and combinations of
two tissue types. We selected the seven tissue types with the most samples
(brain, skin, esophagus, blood vessel, adipose tissue, heart, and muscle); of
these, six had subtissue types. We first plotted the SVD for these six tissue
types separately with coloring by subtissue type to examine how stably
expressed genes are within a tissue type; see Figure 4 and Supplementary
Figures 33 to 38. We also plotted SVDs for each combination of two of the
seven tissue types to examine how stably expressed genes are across those
two tissue types; see Supplementary Figures 39 to 80. Figure 5 shows
two sets of two tissue types across which the cytosolic ribosomal genes
are especially stable (left panel) and especially not stable (right panel). In
general, the cytosolic ribosomal genes exhibit the most stable expression
between subtissue types and across different tissue types. However, as also
noted by Thorrez et al. [2008], the cytosolic ribosomal genes are not highly
stable across all tissue types, and thus caution is required when using them
for adjustment.

5 Table of Gene Information
We have generated a database that contains summary information about
the genes in our datasets. This database contains our structural annotations;
means, standard deviations, and correlations from the single cell datasets;
and means, standard deviations, and F-statistics for the tissue types from
the GTEx data. This information can help customize a set of reference
genes specific to task and needs.

Detailed information and code can be found in the supplementary
materials for more information and replication of these findings.

6 Discussion and Conclusions
Based on our analysis, the cytosolic ribosomal genes appear to be stably
expressed proportional to the total RNA content of a cell. The set of
cytosolic ribosomal genes have been identified based on high correlations
with an adjusted cell total, and thus appear to have good measures of
proportional stability. Expression patterns of cytosolic ribosomal genes
observed in bulk GTEx experiments further support the conclusion that
cytosolic ribosomal genes are proportionally stably expressed.

Proportional stability of the cytosolic ribosomal genes is biologically
plausible given their function. The primary function of the ribosome is to

Fig. 4. Singular Value Decomposition of GTEx data from the brain using different sets of
genes. The overlap of the clusters denoted by the coloring indicate how stably expressed
the genes are; the overlap is the strongest for the cytosolic ribosomal genes, indicating that
they are the most stably expressed of the three options between the brain subtissue types.
Note that the number of genes in each of the four SVD plots differ. More specifically, 89
cytosolic ribosomal genes are present in the available GTEx data, while more are present
in each of the other three gene sets. To ensure that differences in the number of features are
not accounting for differences in apparent differential expression, we repeat the analysis
with random samples of 89 genes from each of the gene sets; Supplementary Figures 81 to
86 show these figures.

translate mRNA transcripts into proteins. We anticipate that the cytosolic
ribosome is active at a rate that scales with gene expression.

In addition to identifying a set of genes that appear to be proportionally
stably expressed, we have introduced other notions of stable expression,
in particular absolute stability. Importantly, normalization steps can affect
the types of stability that are discoverable in the data. Technical effects
captured by each of notion of stability vary. Thus, these different notions
of stability could be used separately to identify specific technical effects,
or in conjunction to remove multiple types of technical effects.

While previous sets of stably expressed genes have not been defined
by considering a notion of stability, these gene sets can be considered
with respect to the notions that we have defined. By nature of being from
microarray data, Eisenberg and Levanon [2003] are only able to capture
averages across a bulk sample of cells. Since there are no indicators of
the number of cells, these genes are likely to be proportionally stable. The
characteristics that Eisenberg and Levanon [2003] search for also support
that their genes are likely to be the most similar to proportional stability. Lin
et al. [2017] discover their stably expressed genes from scRNA-seq. Prior
to analysis, an RPKM normalization is performed, leading to proportional
stability being most prevalent in the data. They then look for genes with
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Fig. 5. Singular Value Decompositions of GTEx data from the esophagus and blood vessels and blood vessels and heart, using different sets of genes as features. For each set of tissues, the
first plot on the top left uses all genes as features; the plot on the top right uses genes proposed by Eisenberg and Levanon [2003] as features; the plot on the bottom left uses genes proposed
by Lin et al. [2017] as features; and the plot on the bottom right uses cytosolic ribosomal genes as features. The plots display the first two singular vectors. The two tissue types are denoted
by either the circle or cross symbol, and the tissue subtypes are denoted by the coloring. The esophagus and blood vessel overlap substantially for the cytosolic ribosomal genes, indicating
that their expression is reasonably stable across these tissues and subtissues. Overlap is much smaller for the other three sets of genes, indicating less stable expression of these gene sets.
The separation for the blood vessel and heart is clear, indicating that the four sets of genes are not stably expressed across the blood vessel and heart; this separation is one of the strongest
that we observed in Supplementary Figures 39 to 80, in which we repeat the analysis for different combinations of tissue types. Again, note that different numbers of genes are used for each
of these SVDs. Supplementary Figures 87 to 106 show SVDs for random samples of 89 genes from each gene set.

high RPKM-normalized expression and low variability. While Lin et al.
[2017] search for features that are not directly related to proportional
stability, the notion of stability is closest to proportional.
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