Assessing Adaptive Grid Refinement Techniques with the Chombo-AMR Shallow Water Model

Jared Ferguson¹, Christiane Jablonowski¹, Hans Johansen², Peter McCorquodale², and Phillip Collela²

¹Atmospheric, Oceanic, and Space Sciences, University of Michigan, and ²Lawrence Berkeley National Laboratory (LBNL)

Introduction

• Current global climate and weather models are challenged by multi-scale intense atmospheric phenomena such as tropical cyclones and squall lines
• Adaptive mesh refinement (AMR):
 - Dynamically increases resolution locally over areas of interest when needed
 - Balances benefits of fine-scale resolution with increased computational burden
• Working to assess the effectiveness of AMR and various refinement strategies within the Chombo-AMR dynamical core using a series of 2D shallow water test cases
• Will use these refinement strategies in 3D-dycore simulations with simplified physics parameterization schemes

Model Description

Chombo-AMR Dynamical Core

• Development led by Applied Numerical Algorithms Group (ANAG) at LBNL [MU2015] in collaboration with the University of Michigan
• Uses the Chombo framework library, an open-source toolkit for solving PDEs on structured grids
• Multi-block grids on a cubed-sphere
• 4th-order finite-volume discretization of the shallow water equations
• Adaptive in both space and time

3D-Dycore Plans

• Non-hydrostatic model with a vertical time integrator that is implicit for “wave” terms and option to use Strang-type or IMEX coupling approaches
• Will implement a simplified physics parameterization scheme base on [RR2012] and a more complex Kessler-type warm precipitation microphysics scheme
• Will use a variety of baroclinic wave, orographic precipitation, and idealized tropical cyclone test cases
• Goal is to assess the effectiveness of AMR and the affects of AMR and changing grid resolutions on the physics parameterizations

Model Description

Chombo-AMR Dynamical Core

• Development led by Applied Numerical Algorithms Group (ANAG) at LBNL [MU2015] in collaboration with the University of Michigan
• Uses the Chombo framework library, an open-source toolkit for solving PDEs on structured grids
• Multi-block grids on a cubed-sphere
• 4th-order finite-volume discretization of the shallow water equations
• Adaptive in both space and time

3D-Dycore Plans

• Non-hydrostatic model with a vertical time integrator that is implicit for “wave” terms and option to use Strang-type or IMEX coupling approaches
• Will implement a simplified physics parameterization scheme base on [RR2012] and a more complex Kessler-type warm precipitation microphysics scheme
• Will use a variety of baroclinic wave, orographic precipitation, and idealized tropical cyclone test cases
• Goal is to assess the effectiveness of AMR and the affects of AMR and changing grid resolutions on the physics parameterizations

Acknowledgements and References

Thanks to my collaborators at LBNL, whose code was used for these simulations. The code was developed with funding from DoE Office of Science, BES and ASCR.

References

Conclusions

AMR techniques show promising results in the 2D shallow water tests:
• Able to achieve similar errors to uniform runs with significantly fewer grid cells
• AMR grid does not degrade large scale smooth flows
• Multiple possible refinement criteria
• Able to resolve localized fine-scale features accurately

Future Work: Begin similar analysis using the full 3D Chombo-AMR with the simplified physics parameterization schemes discussed. Focus will be on assessing the dependence of these sub-grid parameterizations on the resolution and grid structure in AMR runs using idealized tropical cyclones and other test cases.